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Spin Hamiltonian formalism with § = 1 is mathematically justified for the description
of a system of two interacting ions with twofold degenerate ground crystal level. Its inter-
pretation in terms of bilinear spin Hamiltonian with S; = §, = 1/2 is given for monoclinic
symmetry of the two-centre crystal field. A large rhombic and monoclinic anisotropy is
predicted for the case of perpendicularity between the axis connecting the two ions and the
twofold symmetry axis. The effective g-tensor is found to be nonsymmetrical if the two ions
are not equivalent.

1. Introduction

We will be concerned with an isolated pair of weakly interacting paramagnetic ions
in a crystal field with twofold degenerate ground crystal levels, well separated in energy
from the higher levels. For a strict description of the manifold of four ground states of
the pair, and admitting all possible interactions, we can use an effective Hamiltonian
formalism in the space spanned by the four tensorial products of single ion ground states
(see Levy [1] as well as the method presented in the monograph by Vonsovsky et al. [2],
Chap. VII). ‘

When the single ion ground crystal level possesses full rotational symmetry, e. g.
if degeneration is due to the spin only, the effective Hamiltonian goes over strictly into
the form of bilinear (pair) spin Hamiltonian with S; = S, = 1/2 (Herring [3]). This is the
case for Cu?* and Ti% ions in tetragonal and lower symmetry fields without spin-orbit
coupling, which can be treated together with pair interactions as a perturbation.

In the case of ground levels with no full rotational symmetry (orbital degeneracy,
strong spin-orbit coupling), the effective Hamiltonian can also be replaced by the bilinear
spin Hamiltonian, albeit only if there exists one-to-one unitary mapping of the two
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ground one-ion crystal states onto eigenstates of effective spin operator S, with § = 1/2
preserving the transformational properties of the crystal field symmetry group (see Appendix
in [47). If no such mapping exists, we can use the spin Hamiltonian formalism in the
meaning of fictitious spin only (Stevens [5], Levy [6]). This method, however, is too poor
in parameters from the group-theoretical point of view, and our further description in
terms of bilinear spin Hamiltonian has to be regarded, for such cases, as a simplification.

In a first approximation, if we take into account isotropic exchange interaction only,
the manifold of four ground levels of the system splits into a triplet and a singlet, sepa-
rated by an exchange integral of order 1-102 cm~!. Further kinds of interactions split
the triplet by amounts such that quantum transitions between the sub-levels are accessible
to observation in electron paramagnetic resonance. The sign and magnitude of the ex-
change integral can be determined from the temperature behaviour of line intensity or
from paramagnetic susceptibility measurements.

A number of experimental papers of the EPR spectrum of pairs of Cu?* ions in dia-
magnetic matrices have recently been reported (see e. g. the more theoretically developed
Ref. [7]). Their results are expressed in the form of a quadratic spin Hamiltonian with
resultant effective spin § = 1 for the triplet. Our aim is to justify the application of
such a Hamiltonian to the ion-pair system under consideration here, and to interprete
it in terms of the bilinear spin Hamiltonian.

Another problem resides in finding the two-ion model for the low symmetry effects
in EPR spectrum described by the monoclinic spin Hamiltonian (Kurzynski [4]):

# = DS} +E(S}—S2)+F(S:S,+5,5)+
+uplegH S+ (gecH e+ gy Hy)S e+ (8 e+ 8 H)S, 1 €Y

(¢-axis is directed along the twofold-symmetry -axis or is perpendicular to the mirror
plane; &- and n-axes are taken arbitrarily; the g-tensor need not be symmetrical). In the
two-ion system, an additional axis, apart from the crystal field tensor and g-tensor prin-
cipal axes occurring in the one-centre problem, exists. This axis is the line connecting
the ions — its uncoincidence with the other above mentioned axes can lead, as we shall
see, to large non-axial terms with E and F. The well-known mechanisms for the one-ion
system (Abragam and Pryce [8]) do not provide for the occurrence of such large low
symmetry effects in EPR spectrum.

2. Pair spin Hamiltonian

The most general form of spin Hamiltonian for a pair of ions in a two-centred crystal
field with monoclinic symmetry and homogeneous external magnetic field H is (Ku-
rzynhski [9]):

H = (A+By)S, + 8,—3BoS 1S5+ B1(S1652:—S14524) +

+B2(S1§S2n+Slr]S2§)+CO(S1§SZn_S1nS2§)+
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+us _21: 2[gi;cHgSi; +(giezH e+ gineHp)Siz+

+ (giquE + girer])Sin]' (2)

Here, 4 is a parameter of isotropic interaction (exchange integral), B,, B, and B, are
parameters of symmetrical anisotropic interactions (dipole-dipole and Van Vleck’s pseudo-
dipolar couplin g)!, C, is a constant of antisymmetrical Dzyaloshinski-Moriya interaction,
and g, g, are g-tensors for the first and second ion, respectively.

The {-axis is taken along the principal twofold-symmetry axis of the two-centered
crystal field, not necessarily lying in the direction of the interaction connecting the ions.
Let us note that the principal axes of the two g-tensors in the &y-plane can in general
differ, for this symmetry, one from another as well as from the principal axes of the in-
teraction tensor (occurrence of B, term; see Baltes et al. [10]). Therefore, the é- and #-axes
in (2) are taken arbitrarily.

In the interaction coordinate system xyz (z-axis taken along the vector r;, connecting
the two ions, perpendicular x- and y-axes arbitrary), the interactional part of the Hamil-
tonian (2) can be written in the usual form:

81 r) (S, r
K = IS, Sy+J,, |:S1 -sz.—s(— - ‘222(—2 ”')] +
12

+J (812825 —81,57,) + ;ﬂ JopS12525+ D - (81X .S3), 3

where J,; = J;, are components of the symmetrical trace-less interaction tensor and D
is a pseudovectorial constant of antisymmetrical interaction. The relations between J,
Ju» D, and A4, By, B;, B,, C, depend on the mutual orientation of the two coordinate
systems, and will be determined later.

The matrix elements of the Hamiltonian (2) taken within the basis

- () o]-2). <] 1) off)).

[1=1) = |-3 % ® |-1s,

1 1 1 ) 1 1
10> = ”ﬁ@l ® \‘ £>2 ¥ !‘ 5>1 ® 15>)’
11> = |35 ® [4 ) (4)

where |%>,-, I—% > are eigenstates of operators S;; ( = 1,2) and |SM > are eigenstates
of the {-component of total spin of the system S = S;+.,, are given in Table L

1 We have changed the labelling of constants B in [9] namely: B, into By, B, into B,, and inversely.
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3. Case of equivalent ions

If the two-centre point symmetry group contains inversion (geometrical equivalence
of the ions) and if simultancously the two ions are in the same unperturbed one-ion
state (physical equivalence), the system possesses permutational symmetry and the value
of the total spin S'is a good quantum number (see e. g. Landau and Lifshitz [11] p. 258).
The triplet S = 1 is then well separated from the singlet S = 0 in the sense that the
Hamiltonian matrix elements between them must vanish, leading to:

Co=0and g =g,. (52)

Since g, = g,, we can choose the ¢- and #-axes as principal axes of the coinciding g-ten-
sors, putting

81en = 8200 = &1ne = G2z =0 (5b)

in (2).
Under the above conditions, there exists a trivial one-to-one linear mapping

11 e [T, ©6)

of the well separated (invariant under rotations) subspace of triplet states onto the space
spanned by I—T>, [6 >, [T > (corresponding to |-—1 >, 10, |1 > respectively in [4]),
in which the spin Hamiltonian (1) acts, preserving the scalar product (matrix elements)
and symmetry properties of the full orthogonal group, not only those of monoclinic
symmetry. Therefore, according to remarks in Appendix of Ref. [4], we can strictly
describe the discussed triplet in terms of the “one-ion”” Hamiltonian (1). Let us observe
that the correspondence (6) is determined in a unique way by the condition (5b).

Comparing the matrix of Hamiltonian (1) given in the g-tensor principal axes system
in Table II of Ref. [4] and the matrix of Hamiltonian (2) within the triplet, given in Table I
of the present paper, and taking into account that the relations (5) hold for the case of
equivalent ions, we have:

[1-1> e [=15, 10>« [0,

D = _%B05E= %—BI’F= %BZ:

g = gTZ = 82z 8 = &img = 82mp K = &g = Lo @)

(&¢>-8y» & correspond to g, g,; g, of Ref. [4]).

The only monoclinic-group containing a centre of inversion is C,,. Since a system of
two identical ions unperturbed by crystal environment possesses symmetry D, ,, two
directions of the twofold symmetry axis with regard to the interaction axis are possible:

a) { parallel to z

With regard to the arbitrary choice of x- and y-axes, we can assume them to coincide
with the principal g-tensor axes ¢ and 7 (see Fig. la):

S.=S8, 8,=8,, 8, =8, | : @©)
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Comparing (2 with (3), we obtain:
A=J By =1, B =Jy, By=1J,. ®
b) { perpendicular to z
Chosing the x-axis to coincide with the (-axis, we have:
Sy =8¢, S, = Sgsin 68, c08 9, S, = Sgcos 6 +S,sin J, (10)

where § is the angle between the principal g-tensor é-axis and the interaction z-axis (see
Fig. 1b). On comparing (2) with (3), we find:

4 J_%(Jzz"l—‘]xx)’ BO = _%(Jzz-l_']xx):

By = $(=3J,,+Jy) cos 20+ J,, sin 25,

[>]
[ %)
I

$(—3J,,+J,,) sin 20 —J,, cos 25. (11)

i;=z L=x

z

Fig. 1. Diagram showing axes introduced in text (in the case of equivalent ions &nl denotes the system of
g-tensor principal axes). a) the z-axis connecting the two ions coincides with the twofold symmetry {-axis;
b) the z-axis connecting the two ions is perpendicular to the twofold symmetry -axis

Assuming J,; > Joy, J; (0. e. for pure magnetical dipole-dipole interactions, although
quite generally in the presence of exchange interactions this assumption seems to be very
probabl : also) it is seen that in the case b) large unaxial anisotropy can exist. Even putting
J,. = Jyx and J,, = 0, we obtain in this case:

D=2%J,E=—%J,co0s25,F= —%J,,sin26.

The rhombic anisotropy (large E or F term) follows from pe;pendicularity of the twofold-
symmetry axis with respect to that of interaction; the monoclinic anisotropy (large F
term) — from nonzero angle between the interaction- and g-tensor-axes.
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4. Case of unequivalent ions

In this case, the most general form of the Hamiltonian (2) has to be taken into account.
For zero magnetic field, one finds the energy values: -

E, = }A—}Bo+}B,
E,=%A4A-}B,—%B,
Ec = "‘%_‘A""%Bo"'%c,
E; = —34+3B,—3C, (12)
where
B =/BI+B, C = v (A+B) +C3, (13)
and the corresponding eigenstates of this Hamiltonian:
1, B,—iB,
ay = —|1-1 - —
> = 5 lt=0+ = 55
B,+iB
|b> _ 1 il 2
\/2B

|c> = cos y|10> +i sin y|00>,

|11,

1-1>+ i_|11>,
J2

[d> = cos 7[00 +i sin y|10), (14
where

A+By+C

2C (13

cos’y =
We see that the total spin is no longer a good quantum number, because of the occurrence
of the antisymmetrical Cy-term in the Hamiltonian. The influence of this term on the
exchange coupled ion pair problem was discussed in some detail be Erdos [12].

From the EPR point of view, we are concerned with the triplet {|a>, |b>, |c>} only.
Its subspace is not invariant under rotations due to the presence of a [00) state in.lc);
the only symmetry operations which do not lead out of this subspace are, by assumption,
those of the monoclinic symmetry group. The admixture of |00> in Ic) is, for wusual
values 1 < [4| <102cmt, 1073 < |G| < 10cm™ and 104 <|By|, |By|, |B,| < 1 em~?
(Cherepanov and Nikiforov [13]), of the order of one p. c., such however that the real
resultant spin can be treated approximately as an integral of motion. Fig. 2 shows, in
schematic diagram, the zero-field splitting for 4 > C, > By, By, B, > 0.

The magnetic part of the Hamiltonian (2), as is seen from Table I, leads out of the
subspace [|a>, |b>, |c>] of the triplet. Because of proportionality to small sin y,
we may neglect its mixed triplet-singlet matrix elements. Such a procedure corresponds
to the first order of perturbation calculus for close-lying levels. The matrix elements of




398

the total Hamiltonian (2) within the states of the triplet {[a), |b>, Ic)} (i. e. within states
of the system unperturbed by an external magnetic field) are:

(a|#|ay = 3(4~C)~B,+3 B,
<b|#|by = $(4-C)-B,—1 B,
Le|#]ey =0,

H , ,
(al%’lb> = _B?(Bl'l'ZBZ)gC;H(s

” 4 7 ’ 1’
<b|%lc> = —2‘% {[(B_Bl) (g§§H§+ gqéHq) _BZ(gﬁnH§+ grqu)] -+
+i[By(8eeH+ gyeHy) — (B+By) (g, H + 8 H )1}

ﬂ ! r ’ 1
(cl%[u) = 2—; {[(B+B,) (gzeH :+ gyeH,) + By(gk,H e+ g H ) ] —

—i[By(gseH+ gyeH,)+(B—B,) (g:,H:+ g,,H )1}, (16)

No interaction  Isotropic  Antisymmetrical Symmetrical
(nferaction  anisotropic anisotropic
interaction interaction

=1 1 7
7,17 E =~z A+5{(A+8)2+Cc2 + Lp
_'?’4*5[/'42"65 / c &7 72 (i 0o " 2%

7 !
LA L = I 7 7
’ U et AR LA 0
i £ =1a-1p - _7‘/82+32
b 4 2% 2 7 2
3
. L““ZA

\ =—Ir_ 1 2,72 1
-ZA-F A% cZ 47~ 3A- A+ + 05 + 18,

Fig. 2. Diagram of zero-field splitting for a system of two unequivalent ions with S; = S, = 1/2 in a mo-
noclinic two-centre crystal field (4 > C, > RB,, By, B, > 0)

where:
g = g1+ 8ar0)s
gég = %(g1.§§+ g2§§) cos y ""12‘(g1§q— g2.§r]) sin y,

g;m = %(glrm-l' ngm) Cos ’y+%(g1n§— g2rp§) Sin Vs
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Sty = H81gy+ 822y COS V+3(812e~ 8240 sin 9,
Zne = 3(Z1qet G2qe) cOS V=38 1qq— 82y sin 7. an

Above, we have neglected the additive constant —1 441 C+1B,.

According to the preceding remarks, it is surely not possible to find a one-to-one
unitary transformation of the space [|a), b, |e>] onto the space [|-1), (0>, [1>]
of the spin Hamiltonian (1) preserving all rotational properties as in the previous case of
equivalent ions. There exists, however, a unitary transformation preserving the transfor-
mational properties of the smaller monoclinic symmetry group, and we can always resort
to the Hamiltonian (1) as a strict effective Hamiltonian for the description of the discussed
triplet (for a definition of an effective Hamiltonian of this kind, see Appendix in Ref. [4]).

Indeed, on neglecting in a first approximation the influence of the crystal field and
taking iato account isotropic interaction only, the triplet transforms according to the
irreducible representation D of the orthogonal group, whereas the singlet transforms
according to D®. The crystal field decomposes D'V into a direct sum I', @ I,®Tr, of
irreducible representations of the monoclinic symmetry group realised in the subspace
[]a), |b>, |c>] and makes D® go over into the irreducible representation I'; of this
group. In our case of triplet-singlet mixing, the representations I'; and I, coincide (the
admixture of the state |00> in lc) corresponds to this); in the case of equivalent ions;
I’y differs from the represeatations connected with the triplet. In both cases, however,
the representation I', @ I', @ I', in the subspace [Ia), |b>, ]c)] is equivalent to DM
in [] -0, lﬁ), IT)] which means that the mapping, we are searching for, exists.

We may henceforth attribute an effective spin S = 1 to the triplet subject to-the
distinction that the notion of effective spin does not coincide with that of Stevens’ ficti-
tious spin ([5], [6]), the eigenfunctions of which do not possess all the transformational
properties of the symmetry group of the system. This conclusion, by the way, does not
depend on the type of crystal field symmetry.

The discussed unitary transformation is not unique. One of its possible realizations
is the mapping:

|a) < 1@y, 1) <> 15, [c) <> 2D, (18)

where |2, |6> and |5> are eigenfunctions of the interactional part of Hamiltonian €))
(see Ref. [4]; |a), |5, |¢> here correspond to |ad, [b), [c> there). For the purpose
of matrix elements conservation, we compare (16) with the matrix elements of the total
Hamiltonian (1) within the basis {|a), |5), [¢)} (see [4], formula (20)):

<a|#|ay = D+Ey, <b|#)6y = D—E,, Ce|#)Ey = o,
CEADES # (E+iF)g,H,,
0

<Blo#|ey = 2%0 {[(Eo~E) (ggH+ g,cH,) — F(ge,Hy + g+

+i[F(geeH + gyeH,) — (Eo +E) (gg, H,+ gt )1}
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sl Sl . BB g . , v . s
(cl.;flc) = -Z—EE(—) {[(E0+E) (g§§H§+ gnéHn)+F(g§nH§+ grmHn)]_

r —i[F(gyeH + gyeH ) +(Eo— E) (genH e+ g Hy) 1} ' (19)
E2 = B4+ P2,
We obtain hence the following relations:

D= l(A_C)—B09E' = %Blz'F = %BZa
et = &m=8m 8= 8 _
N 8o = Gev Gnz = Gy (20)
Let us observe that the effective g-tensor is not symmetrical (g, 7 & in general). This
unsymmetricity, however, is small because of proportionality to sin y and to differences
in g-values, but nevertheless makes it impossible to go-over strictly to the system of
principal axes of the g-tensor. Our two-ion model thus gives an explanation of the g-tensor
asymmetry, admissible by group-theoretical considerations -of Baltes et al. [10] (the one-
-ion model of the Hamiltonian (1) due to. Abragam and Pryce [8] based on spin-orbit and
spin=spin- coupling. gives no such :possibility). Yet anot'_her‘ effect consists in a decrease
of the corresponding effective g-values by about one p..c. with respect to the one-ion
values. Let us note that in the formulas for EPR quantum transitions the exchange in-
tegral, although in the second term of square root expansion, has to occur according
to the expression for D-in- (20).

There exist two monoclinic point groups without centre of inversion (the sym-
metry group of a free pair is Cq,p):

a) C, — the z-axis connecting the two ions coincides with the twofold symmetry
¢-axis (see Fig. 1a). We have the same formulas for 4, By, By, B, as given by (9) and
moreover

C, = D, (21)

'b) C, — the z-axis connecting the two ions lies in the mirror plane and therefore is

perpendicular to the {-axis (see Fig. 1b). We have the same formﬁlas fqr A, By, By, B,
as given by (11) and moreover o

i

Gy = D;. (22)

The same remarks hold with respect to the possibility of large constants E and F.

5. Note

As far as we know, monoclinic effects in two-ion systems have not as yet been re-
ported. We attempted to apply the present model to the theoretical explanation of EPR
spectra of copper complexes in TGFB: Cu?" (Stankowski [14]), where pairs of Cu?*
ions with monoclinic symmetry were to be expected. From the impossibility of describing
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those spectra in terms of monoclinic spin Hamiltonian with effective spin S =1 (Ku-
rzyfiski [4]), it follows in accordance with the results of the present paper that the obser-
ved lines do not belong to copper ion pairs, but rather to more highly composite complexes.
Other considerations, to be published later (Stankowski, Mackowiak, Kurzyniski [15,
16]), suggest that the lines are due to four-ion complexes.

The author wishes to thank Docent dr L. Kowalewski for reading the manuscript
and for his interest throughout this investigation as well as Docent dr J. Stankowski
and M. Maékowiak, M. Sci., for suggesting the topics and for many interesting discussions.
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