Vol. A4l (1972) ACTA PHYSICA POLONICA No 4

USING THE ORTHOGONAL OPERATOR EXPANSION METHOD
FOR OBTAINING GREEN FUNCTIONS

By W. BoraGiet. AND J. CzAKON
Silesian University, Katowice*
{ Received August 11, 1971)

The problem of Green functions is.discussed in a linear space by making use of the
orthogonal operator expansion method. The exact solution of the equation of motion for
the two-time Green functions is given and the Roth method generalized.

Next the method of approximate solutions is discussed. The utility of this scheme is
testified by applying it to the Heisenberg ferromagnet.

1. Introduction

In recent papers [1], [2], [3] the theory of solving the equation of motion for the
two-time Green functions (G.F.) was studied. By making use of the orthogonal operator
expansion method Shimizu [1] and Morita et al. [2] obtained the formal solution of G.F.
equations. In [3] Roth also proposed a solution of the G.F. problem, assuming that one
can choose a restricted set of n operators {4;} (4; are operators of aphysical system, #n — any
natural number) such that the time derivative of any operator 4; can be written as

dA(t
iTlt(z = Z KiiAj(t)’ iL,j= 1, 2, ... n,

i
where K;; are connected with the Hamiltonian of the physical system. The above methods
were applied in [1], [2], [4] to the Heisenberg ferromagnet. Here Shimizu ef al. truncated
the formal exact solution and also used the relation

CABC) ~ {A){BC) +{B)AC) +{C){A4B),

where A4, B, C are spin operators.

To obtain the solution of the G.F. equation of motion we used the orthogonal operator
expansion method similiar to that in [1] but with a different definition of the scalar product.
Our scalar product is interpreted as a quantum statistical average.
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In Section 2 we give some basic definitions and formulate the problem. In Section 3
a formal, exact solution of the G.F. equation of motion is given and an approximate met-
hod proposed. The utility of this model is discussed using as an example the Heisenberg
ferromagnet. In Sections 4 and 5 we summarize the results and discuss other possible
applications of this method.

2. The method of orthogonal operators
Let I:{ be a linear space composed of operators 4, B, C, ... which act on the elements
of a Hilbert space A. Let us define in ;I X ;I the symmetric bilinear form k(4, B) where

k(A, aB+BC) = a*k(A, B)+p*k(4, C),
k(aA+BB, C) = ak(A4, C)+pk(B, C), .10

and @, § are complex numbers.

If k(4, A) > 0 for every 4 € fzI the bilinear form k is called positive definite. If
moreover k(4, 4) =0= —) jf=0 then k is called a scallar product on ;{ and is denoted

by (4, B). We introduce in H the basic orthogonal set {0;} of operators. Orthogonality
is defined by means of the scalar product (2.1).
We have thus the equalities
0;,0) = 65, i,j=1,2.. 2.2)

From the above assumptions it follows that any operator A4 from H can be written as
a linear -combination of basic operators

A=Y dlo, (2.3)

On the cther hand Qoefﬁcients ai" with a-chosen basis completely determ_iné the - opera-
tor A.
From (2.1) ii follows

at = (4, 0). @.4)

On applying (2.4) to (2.1) one obtains
(4, B) = Z‘afa:B. (2.5)

A

Let us define in H superoperators 4, B, C, ... by the relations
Ao, z [4];,0; (2.6)

[4l; = (40;, 0)). 2.7

The product A and B denoted 4 - B [4BO, = - A(BO))] is also a superoperator C. Matrix
elements of C can be written in the form

[Cl; = Zk: [AJu[Bli;- (2.8)
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Let us distinguish a special set of superoperators in H denoted by A%, B*, €, ... They
are defined by relations

A%C = AC—CA, A,CEH. (2.9)
The matrix elements of (2.9) are also determined by 2.7.
Next we consider a quantum mechanical system described by the Hamiltonian

H = H' independent of time and defined in H space.
Let A be an operator defined for this system. Using the Heisenberg picture A(f) is
described by

A(?) = ™ 4(0)e™ ", (2.10)
It is a formal solution of the Heisenberg equation of motion
dA(t A
—i @ = H*A(¥). (2.11)
dt
The solution (2.10) can be written in' a superoperator form
A@) = U(r) 4(0), 2.12)

where () is a superoperator which is determined by the equation

dU( A

—dt(—) = j(Uf)- H*, 2.13)

with the boundary condition I?(O) = I (I is identity superoperator) and in the stationary
case has the form

U(t) = eifi™e, ) (2.14)
Now we specify a scalar product (2.5)
(4, B) = Tr (ol4, B*]), (2.15)
where
[A, Bt], = AB*+aB*A, (2.16)

and o = +1,0, ¢ is a special hermitian operator with non negative eigenvalues and
Tr o < oo. (The case with « = —1 should be treated carefully because (4, 4) need not
be a definite form.) If the operator g has the form

e #H 1

= oo B = T 217

4
(2.15) has the simple physical interpretation of a quantum statistical average
(4, B) = {[4, B*],), (2.18)

where {...> denote Tr (p...).
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Next o is assumed to have the form (2.17). It is ‘easy to see that the superoperator
H* is hermitian. It follows from Hxp = 0. In general BX need not be a hermitian super-
operator. We can ecasily see that

(4, BXC) = (B*4, C)+<{o~[B, ¢]_14, C*],>, B = B+ (2.19)

From the hermicity of A% we can prove that U(¢) is a unitary superoperator.

3. Formal solution of the equation of motion for the two time retarded G. F. and the approxi-
mation method

Using the notation introduced in Section 2 the two time thermal retarded G. F. can
be written for a =0

Ga(t) = —i0@t) (1, B<U(t) A©0)) = <4+(1)|B+0)>, (3.1)
and for o = +1
Ga@t) = —ia®(t) (B, U(t) A(0)) = <A*(¢) B>, (3.2)

where @(¢) is a unit step fuaction (= 1 for # > 0 and = 0 for 7 < 0). 4 and B are opera-
tors involving dynamical variables of the system.
For all these functions the Fourier transform is defined as follows

G() =51§£ J_f e “'G(w)dw. (3.3)

Let A4 be a physical quantity which is also an element of the basic set (4 = O;) the corre-
sponding G. F. being labelled by Gi(¢). The equation of motion for Gi(r) has the form

dGi(t . )
i~ d‘;() = Pid(t)+ z K;;Gy(2). (G.4)
It is easy to see that the Fourier transform of Gj(z) satisfies
Z (06,;— K;)Gy(w) = P, 3.5
where for o = 0
Ky; = [H¥); = <O|[0f , H], (3.6)
P} = ([0}, B*], €%
and for o = +1
K = <[0,, [0}, H] 1), (3.8)

P} = a([B*, Of 1. (3.9)
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In deriving (3.6)-(3.9) the relations (2.1)-(2.6) were used. We call the function Gi(t)
basic G. Fs. Any G. F. can be expressed by Gi(t).
For iastance

Gs"(®) = —i0(®) (1, F*UMABC) = Y. a;1*"°Gi(®), (3.10)
wheile
Gr(t) = —i0(t) (1, F<T(1) 0)), (3.11)
and
aC = (4BC, 0,). (3.12)

We should. take into account that Gi(¢) are G. Fs. of different orders. In (3.10) there is
a linear combination of G. Fs. of various possible orders.
Next we introduce the projection superoperators P; defined by the relations

BB =dP0,, df = (B, 0). (3.13)
The superoperator Zﬁi is the identity superoperator in H

YPB =1 (3.14)

Using (3.14) the term (3.12) can be expressed
(0;, ABC) = Y (0;, 0,C) (0;, AB). (3.15)
i

This procedure can be applied also to the second term in (3.15). From the above
considerations we see that the application. of the projection superoperators can simplify
the procedure of obtaining G. Fs. of higher orders. The simple approximated solutions
of (3.15) can be obtained by taking instead of {O;} the uncompletely restricted orthogonal

set of operators {O;} 4p (this set is not a basis in the H space). We shall call {O;},p an ap-
proximating basic set. "

Adding more operators to the set {O;},, We can obtain as a result a better approxi-
mation. We can also obtain results with a better approximation by changing the scalar
product and choosing one that gives more rapidly converging solutions. It is interesting
to notice that the identity superoperator may often be chosen as the element of Y. P, We

T

shall apply the above procedures to the Heisenberg ferromagnet.

4. Applications

Let us consider a simple two-spin Heisenberg" ferromagnet in external magnetic
field. The Hamiltonian of this system has the form

H = —ph(S]+53)—~2J[SiS3+3(S7S; +5755)], (4.0
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‘where $°% and S are the spin operators, 4 is an external magnetic field and J the exchange

coupling constant. The approximating set of basic operators is chosen to be
ST S+

0;,=1, 0,=—, 0;= —/— 4.2

1 2=, reN 4.2)

These operators are orthogonal in the sense (2.15) whereas « = 0, g has the form

(2.17) with the Hamiltonian (4.1), C,, C; are the normalization constants. We find the

G.F. <Sf(t)|5'1’(0)> by using the formulas (3.1), (3.5), (3.6), (3.7). The explicit form of

(3.5) in matrix notation is

o 0 0 Gy(w) o
0 w—K,;, —Kj; G123(w) = Pﬁ s 4.3)
0 —K32 w—K33 Gg(CO) 0

where K;; = K;; =0 for j=1,2,3 and

C C
Kys= =200 2, Kip=—2Jc-2,
C2 C3
Ky» = —Kyy = ph+2J0, 6 = (5%). (4.4)

To obtain relations (4.4) we use (3.6), (3.7) with the Hamiltonian (4.1) and approxi-
mating set (4.2). We shall consider in detail the scalar product (ST, S3S7) which should be
evaluated.

For the Hamiltonian (4.1) we have

(T2, 51,2) = 0. 4.5)

Using the projection superoperators (3.14) and (4.5) one obtains
3
(ST, 8357) = _Zl (8187, PiS3) = (1, 83) (ST, SY1). (4.6)

If B = C,S7 is substituted into equation (4.3) one obtains the following forms for the G. F.

20(w— ph— 2(_;.])

G 0) e .
5() (w—ph—20J)*—4J%c*

“.n
These G. F. have the same form as the G. F. evaluated by using the Tyablikov decoupling
approximation. This example was also considered by using the decoupling procedure of
Roth [3] which corresponds to the above method with scalar product for a = +1. These
solutions are fully discussed in [3].

Example 2

We consider the isotropic Heisenberg ferromagnet. The Hamiltonian of this system
is of the form

= —ph ) S;— Y J(S; S +5759), (4.8)
I fsa
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where S+, S3 are spin operators, Jj, is the exchange coupling constant for the sites f and g.
We assume that J,, = 0 and also that 4 is the z-component of the external magnetic field.
The spatial Fourier transformation is defined as follows

1 .
Sg == »elkaﬁ’ B = i} 33
N: :
\/ |

1 k-
In=7% z em Moy, (4.9)

k

where the subscripts f; g (k, g) denote the sites of the simple (reciprocal) lattice and N is
the number of the sites in crystal. Thus the Hamiltonian takes the form

H= —uh /N S;— ZJ(S S*,+8353). (4.10)

Tt is very difficult to find the basic set of operators {O;}. For the first order approxi-
mation the set {O;},4p is taken
STy Sy .
01=1, 0_k2=—"—, 0k3='—, (4.11)
, C_. .

where Cj, C_, are normalization constants and O; = 1 is the identity operator. These
operators (4.11) are orthogonal in the sense (2.15) with & = 0. The density matrix operator
0 is taken with the Hamiltonian (4.8). The k vector is not established and the set {O;},p
consists of (2N-+1) operators. By letting B = C,Sy in equations (3.5) with the approxi-

mating set (4.11) the G. F. Gf,(co) is obtained. It has the form

283>

w—K,,

Gi(w) = 4.12)

To obtain (4.12) we must notice that
K1j=Kj1 =0f01’j= 1,2,3,
and K,, = K3, = 0 which follows from the symmetry of the Hamiltonian. The coefficients

K,, are given by
STiSi—p 82 ,
Ky, = uh+ E =i q)( "_" 5-d (4.13)
(S ka k)

The scalar product in the second term can be decoupled by using the projection operator
(3.14). We obtain '

(STiSi-p 52 = (1, SH (SZp Sqp)- _ (4.14)
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From (4.14) we obtain
K22 = ﬂh+20'(-]0"‘]k),
o =5 (4.15)

The term (4.15) is the same as the result obtained by using the Tyablikov decoupling
scheme. The second example is clearly a generalization of the first one.

5. Conclusions

We have use the orthogonal operator expansion method to obtain the solution of the
G. F. equation of motion. By taking the definite set of orthogonal operators {O;} and
operator B, the problem of G. F. is determined exactly. This is easy to see from (3.1),
(3.2), (3.5) where the G. F. is defined by a scalar product. A simple formal solution is
given and the approximating procedures are proposed.

In Section 4 the scalar product (2.15) with « = 0 was used and the results are in
agreement with papers [1] and [4]. The coefficients K;; following from (3.8) correspond
to the cofficients E;; which are used in [3] and [4]. Taking {4} in [4] which are orthogonal
in the sense (2.15) with & = +1 we obtain K;; linear with £;;. In [4] the simple two spin
Heisenberg ferromagnet was studied by using the familiar method. Better results can be
obtained by applying in the Roth method the operators

A, =ST,4,=S%.

It is easy to see that operators A,, 4, are orthogonal in the sense (2.15) with ¢ = *1.
The authors have also investigated the isotropic Heisenberg ferromagnet using the method
of Roth. In this case the orthogonal approximating set {4;},p consists of 2N operators
in the form )

Ak,l = S]:-, Ak,2 = S:k'

However, in order to obtain the familiar results the decoupling procedure
(SP-gS2oi> = (Shop <S3p

had to be used. This is a kind of the Tyablikov decoupling.

In this paper the decoupling problem is eliminated automatically by using the ortho-
gonal relations and the projection superoperators.

The authors would like to thank Docent dr A. Pawlikowski for many valuable
suggestions and critical discussions.
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