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The renormalized virial expansion formulated in the first part of this work (preceeding
paper) is used for the derivation of the perturbation expansion of the Helmholtz free energy,
and of the s-particle distribution and correlation functions, around the known properties
of the non-ideal reference system. The obtained results differ from those given earlier by
Zwanzig from the direct perturbation expansion of the configurational integral. This dis-
ctepancy seems to be connected with the different order of various formal procedures,
like the reafrangements of infinite series involved, and the limiting procedures, in both
methods. It is suggested that the Zwanzig perturbation theory is connected rather with the
cluster than with the virial expansion.

1. Introduction

In the first part of this work [1] (henceforth referred to as I) we have formulated the
renormalization of the Ursell-Mayer virial expansion [2] of the Helmholtz free energy A,
and of the s-particle distribution functions n, (as well as of other functions connected with
ng), for the non-ideal reference system. It seems that the recent most promising approaches
to the formulation of the adequate theory of liquids are those which make use of the known
properties of some reference system with simplified interparticle interactions (usually
a hard-core one). The best-known of these is the perturbation theory by Zwanzig [3]
and Barker and Henderson [4] (¢f. I for further references), and we wish in this part to
compare our results with the results of the perturbation theory. However, the perturbation
theory (as well as other theories of this kind — ¢f. I) has been so far constructed for the
thermodynamic properties (free energy, equation of state) only, leaving aside the problem
of calculation of the distribution functions. The knowledge of the free energy, as the function
of the temperature T, and the volume per particle v, is sufficient for the complete thermo-
dynamic (macroscopic) description of a fluid. More detailed information concerning also
some details about the internal structure of the system, may be obtained from the know-
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ledge of the (lower) s-particle distribution functions. Of special importance is the radial
distribution function g(r), which describes the probability of finding a particle at the distance
r from a given particle, and which is directly measurable (¢f. e.g. [5, 6]). When the total
potential energy of the system is pair-additive, g(r) contains also all the thermodynamical
information about the system [5], and several approximate theories of fiuids are formulated °
through 1ntegral equations for g(r) [5-10]. We are thus also going to formulate in this
part of the present work the analogon of the Zwanzig perturbation expansion for the
radial distribution function and for other s-particle .distribution functions.’

We shall consider the same system as in I, with the same splitting of the potential
energy, and of the Mayer functions, into the part describing the reference system, and the
remainder. All the notations are also identical as in I; especially, the superscript or sub-
- script O denotes' the quantities describing the reference system. We shall only get rid —
at the beginning — of the thermodynamical limit (1.2.1), because the perturbatlon theory
of Zwanzig [3] does not make use of it.

2. Free energy

The canonical free energy of N—particle system, Ay, is given by (A is that from
(1.2.3)):

J i
e~ AN—NAi)/kT = Oy = v f..;fdrl ov. drjeT ONCNET .1y
v
Write
on(rY) = ‘PN(" )+ 2 W(ry;). (2.2)-
i>j=1

Here gy(r") and @u(r") are the total potential energles of the real (cons1dered) and reference
systems, and W(r;;) is the same as in (I.3.1). py(r") may be eventually written as the sum
of pair potentials ¥°(r;;); however, this is presently not necessary. In the Zwanzig perturba-
tion. theory [3], exp {—) W(r;)/kT} in (2.1) is expanded into powers of W(r,;)/kT, and
the so-obtained expansion of Q]‘} is rearranged further into the powér series in, (1/T) of Ay:

o0

) (D 1 n—1
Ay = A5 % — - — 2.3
N Nt ) ! ( kT> 2.3y

n=

(A4y denotes the canonical free energy of the N-particle reference system).
The general expression for the.n-th coeffcient , is rather complicated; the first
two coefficients are’: :

oy =1 [ dr, [ dr,W(ry;)nd(12), | Q.4

= n3(rs).

! Zwanzig [3] uses differently defined distribution functions: P3(r) =
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w; =} [ dry - § drW(ry ) W(rs)[n%(1234)— n3(12)n3(34)] +
+ fdry . ArsW(r )W(r,ys)n3(123)+

+ 3 [ dry [ dr,[W(r, )] n3(12). 2.5)
Let us now write exp {— W(r;)/kT} in terms of Mayer functions:
N .
exp {= L WCr/kT} =TI A+£), (2.6)
i>j=

introduce the ‘“‘coupling constant” y (y = 1), multiply every Mayer function. f* by this
constant, and collect terms according to the power in y:

N
| | arrd - 1+v<§)ﬁz+v2 [3 (§>f32f213+3<11>f112f314] +
1 .

+y? I:(g)ffzlesfsﬁ +4 <11>f112f113f114+ 12 <Jé\1])f112f213f314+

v30(§ ) stutsstorss () ariste| - @

Inserting (2.7) into (2.1), and making use of the definition (I.2.6) of the s-particle
distribution function?, we obtain the desired expansion of the configurational integral Qy.
Further rearrangement leads to the expansion of the free energy in powers of y:

0

Ay = Ay=kT Z % LN, V, T), (2.8)
' n=1
Ay =% [dr | dryfin3(12), (2.9)
Ay = % [ dry ... [ drofiy fi[n9(1234) — n3(12)n3(34)] + ’
+ [ dry ... | dryfi, f33n°(123), (2.10)
Ay = fdry:. | drsfL i A n°(123) +
+ [ dry ... [ dryflsfrs(fra+3F1)n°(1234), 2.11)

etc. Expanding the Mayer functions f1(r) into a power series of W(r)/kT, we rederive the
Zwanzig results (2.3)~(2.5). The formula (2.8) forms thus a kind of perturbation series
where the perturbation of the reference system is the Mayer function (= the renormalized
potential) rather than the potential of interaction.

Further terms of the expansion (2.8) may be found (by means of formal rearrange-
ments of the series, similar to that used by Zwanzig [3]), from the expansion (2.7); the
latter may be defined in terms of the usual linear labeled graphs (not necessarily linked)

2 g-particle distribution function n3(r%) must be understood here as defined for the finite, N-particle
system.
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of the Ursell-Mayer theory [2].® This leads, however, to a quite complicated form, which
will not be presented here.

We shall now rearrange the renormalized virial series of I to the form resembling (2.8).
First, let us note that the Helmholtz free energy per particle, 4, defined by'(1.2.2), (1.3.4),
(1.3.7) is related to Ay from. (2.8) by (see e.g. [2]): '

1
Aw, T) = lim < 4y(No, T) = lim IZ/AN(V, ), (2.12)

N-ow Vo =

(where the limits are to be understood in the meaning of the thermodynamical limit (I.2.1)),
so that, if we write

A= Ay—kT Z % Afv, T), 2.13)
ep=1 )
we get
iy V.
Ao, T) = lim - A, (— .V, T>, (2.14)
Voo 14 U

if such a limit does exist, and if the order of the limiting procedure and of summation in
(2.12) and (2.8) may be reversed.

The coefficients A, may be determined from the renormalized virial expansion
(1.3.7)~(1.3.10), collecting the terms according to the number of Fl-lines (i.e., according
to powers of the “coupling constant™ y). The result is:

"2n
L " tnl \
A, = lim — - — Vdry ... | dr, 400, (2.15)
Vaw ¥V v m! ‘
m=M
Ay ™ = ¥ [Na(e™—Ma(on; v™] TT FY FO, (2.16)
[(om)n] (6m)n

where the graphs (c,,), are the reclassified graphs o, from I, containing m e-points and
n Fl-lines; the remaining notation is the same as that in I (when a given graph (g,,), is
double-linked, M°%(c,,),) = 0). The lower limit M of the sum over m in (2.15) is to be
determined from the relation®®

1@+ <M < 3+Bn=T)" (2.17)

3 Cf. also the next Section; the prescriptions for the graph representation. of the expansion (2.7)
are the same as those for the coefficients s« of the s-particle distribution function, with s = 0.

4 The relation (2.17) follows from the fact that m points may be linked by at least (m; 1>+ 1

lines and at most by (2) lines, when every point is to be linked with at least one other point, and when

a given pair of points may be linked by at most one line. :
5 We list the first values of M foragivenn:n =1, M =2;n=2-3, M=3;n=4-6, M = 4;
n=7-10, M=5;n=11-15 M = 6; n = 16—21, M = 7; etc.



567

The first two coefficients are (M3(x)—M3() are given by (1.3.12)):

1 1
Ay =—==-D, = 2—J'drFl(r) lim - —fdrl fdr2f12n2(12) (2.18)
v T4l

V——»d)

Vow

11
A, = lim e Jdrl J dryF},F3, g3 N3(123)—1]+
v

+ 11m = jdrl J dr FL,FL{N2(1234) [F3,F3, 2 +4F; +

V—>00

+FYF)+1+4F, (14 F3)]-M (“)“4F23M4(V)—
—4F3,FI,MI@)} (2.192)

= T, If/fdrl J‘dr3 P, A [n2(123) — nS(12)n(23)] +

+ lim - }jdrl f dr f L fL A [901234) — n3(12)n3(34)] —
eV 4
- vn2(34) [n3(123) + vn3(12)n5(23) +n3(12)(1234)1}, (2.19b)

1
A1234) = f drs {[F $F9s+ H3(125)] [F3sF3s+HY(345)] -

1
= 6—1) fd"ngng§(2F f56)F36F46} (2.19¢y

Comparison of the above formula with that for 4,, Eq. (2.10), shows that the relation
(2.14) is not fulfilled, i.e., that our renormalized virial expansion leads to results different
from those obtained by the direct perturbation method of Zwanzig. The discussion of the
possible explanation of this discrepancy is postponed to the last Section of this paper.

.3. Distribution functions: direct perturbation

We shall write the definition (1.2.6) of the s-body distribution function ny(r®) in the
form (the thermodynamlcal limit is not used because we want to follow the Zwanzig
formalism [3] of the perturbation theory):

}.~3N Z X .
n(r) = P — ﬂV} drgsqe... drNe_¢°N/kTe'¢1N/kT, 3.1)
(N =$)!Zo(N, V) Z(N, V) :

with

Zo(N, V) = ~T f dry :.. fdrNe_“’oN('N)’kT (3.1a)



568

being the canonical partition function of the reference system. In analogy to Egs (2.6)
and (2.7), we write exp {— ®4/kT} in terms of the Mayer functions f;} ; and the “coupling
constant” y; the difference-here is that only particle indices from s+1 to N correspond
to dummy integration variables in (3.1), and thus may be exchanged at will, whereas the
indices from 1 to s must r?main unchanged. We obtain:

s N
= PWEINKT = pts(re) kT O I a+f HH A+f) =

I>k=s+1

= e—(Pls(rS)/kT{ l:( ) Zfls“-l- ( >fs+1 s+2:| +

N-—s N-—s 2 E
+72|:< 1 )Zz.fi}s+lfjl,s+1+< 2 ) fifs-l—l fjl,s+2+
Sy =y =1 7=
N—s N-=s
2( 5 >fs1+1,s+2 E fi}s+1+3< 3 ).f:s1+1,§+2 E fi}s+3+
=1 : =1 -

N—s N-—s)\ .
+3< ‘>fs1+1,s+2fs1+2,s+3+3< 4 )fs1+1,s+2fs1+3,s+4:|"'_

|:< —s> Zzz.ﬁs+1f],s+lfks+l+ (N S) ZZﬁ,s+l.f:},s+1 X
J>i=1
X kal,s+2+2< >fs+1 s+2 ZZLHJMH”' ( >fs+1,s+2x
ths+1 Zf;,s+2+< )ths+1 Zf,,sn kas+3+
+2- 3( >fs+1,s+2fs+2,s+3 Zﬂ,s+1+3< >fs+1,s+2fs+2 s+3 X
2 Zfi}s+2+ ( )fs+1 542 ZZﬁ,s+3f1s+3+2< >fs+1s+2x
=1

E f;s+1 E f1s+3+< )fs+1,s+2fs+2,s+3fs+3,s+1+
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+4 "3( )j:s‘+1,s+2fs+3,s+4 Zﬁs+1+3< )fs+1,s+2fs+2,s+3><
X zvfi}s+4+ < >fs+1,s+2 Zfls+3 ij,s+4+4< >fs+1 s+2 X
=T

N—3s
x.f.s%l-l,js+.f‘s1+1,s+4+12 ( 4 )fs1+1,s+2];1+2,s+3.f:s1+3,s+4+

( )fs+1,s+2fs+3,s+4 Zfz s+5+30< )fs+1,s+2fs+2,s+3x

X fiy 4g+s5+15 (N; s) fs1+ 1,54 zfsi-l-,s,s+4fs14; 5,5+ 6] + 0(74)} » (3.2
where '
7Y = 33 W &)

Inserting (3.2) into (3.1), we obtain the expansion of the s-particle distribution
function in powers of y:

Al

0,
n(r") = ?Z—((;,V—,? ""‘="*”"T{ %)+ Z Y N, VT r‘)} (3.4)

with

s

By = Z fd"s+1ﬁ,s+1"s+1("s+1)+ %jd"sn jdrs+2f:s+1 s+2"s+2("s+2) (3.5

i=1

By =23 jdrs+1fi}s+1fj1,s+1n3+1(rs+1)+

j>i=1

s s s
+ fdre § dr’“[.zl fiar1 ‘21 fise2+2 zlles+ i ts42] Mo (P D) +
= J= ‘l=

ey
+ fdrey ... Idrs+3]_‘:91+1,s+2[Zlfifs+3+fs1+2,s+3] nera(r' )+
=

+ %jd"sn 5 dr, +4fs+1 s+2fs+3 s+4"s+4(" +4) (3.6)

We do not write down the expression for u3, because it is lengthy, and may be easily found
with the help of (3.2b), in analogy to the constructionof uiand p. Higher-order coefficients
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may be found by a d1ag1ammatlc technique similar to that of Ursell and Mayer [2]; the
prescriptions for pj are:

(i) draw s root points, labeled from 1 to s;

(i) draw k internal points (M < k < 2n), labeled from s+1 to s+k, M being the
smallest number necessary to insert z lines, according to the prescription:

(iii) connect the poiﬁts-by n lines, in such a way that (a) every pair of points is connected
by at most one line, (b) every internal point is connected with at least one other point,
(c) root points are not connected directly with each other, and (d) root points may be not
connected with any other point; :

(iv) the contribution from a given diagram is obtalned by writing the factor f% ; for
every line linking points labeled i and j, multiplying these factors by the function
(N—s—k)!In2, (r**5), and integrating the resulting product over ryy y...Fgsz;

(v) 15 is equal to the sum of contributions from all possible topologically different
graphs built according to the above prescriptions, multiplied by n!/(N—s)!.

1t is seen from the above that, in the n#-th order perturbation, the s-particle distribution
function is expressed through s, s+1, ... s+2n-particle distribution functions of the
reference system.

Expansion (3.4) is not, however, the complete pesturbation expansion of n,, because
of the presence of the complete partition function in the denominator. Note that

Zo(N, V) QN e_(AoN_AN)/kT’ . (3.7)
Z(N > V) QN G
so that, using the expansion (2.8), and expanding the resulting exponential function

into a power series of y (or using directly Egs (2.1) and (2.7)), we obtain:

[+ 2]

nr) = e *CIT {n?(r)+ Z% BNV, T; r‘)}, (3:8)
n;l ]
with .
A = n(r) -3 fdr, § drofim3(12)+ 3, ' (3.9)
2 =0 [ dry ... [ drsflafranS(123)+ 4 [ dry ... § d’4f112f3}4"2("4)]+
i - [ dry [ drafn3(12) 4455, (3.10)

etc. (the procedure is rather obvious). The exponent exp (—¢1/kT) in (3.4) and (3.6)
may also be expanded in powers of y:

e~ Ot UIRT H (1+fu) = 1+7 ZZ fu :

j>i=1 j»i=1

g ’)’2[ ZZZ (fuftk +fu Jjk +ftkf k) +

>.I>1—‘

i ZZ I ZZ fal+0G>), (.11)

j>i=1
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where the primed sum in' the last term of y? means that in a given product £}, the pair
index kI must be different from the pair index 7. In the graph representation formulated
above, the expression (3.11) is obtained by inserting — in all possible ways — the lines
between root points.

~ The expansion (3.8) together with (3.11) is the most complete perturbation expansion
in Mayer functions f(r) (in powers of the “coupling'constan ), whereas, for some prac-
tical purposes the form (3.8), or even the expansion (3.4) (without expanding exp (— @2/kT))
may be more convenient. Let us note, however, that if we are interested in the expansion
in powers of inverse temperature (Zwanzig perturbation expansion, which may be easily ob-
tained from the above formulae by expanding Mayer functions into power series of W/kT),
both expansions, (3.8) and (3.11), should be used. We do not write down explicitly such
an expansion for n(r), because it is rather obvious.

As we have mentioned, of special importance is the radial distribution function g(r).
Whereas the perturbation expansion of g(r) in powers of Mayer functions is given by
(3.4), (3.8), and (3.11), we present explicitly, for the sake of completeness, the Zwanzig
perturbation expansion for g(r):

[ M
g(r) = v*ny(r) = °(M+ Z é';(;)( - k—f) , (3.12)

Ei(r12) = g°(ry2) [W(rw)+ %f dry § dryWirs)ny(rs )+
+0? [ e[ W)+ W) 3023+ 107 [ des [ deW(radnd1234),  (3.13)

Ex(r1z) = W2(r12)g%(r12) +07 § drsW 15+ Was) Wi+ Wz +
+2W,)n3(123) +0” [ drs § dr,{Ws (W, + § Wa,) [n2(r )+
+n3(U2nSBY]+ (Wys+ Was) (Waa+ Waa + 203 )2} +

+0% [ drs ... § drsW,ys{Wsn3(12)n3(345)+ (W3 + Wy3)n3(45)n3(123) +
(Wi + Wys + WaIn2e DY+ 1 [ drs ... § drWsa Wse[n(12)n3(3456) +

+2n3(56)n3(1234) + n%(r®)]. (3.14)

4. Distribution functions: perturbation from the virial expansion

In this Section we shall write down, for the sake of completeness, the pertutbation
expansion in powers of the “coupling constant™ 7y, the s-particle distribution n(r®),
correlation Ny(r®) and G,(¥°), and pseudopotential A (¢*) functions. Let us note that the
perturbation expansions of N,, G, and &, are rather difficult to be obtained by the direct
methods used (for n,) in the preceeding Section. Although such a task is not impossible,
it would require fairly complicated manipulations of products of sums and series re presenting
different functions -of distribution and correlation functions. It is simpler to rearrange
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the virial expansions of I into corresponding perturbation expansions, collecting the terms
according to the number of Fl-lines in the-graphs representing the virial coefficients. We
obtain, in analogy to (2.13)-(2.19):

ns(r.v) ) e_lPsl(rS)/anSO(,,S) {1+ Z _y_' Ps’n(T, v; ',5)} ,
n: ’
n=1
N = NJ(r") {14— Z L QT v; "s)},
n! 77
n=1
607 = {1+ y L romvinl, @
n=1 )
3¢ §
hs(rs) = hg(rs)"" Z _2:—' Ss,n(Ts U3 r.s')’
’ n=1 )
2n
! 1 o
Ts,n(Ta v;rs) = v ‘ '__' W drs+1 drs+kx
k=M

x{ ¥ Tl ' FOuNea ™)+
: [(ax%)n] (8k5)n
ke £ Z).] [Nl(c)+s(rk+s)—Al?+s((ali)n; rk+5)] (I-,E (E-I,‘ Fo)ij}’ (4'2)
ak®)nl’ % )n ’

where { !

| Ts,n T P 3,19 Qs,m Ry Ss,ns

Al(c)+‘s = Il(c)+s’ Jl?+s, Kl(c)—l-s’ LI?+s9
T Gk = gk M Mis: Pis

U = Ok Vio Hio vn;s

for n,, N,, G, h,, respectively, graph (gj), is the graph g;, which contains n Fllines,
M is the minimal number.of internal points, which are necessary for a given graph with s
root points:to contain # Fl-lines, and the remaining notation is the same as in I. Again,
the factor exp (—@l/kT) in ny may be expanded further in powers of y, and (4.2) may
be expanded further in powers of (—=1/kT), in order to derive the temperature perturbation
expansion.

~ The perturbation expansion (4.1), obtained from the renormalized virial expansion,
provides, similarly as in the case of the free energy, results which differ from those (Eq.
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(3.8)) obtained by the direct perturbation. As an-example, we write down explicitly the
first terms of the expansion of the radial distribution function (¢f. Egs (3.12)-(3.14),
and (1.4.20)~(1.4.25)):

_ 1 |
g(r12)op = g("lz)dp" e AT » g°(r12) dea(Fis +F33)—

— e Wr2)kT g0 Jdr3 j dr4F34{H (123)+ H3(124) +

+8°(r13)8%(r10) [Gg(134) +F23N3(1234)] + g°(r23)8°(r24) %
x [G3(234)+ F{3N5(1234)] - [2°(ry 3)g0("i4) — 1INg(1234)} +0(*), 4.3)

where

g("xz)dp =e W(ru)/kT{ 0(7’12)4‘1)2 j d"a(flls +f213)"g(123)+

'ad

. 4 ‘ .
+ ;J dry jd’4f§4 [02n2(1234)+,;‘2 go(rlz)go(ru):l +0(?2)]( > 4.4)

where the subscripts vp; dp mean “virial perturbation” (i.e., perturbation expansion (4.11)),
and “direct perturbation”, Eq. (3.8), respectively. :

5. Final remarks

The renormalized virial expansion obtained in I represents the subsequent virial
coefficients of the Helmholtz free energy, ‘and of s-particle distribution, correlation, and
pseudopotential functions, in terms of the graphs, classified formally by the number
of e-points and the topology with respect to F* and Flines. This form resembles closely
the original Ursell-Mayer virial expansion [2], the main differences being (i) in the presence of
two different kinds of lines, which changes the topology and increases the number of different
graphs (compare Figs 1 and 9 of I, for example), (if) in the presence of some not double-
-linked graphs, and (jii) in the fact that the new virial coefficients depend on density through
the density dependence of the correlation functions of the referénce system. The latter
disturbs the idea of the original virial expansion as the expansion in powers of the density:
of the system. However, because of the well-defined graphical representation of subsequent
terms, the discussed form of the virial expansion permits one to handle formally the whole
infinite series, enabling one, for example, to apply the techniques of partial summations
(e-g., ring approximation) of this series. Approximations of this kind will be discussed
in subsequent parts of this work. In this respect the proposed formalism seems to be more
flexible than the usual perturbation expansions.

The results obtained in this part show that the renormalized virial expansion, when
rearranged into “perturbation” series, leads to expressions which are different from those
given by the direct perturbation method of Zwanzig. Some explanation of this discrepancy
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may be obtained by considering the Limiting case when the reference system is that of the
ideal gas, i.e., when

Vo) = ¢°(™) = 0, N0 = g% = 1, fi(r) = F() = f(r),
For) = HY(+%) = 0~ (5.1)

In this case, both Eq: (2.9) and Eq. (2.18) give correctly the second virial coefficient of the
free energy. However; the next terms are:

1N
A4, =0, iy = 7] ”I;Jvdh 1--fdr3f12f23 #0,. (5.2

Now, A, = 0is in agreement with the results of the Ursell-Mayer virial expansion, which
does not contain any term proportional to 92 (i.e., given by an integral over two Mayer
functions): after the second virial coefficient, the lowest term contains three Mayer functions
(¢f. Section 2 of I). On the other hand, a term of type of 4, from (5.2), which is described
by a single-linked graph, is present in the cluster expansion, i.e., in the expansion in powers
of the fugacity (active density) [2]. A similar analysis may be performed for the expressions
describing the distribution functions. It seems thus that the Zwanzig perturbation series
is connected rather with the cluster than with the virial series of Ursell and Mayer, which,
in turn, is probably connected with details of the limiting procedures leading from one
‘series to the other [2], and mentioned in the relations (2.12) and (2.14).
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