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RADIAL DENSITY FUNCTION OF LIQUIDS OBTAINED FROM
THE TERMINATED NEUTRON DIFFRACTION DATA SCALING
BY THE KROGH MOE-NORMAN-VAINSHTEIN METHOD

By J. MoScINskI*
Institute of Nuclear Techniques, Academy of Mining and Metallurgy, Cracow®**

( Received July 2, 1971)

A numerical analysis is performed of the influence of neutron data termination on the
normalization constants, radial distribution functions, and on interatomic distances and
coordination numbers determined from these functions. Computations are carried out for
liquid copper at 1423, 1573 and 1723°K and for liquid zinc at 743°K. Neutron data of Breuil
and Tourand (copper) and Caglioti et al. (zinc) are normalized using the Krogh Moe-
-Norman-Vainshtein method. For large neutron scattering angles the normalization constant
is found to depend only weakly on the termination angle. The influence of wrong normali-
zation of experimental data on the radial distribution function is discussed. The interatomic
distances determined from the radial distribution function g (r) are shown to be practically
independent of the termination angle and insensitive to wrong normalization. The strong
dependence of coordination number on the termination angle, observed by other authors,
is confirmed. An approximately linear dependence of coordination numbers on A/4z sin § is
found. The possibility of comparing coordination numbers obtained in different laboratories
for the same liquids is discussed.

1. Introduction

The conventional neutron diffraction is, besides the X-ray and electron diffraction,
a widely used technique for the investigation of the atomic structure of liquids (Vineyard
1958, Furukawa 1962, Caglioti 1968, Enderby 1968, Steeb 1968). Atomic arrangement
in liquids is usually described in terms of the radial density function (RDF) which is the
Fourier transform of a suitably normalized intensity of coherently scattered neutrons.
Physically, the RDF determines the probability of finding an atom in a volume element
dV at a distance r from a given atom. Once the RDF is known, the interatomic distances
and coordination numbers, which are essential for the study of the atomic structure of
liquids, can be obtained immediately. (By ‘“‘coordination number” we mean here the
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“first coordination number”, i. e. the number of neighbours in the first coordination shefl.)
The interatomic distances, as measured by different authors, agree rather well. On the
other hand, there are serious discrepancies between the values of coordination numbers
obtained in different laboratories. (The differences amount in some cases several tens per
cent.) The reason for these discrepancies seems to lie in the diversity of methods used for
the determination of the coordination numbers (Mikolaj et al. 1968, Pings 1968), as well
as in various errors made in the diffraction measurements.

The accuracy of determining the RDF from diffraction measurements, both using
X-rays and neutrons, has been studied by many authors. Reviews of some of these studies
can be found in the papers of Furukawa (1962) and Pings (1968). From among the papers
not quoted there or published more recently we would like to mention the following: Hose-
mann et al. 1964, Schlup 1965, Wagner et al. 1965, Henninger et al. 1966, Ocken et al.
1966, Caglioti, et al. 1967, Henninger et al. 1967, Dasannacharya et al. 1963, North et al.
1968, Schlup 1968, Caglioti et al. 1969, Lorch 1969. However, the errors in neutron diffrac-
tion measurements which influence the value of coordination number are discussed in
a relatively small number of papers only; the majority of them being devoted to the effect
of data termination at various scattering angles. Clayton et al. (1961) presented a numer-
ical analysis of the influence of the data termination on the coordination number and the
position of the main maximum of the RDF for liquid krypton. Similar analyses were per-
formed by Gingrich et al. (1962) for liquid argon and Caglioti et al. (1967) for liquid zinc.
In all these three cases the coordination numbers and interatomic distances, as deter-
mined from RDF, increased with decreasing maximum neutron scattering angle. A more
theoretical approach to the problem of the influence of data termination on the coordi-
nation number was presented by Hosemann ez al. (1964). They proposed a method for
determining a “true” value of coordination number from experimental data (called HLK
method in the following text).

In the present paper we study the data termination effect in a more systematic way
using a numerical method. The influence of the data termination on the RDF and, in par-
ticular, on interatomic distances and coordination numbers is investigated for different
methods used for the determination of the coordination numbers. The computations
were performed for liquid copper at 1423, 1573 and 1723°K, and for liquid zinc at 743°K
using neutron diffraction data of Breuil and Tourand (1970) (Cu), and Caglioti et al.
(1967) (Zn).

2. Theory

The intensity of neutrons scattered coherently from a monoatomic liquid at an angle
20 can be expressed in the static approximation (Enderby 1968) by the well-known formula

o0

Lon(@)oc(b)? [1 + f 4 [o()— 00 Qr] dr, )
J _

or

where Q = 4n sin 6[A, A is the neutron wave-length, o(r) is the radial atomic density,
©o the mean atomic density of the liquid, and {b) represents the averaged neutron scattering
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amplitude. Self-absorption and absorption in the container are neglected in deriving

Eq. ().
For large Q(Q — ), I.,,(Q) oc {b>2 This permits the definition of a structure factor
Icoh(Q)
S(Q) = -—- 3 2)
@ = a0 (
Using (2) we can write Eq. (1) in the form
{ sin Qr
S@~1= J 4nr*[o(r) = o] dr. 3
Qor
1]
Taking the Fourier transform we obtain the following equation for the RDF.
) 2 .
4nrfo(r)—eo] = - [S(@)—1]Q sin QrdQ. “4)
o

Since it is impossible to measure the neutron intensity in the whole Q range (0, c0), the
RDF is, in practice, determined from the equation

Q max
”

2
arrlo—eol = - J [S(Q)—1]Q sin 0rdQ. s)

0

Here, Q,,,, is the maximum parameter Q for which the intensity of neutrons is measured.
The structure factor defined by Eq. (2) approaches the following limits

1, Q- w (6a)
5@~ {KBQOTKT_, 00, (6b)

where Kj is the Boltzmann constant, %, is the isothermal compressibility, and T is the ab-
solute temperature. Eqs (6a) and (6b) permit the normalization of experimental data.
The neutron intensity I(Q) can be expressed as

I(Q) = Lcoh (Q) +IA (7)

I, stands here for the total intensity of neutrons which have undergone incoherent or
multiple scattering. In diffraction studies it is usually assumed that I, is independent of
the scattering angle 20.

There are four methods usually applied to the determination of S(Q) from the neutron
intensity 1(Q) (normalization of experimental data):

a) Method of high angles (HA). The basic assumption of the HA method is that at
large neutron scattering angles (Q — oo) the interference effects are negligible. The method
requires the measurements to be extended to relatively large angles 0 (Steeb 1968).

b) North ez al. (1968) have proposed a method in which a vanadium sample is used
for the normalization of experimental data. Advantage is there taken of the property of
vanadium whose neutron coherent scattering amplitude is nearly zero.
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¢) The method proposed independently by Krogh Moe (1956), Norman (1957), and
Vainshtein (1957) (called KMNV in the following text) will be given more attention here
with regard to its use in our calculations.

The fundamental equation of the KMNV method

Qmax

g [S(Q)-1]Q%dQ = —27%g, ®

can be obtained from Eq. (5) assuming that two atoms never occur in the same site, 7. e.
that the radial atomic density o(r) vanishes at small r, and replacing sin Qr by Qr.

Let us assume now that I(Q) is known for 0 < Q@ < Q,... Since measurements down
to Q = 0 are not feasible, 1(0) is usually obtained by extrapolation. From Egs (2) and (7)
we get for the structure factor

Q) -1,

S(Q) = I(c;o)—I_A' ©))

Substitution of Q = 0 into Eq. (9) leads to the expression for the contribution of multiple
and incoherent scattering I, to the neutron intensity 1(Q)
S(0)I(0)—1(0)
4= (10)
S(0)—1

where S(0) is calculated from Eq. (6b). By substitution of Eqs (9) and (10) into Eq. (8)
and evaluation of the integral we get the expression for I(Q) at the limit Q — o

Qmax

J 1(Q)0*dQ+

0

27% 0, 1(0)
SO)—-1

I (OO)KMNV =

11
Qrg;mx 27'52 @o ( )

3 S(0)—1

I(c0) determined from the above equation can now be inserted into Eq. (10) and the
value of I, can be evaluated. Eq. (9) can be used, then, to determine the structure factor
S(Q) which, in turn, gives the radial density function (Eq. (5)).

d) Rahman (1965) has proposed another method based on assumptions similar to
those of KMNYV. In deriving his normalization equation he assumed that g(r) vanishes
at moderate temperatures for any r < r,, where r, is a rather well-defined minimum
distance at which atoms may approach each other. The assumptions of the Rahman
method were discussed by Dasannacharya et al. (1968) who indicated a possibility of
formulating a series of necessary (and not sufficient) normalization criteria similar to those
of KMNYV. Their conclusion is that out of the normalization criteria derived the best
point of start to calculate the structure factor (S(Q) from experimental data is the
KMNYV equation.
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Below we briefly describe the methods for determining the coordination number
from the RDF. We follow the classification of the methods due to Pings (1968). (Method C
according to this classification is ommitted owing to its rather arbitrary nature.)

Method A — symmetrization of ro(r)

1n this method the first peak of ro(r) is symmetrized with respect to the position of
its maximum, RA,_ (the interatomic distance). Coordination number N, is then given
by the integral

A
Rinax

Ny=2 | dar[ro(]smdr. (12)
Réﬁn

Here, R, is the position of the nearest minimum of ro(r) for r < R or, in the case

when ro(r) is negative at this minimum, R%; is the value of 7 at which the first peak of

the function ro(r) becomes positive.

Method B — symmetrization of r%p(r)

Here, the first peak of r?g(r) is symmetrized with respect to the position of the maximum
RE__ (the interatomic distance) and the coordination number Ny is given by the integral

B
Rmax

NB =2 B‘.. 47E[V2Q(V)]symd7‘, (13)

Rmin 1

where RZ; ; is defined analogously to Rz, with ro(r) replaced by r2o(r). It should be noted
that the interatomic distances determined by the two methods are slightly different

(Roax > Riza)-

Method D — integration up to the first minimum of 4zr2g(r)

Here, the coordination number N, is calculated from the integral

B
Rinin 2

Np= | 4nrio(r)dr. 14

Rnin 1

where RZ; , is the position of the minimum of #2g(r) which follows the first maximum.

It should be noted in connection with this discussion of the methods for determining
coordination number from the RDF that many authors use = 0 instead of R%,_ or Rf;jn
(see e. g. Pings (1968)). However, in view of a rather frequent appearing of spurious fluctu-
ations in the RDF on the left from the main peak, the integral over these fluctuations may
give a contribution to the coordination number.

We shall now briefly describe the HLK method for determining the “true” value of
the coordination number from experimental data (Hosemann et al. 1964). The method
is aimed to give such a value of coordination number (the “true” value) which is free of
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errors due to data termination. The authors propose a formula from which the “true”
value N may be calculated once the value of coordination number determined by method
B is given and the shape of the function o(r) is known. The formula can be written as

Np

Ny = - 0.\ (5
1+0.18 exp [—18 (—"“’")
4r
where
Ny 2 n P
L= _| 0.
[%[RE,“P@(RLX)] [Qmax_ .

Other symbols are defined earlier in this paper.

To end the discussion we would like to mention a critical analysis by Bagchi (1970)
of the principles of determination of the coordination numbers and interatomic distances
directly from the RDF.

3. Results and discussion

The computations were carried out using ODRA 1204 computer with a program
in ODRA-ALGOL specially written for this purpose. Table I presents the values of g,
and S(0) used in the calculations. For liquid copper the experimental value of S(0) given
by Egelstaff (1967) was used at all three temperatures, and for liquid zinc the value calcu-
lated from Eq. (6b) by Caglioti et al. (1967) was adopted.

TABLE I
Values of atomic density g, and structure factor S(0) for liquid copper and zinc

Metal ’ T(K) e Ref. 5(0) Ref.

0 A3
| —
| 1423 0.0752 |

Cu 1573 | 0.0741 a 0.016 b
1723 0.0730

Zn 743 0.0603 c 0.019 d

a — Cahill and Kirshenbaum (1962), b — Egelstaff (1967), ¢ — Hogness (1921), d — Caglioti,
Corchia and Rizzi (1967).

3.1. Normalization constants

First, for liquid copper, we calculated the intensity J(o0)gyny for various Q,,.., using
Eq. (11) and compared it to the intensity J(co)y, obtained by the HA method. The integral
in Eq. (11) was evaluated numerically using the trapezoidal rule. In evaluating the integral
the values of S(Q) given by Breuil et al. (1970) were substituted for I{Q). (It should be
pointed out that S(Q) was obtained there by normalization of neutron intensity using
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the HA method.) In such a procedure the constancy of the nentron intensity I, to which
both incoherent and multiple scattering contribute, is not taken into account which
increases relative variations of I(co)gmny With Q...

For Q,,, = 9.40 A-%, which is the largest termination value used so far, the values
of the ratio I(o0)gmny/I(c0)ya Obtained in this way are 1.017, 0.992 and 0.994 for 1423,
1573, and 1723°K, respectively. In deriving these values, the value of I(Q) for Q > 8.70 A-1,
which is constant, is substituted for J(00)y,. (According to Breuil ef al. (1970), S(Q) =1
for Q > 8.70 A-* at all three temperatures considered here.)

In order to determine the dependence of I(o0)gmnv/I(00)ga On Q.. this ratio was
calculated for all values of Q... for which S(Q) had been given by Breuil and Tourand

3
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Fig. 1. Ratio I(éo)KMNV/I(oo)NH versus Qmay and structure factor S(Q) for liquid copper at 1423°K.
Arrows indicate the values of Q.. at which the values of RDF are determined

(1970). Fig. 1 represents this dependence for liquid copper at 1423°K. For comparison
the structure factor S(Q) is also plotted in the figure. Similar behaviour is observed for
other two temperatures.

Similar analysis of the dependence of I(c0)gxmny On Q... Was performed for liquid
zinc using the data of Caglioti et al. (1967). The absence of large angle data in that reference,
however (normalization was performed there by the KMNV method) made it impossible
to compare I(co)gyny t0 1(00)ga.

The results of our computations show only slight differences between the values
of I(c0)gmny and I(oo)y, in the region of large angles (large values of Q). For liquid copper
the differences do not exceed 2%, It is also found (see Fig. 1) that, for a rather wide range
of Q.. the values of I(c0)gyny determined from Eq. (11) depend only weakly on Q. :
for liquid copper in the interval 6 A=1 < Q... < 9.4 A~* and liquid zinc in the interval
6 A1 < Q. < 8.6 A1 the differences between the extreme values of I(00)gyny 4O Dot
exceed 5%,

The influence of assuming a wrong value for the atomic density g, on the calculated
value of I(c0)xmnv Was also studied. Computations performed for liquid copper show
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that a 59 change in g, implies merely an 0.03 %, variation of I(c0)guny. The influence
of variations of S(0) on I(c0)gmny appears to be meaningless. Even changes of several
tens per cent in S(0) leave the value of I(c0)gyny practically unchanged.

3.2. Radial density functions

In the next point characteristics of variation of RDF with Q.. were examined.
The values of the RDF were computed for liquid copper at 1423°K for several arbi-
trarily chosen values of Q.. 9.40, 8.01, 6.72, 6.25, 4.93, and 4.05 A-'. These values
are indicated by arrows in Fig. 1. The computations were carried out according to the
procedure described in Section 2 (henceforth referred to as procedure I). I(c0)gmny for
respective Q. Was determined, as before, from Eq. (11). It can be easily shown in this
case that the substitution of S(Q) for I(Q) in Eq. (11), which is equivalent to neglecting
the contribution of muitiple and incoherent scattering to the neutron intensity, does not
change the values of the structure factor S(Q) calculated from Eq. (9) which are separately
normalized at the respective Q... Integration of Eq. (5) was carried out using a method
proposed by Goldstein and Reekie (1955). The values of RDF were calculated every
Ar = 0.05 A.

In order to obtain a better estimate of the influence of wrong normalization on the
RDF, additional calculations were performed for the same values of Q,.,, with J(00)gyny
kept constant. In contrast to the previous procedu?e, I(0)gmny Was determined from
Eq. (11) only once, for Q,, = 9.40 A-%, and the value of I(c0)gyny determined in
this way was then used to normalize the experimental data at the remaining values
of Qux- (This will be called procedure II.)

Gur results for RDF are represented in Figs 2-8. Fig. 2 shows the radial distribution
function g(r) = o(r)/go plotted versus r for different Q,,,,. In Fig. 3 the function 4zr{o(r) — g,]
is plotted versus r for the same values of Q,,, as in Fig. 2. Fig. 4 display the differences
between 4nro(r) obtained for Q,,, = 9.4 A-1 and the same function determined for the
remaining values of Q,,,. Fig. 5 represents the dependence of 4nr2o(r) on r for different
Qumax- The functions represented in Figs 2-5 are calculated according to procedure 1.
Figs 6-8 show the same functions as Figs 2-4, respectively, calculated now according
to procedure II.

Figs 2-5 clearly demonstrate that the termination effect which, in this case, is also
the reason for wrong normalization of the experimental data (Fig. 1) distorts most
significantly the main peak of the RDF. The peak gets wider and lower with decreasing Q..
(see Figs 2, 3 and 5). This behaviour is consistent with the results obtained by other
authors (Clayton et al. 1961, Gingrich ez al. 1962, Kaplow et al. 1965, Caglioti et al.
1967). The effect is best seen in Fig. 4.

Figs 6-8, where I(00)gmyy is assumed constant for all Q... show that the termi-
nation effect again distorts predominantly the main peak of the RDF. The characteristics
of the distortion are the same as those observed in Figs 2-5. Comparison with Figs 2-5
shows, however, significant differences for the values of r close to zero. The functions
&(r) calculated using the two different procedures behave differently as r — 0. Procedure I
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gives lim g(r) = 0, whereas procedure IT gives, in general, a value of this limit different
r-0
from zero.
This difference is obviously reflected in the shape of the function 4nrlo(r)— go] in
the same range of  (0—0.3 A) (Figs 3 and 7). In the first case (procedure I) the function
4nr[o(r)— o] coincides at r near zero with —4nrg, (Fig. 3), whereas in the latter one

I 1 T T I
1(00) i ypy =const=1017 (o)

1= | Cu,1423°K = 1

Qmax=8.01 A7
R~ v ' o & o NP
<

-
T
|
i
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-
'
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Qmax'4.93 A-’
W |
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I I R

&

1
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>

4T [0(r) gmax=a4 - 90 g » (atoms/A2)
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4 o
r{A)
=

Fig. 8. 4nr[g(r)Qmax= 04— €N, 1 versus r for different Qn... The curves are obtained for liquid
copper at 1423°K using procedure IT

(procedure I1), the shapes of 4nr([o(r)— go] and —dnrg, are different in small r. We would
like to remind here that this coincidence of 4nrlo(r)—go] with —4nrg, at the values of r
close to zero was accepted by Henninger ez al. ( 1967) as a criterion for correct normalization
of neutron data. The authors, basing on a method proposed by Kaplow et al. (1965) for
X-ray diffraction, tried, by means of numerical calculations, to find such a value of the
normalization constant I(co) which would give the coincidence of these two functions
at r near zero. However, our numerical calculations, as well as theoretical inspection of
Eq. (5), show that the two functions will coincide at small r (or equivalently g(r) — 0
as r— 0) aiways when the criterion (8) is satisfied. In other words, using Eq. (11) to determine
the normalization constant I(o0)gmny constitutes a sufficient condition for the coincidence
of 4nro(r) —go] with —4nrg, at r close to zero. The above observation shows that the
“correct” value of the normalization constant determined by the method used by Henninger
et al. (1967) is a function of Q.. and should be equal to the value of I(co)gyny evaluated
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from Eq. (11). Obviously, the “correct” value-determined in this way is, in general, different
from the value of the normalization constant I(c0)y, calculated using the HA method
(see Section 3.1).

3.3. Coordination numbers and interatomic distances

Our results, as well as the quoted data from other publications, exhibit a significant
dependence of the value of coordination number, determined from the area under the
main peak of the RDF, on the termination value Q.. In order to obtain numerical
estimates calculations were performed for liquid copper at 1423, 1573, and 1723°K, and
for liquid zinc at 743°K. The RDF was determined in the same ways as before at every
Ar = 0.01 A. The coordination numbers were calculated using each of the methods

TABLE II

Interatomic distances and coordination numbers for different Quax obtained from RDF using procedure 1.

Ry is the possition of the maximum of the main peak of g(r). Ar is the step used in the integration of the
RDF. The remaining symbols are defined in Section 2

Qmax -Rmax Rﬁlax ngx , A r
Metal 1A I 2 2 Ny Np Np A
9.40 2.54 2.57 2.595 | 8.26 9.00 9.84
8.01 2.55 2.585 | 2615 8.73 9.60 | 1024
Cu ‘ 6.72 2.56 2.60 2.645 9.21 1043 | 11.08 0.01
1423 °K. 625 | 2.55 2.60 2.65 9.28 | 1058 | 11.39
4.93 2.57 2.65 2.73 11.19 | 1317 | 1335
‘ 4.05 2.56 2.675 | 2.78 11.53 | 1392 | 13.83
9.40 2.54 2.57 2.605 833 | 932 | 1020
8.01 2.56 2.59 263 | 900 | 1013 10.48
Cu 6.72 2.56 2.60 265 | 935 10.68 11.19
1573 °K 6.25 255 | 260 ‘ 2.655 ‘ 9.40 | 1081 11.42 0.01
4.93 2.55 2.63 271 10.71 12.66 | 13.11
4.05 2.57 2.68 ‘ 2.79 11.41 \ 13.86 | 13.67
9.40 2.55 2.58 2.615 ‘ 8.30 9.22 ‘ 9.86
8.01 2.56 2.60 2.63 8.93 975 | 1005
Cu 6.72 2.56 2.605 \ 2.655 9.16 | 1042 | 10.77
1723 °K 6.25 2.55 2.60 2.655 ‘ 9.00 | 1044 | 11.00 0.01
493 | 255 2635 | 2725 | 1054 | 1261 12.82
| 4.05 2.55 2.67 2785 | 1107 | 1352 | 13.28
8.572 2.69 2.72 2.75 ‘ 1.75 8.55 9.58
7.652 2.71 274 L | 2775 8.24 9.18 9.80
Zn 7028 | 270 | 274 | 278 ‘ 8.43 046 | 1043
743 °K 6.474 2.72 2.76 2.80 8.80 983 | 1057 | 0.0
5.113 2.74 2.81 2.87 9.93 11.35 11.84

4.607 2.72 2795 | 2.875 1000 | 11.81 12.53
3,780 277 | 2.885 | 2995 | 1119 | 1344 ‘ 13.15 |
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described in Section 2. The integrals in Eqs (12), (13) and (14) were evaluated numerically
using the trapezoidal rule. The results of the calculations are summarized in Tables II and II1.

Before we come to-the discussion of our results, we would like to point out a consider-
able discrepancy between our results and those obtained originally by Caglioti et al. (1967)
whose values of S(Q) are used in this work. The discrepancy is observed for the shape
of the main peak, in particular for the value of the function 4nr2o(r) at the minimum

"TABLE III
Interatomic distances and coordination numbers for different Qrmax obtained from RDF using procedure IT.
The symbols are defined as in Table II
p N _Qmax Rmax R‘g‘lax Rﬁax : Adr i
Metal 3 % y Ny | “INB. Np. A
e I ‘ _ |
.9.40 2.55 2.55 2.60 7.68 9.14 9.72
8.01 2.55 2.60 2.60 9.15 9.15 10.12
Cu ‘ 6.72 2.55 2.60 2.65 9.21 10.56 10.97
1423 °K 6.25 2.55 2.60 2.65 9.30 ‘ 10.61 11.35 0.05
493 2.55 2.65 2.70 10.76 11.95 12.72
4.05 2.60 2.70 2.80 11.83 14.04 13.87
9.40 2.54 2.57 2.595 8.26 ‘ 9.00 9.84
8.01 2.55 2.58 2.615 8.58 9.58 10.19
Cu 6.72 2.56 ‘ 2.60 2.645 920 | 1042 | 1102
1423 °K 6.25 2.55 2.60 2.645 9.31 ‘ 10.49 11.35 0.01
4.93 2.55 2.63 2.705 10.29 12.08 12:60
4.05 2.59 2.705 2.81 11.94 ‘ 14.27 13.80
9.40 2.54 2.57 2.605 8.33 9.32 10.20
8.01 2.55 2.59 2.625 8.95 9.93 10.42
Cu 6.72 2.56 2.61 2.655 9.56 ‘ 10.75 11.15
1573 °K 6.25 2.55 2.61 2.655 9.64 10.79 ‘ 11.44 0.01
4.93 2.53 2.615 2.695 9.97 11.85 12.44 ‘
| 4.05 2.58 2,695 2.805 11.59 ‘ 14.02 13.65
9.40 2.55 2.58 2.615 8.30 9.22 9.86
‘ 8.01 2.56 2.595 2.63 8.75 9.70 10.01
Cu 6.72 2.56 2.61 2.66 9.25 10.51 10.75
1723 °K. ‘ 6.25 2.55 2.60 2.655 9.09 10.43 11.00 0.01
4.93 2.54 2.62 2.70 9.83 11.60 12.06
4.0 258 | 270 2.82 1147 | 1399 | 13.32
‘ 8.572 2.69 ‘ 2,72 2.75 7.75 8.55 | 9.58
| 7.652 2.70 2.74 2.77 8.23 9.02 9.80
Zn 7.029 2.70 2.735 2.775 8.19 9.21 10.21
743 °K | 6.474 2.72 | 2.765 2.805 8.83 9.85 | 10.49 0.01
5.113 2,73 2.80 2.865 9.68 ‘ 11.19 11.74
| 4.607 2.71 | 2.80 2.87 9.85 11.41 12.10
3.780 2,76 2.87 2,975 11.01 13.17 | 13.16 |
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following the first peak, for coordination numbers (Np), and for the values of RE. (eg.
for Q,,,, = 8.572 A-1 the result of Caglioti et al. (1967) is RE. = 2.60 A wh'le our result
is RE,, = 2.75 A). More recently, however, Caglioti et al. (1969) repeated the calculations
and their new results agree rather well with ours (e.g. now for Q.. = 8.572 A~ the maxi-
mum of the main peak of g(r) is situated, according to Caglioti et al. (1969), at r = 2.65 A
while the corresponding value of r found in this work is 2.69 A).

Tables II and III permit the following remarks:

1. The value obtained for interatomic distances depend on which function is used
for their determination (g(r), 4nro(r) or 4mr2g(r)). This is in agreement with the results
obtained by other authors (Ocken et al. 1966, Pings 1968).

An interesting observation is made that the interatomic distances determined using
the function g(r) are practically independent of the termination value Q. Similarly,
the interatomic distances determined using the function 4zro(r) or 4nr?e(r) appear to
be only weakly sensitive to the variations of Q. For instance, at large Qna.x, 2 decrease
of about 309 results in only a 1-29% increase of RA . or RE,.. The magnitude of these
variations is in good agreement with the results obtained by Clayton et al. (1961) for
liquid krypton and by Gingrich et al. (1962) for liquid argon.

Comparison at equal Qu., of the values of interatomic distances from Tables II
and TIT also indicates a weak dependence of the position of the RDF maxima on the normal-
ization constant I(c0). The difference between the extreme values of interatomic distances
does not exceed 19%.

2. The values of coordination numbers and interatomic distances depend on which
method is used for their determination from the radial density function. The dependence
is here much stronger than in the previous case. At the same time, the values of coordination
numbers significantly depend on the values of Q. , which agrees with observations
made by other authors (e.g., for liquid copper an about 309, decrease of Oy, from
9.40 A-1 to 6.25 A-1, results in a 10-159% increase of the value of coordination number).

Comparison of the corresponding value of coordination numbers from Tables II
and III shows that uncertainties of the values of coordination numbers due to eventual
errors in neutron data normalization are much smaller than the differences between the
values of coordination numbers calculated using different methods.

Finally, we investigated the possibility of obtaining the “true” value of coordination
number from experimental data using the HLK method. The “true” values were calculated
with the help of Eqs (15) and (16) for different values of Q... The calculations were
performed for liquid copper and liquid zinc at the temperatures quoted earlier in this
paper. Fig. 9 shows the results obtained for liquid copper at 1423°K. In the same figure
the values of coordination numbers calculated using procedure I by the three methods
of Section 2 are also presented.

As seen in Fig. 9 the coordination number as a function of 0.} can be rather well
represented by a linear equation. This approximation is particularly good for large Q-
Similar behaviour is observed for liquid copper at 1573 and 1723 °K and liquid zinc at
743 °K, as well as for liquid krypton according to the data of Clayton et al. (1961).

Moreover, it is seen from Fig. 9 that the “true” values obtained by the HLK method
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also depend strongly on Q... It should be noted in addition that Eq. (15) used for calculating
Ny in the HLK method, theoretically does not admit deviations from the “true” value
greater than 18 9. This is in contradiction with our results since, both for copper and zinc,
the differences between the values of Np for the extreme Q... amount to 309

74\ | Cu, 1423 °K .
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Fig. 9. Coordination numbers versus Q;:x. The points are calculated for liquid copper at 1423°K using
procedure I. The points correspond to different methods described in Section 2

4. Conclusions

The influence of neutron data termination on the normalization constant J(c0)gyny
and on the values of interatomic distances and coordination numbers for liquid copper
and zinc calculated using these data is analyzed by means of numerical computations.

It is found that for large Q the normalization constant I(c0)xyny depends rather
weakly on the termination value Q,,,,. It is also shown that even quite large shifts in the
atomic density g, and structure factor S(0) cause negligible changes in the value of I(c0)gany-

The method for normalization of neutron data in which one is looking for such a value
of I(oo) for which the functions 4znr[o(r)—g,] and —4nrg, coincide at r — 0 (Henninger
et al. 1967) is discussed. It is found that Eq. (8) constitutes a sufficient condition for the
coincidence of the two functions at small r. In other words, the “correct” value of normali-
zation constant determined by the Henninger method (Henninger ef al. 1967) is a function
of Q... given by Eq. (11).

It is found that interatomic distances in liquid metals determined from g(r) (or o(r))
are practically independent of the termination value Q,,,,. On the other hand, interatomic
distances determined from the functions 4zrg(r) and 4nr2o(r) increase slightly with decreas-
ing Q.. The latter observation is in agreement with the results obtained by other authors
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(Clayton et al. 1961, Gingrich e al. 1962). It is also observed that oscillations of the
normalization constant I(co) do not shift significantly the position of the first peak of the
radial functions and, in what follows, have no significant ‘nfluence on the values of inter-
atomic distances.

In contrast to interatomic distances, the values of coordination numbers determined
from RDF show a significant dependence on the termination value Q.. The results
obtained in this work indicate that reliable, quantitative comparison of coordination
numbers for liquid metals obtained in different laboratories requires, in addition te adopting
the same method for calculating them from RDF, also the equality of Q... When the
values of Q... are different, there still exists a possibility for normalizing the coordination
numbers to a common value of @, which is possible due to the approximately linear
dependence of N on Q... Such procedure, however, would require the determination
of N(QzL) for the diffraction data compared. Nevertheless, it seems to be more appropriate
to use this procedure instead of comparing the “true” values of coordination numbers Ny
calculated by the HLK method. \

The author is grateful to Mr P. Malecki and Mr C. Jedrzejek for help in program-
ming and performing the computations and to Docent Dr A. Fuliniski for reading the
manuscript.
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