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NUCLEAR MAGNETIC RELAXATION BY MULTIPOLE
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Transition probabilities and spin-lattice relaxation times have been calculated in the
presence of multipole interactions of arbitrary order in liquids.

Consider a single nucleus of an arbitrary spin I in a molecule in liquid. The Hamil-
tonian # of intramolecular interaction between the nucleus and electronic cloud [1]
can be presented as the sum of eléctric and magnetic multipole interactions #G® of
order 2!

2r
#=hG=hY G 6))
1=0
where the electric and magnetic multipole interactions usually appear for even and odd
number I respectively. The arbitrary multipole interaction 2G® may be expressed as
a scalar product of two spherical tensors 4,,, and F,,, dependent on the nuclear coordinates
r, and electron coordinates r, respectively

1
WG = Y (=1)"AFi )]
m=—]

In the case of liquids, the orientation of a molecule is a random function of time
because of rotational diffusion and, as a consequence, the elements of the tensor F,, = F,, (¢)
are random functions of time. In the presence of a strong external magnetic field H, the
multipole interactions may be treated as small time-dependent perturbations. These per-
turbations can produce the transitions between different Zeman states !a) = _IImx) and
[[3) = [Imﬁ). According to the perturbation theory the probability W, of the transitions
per unit of time may be expressed as spectral density of the correlation function

Wep= | (GopOGH @)t )
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with

_l
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Gop(t) = (aIG(t)lﬁ) Z (—l)m(alAzmlﬁ)F 1-m(®) ®
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where @, is Larmor precesswn angular frequency for the considered nucleus in the H,
field and 7, is the molecular correlation time.

The matrix elements,(oc{A,m|ﬁ)v of the-tensor operator- 4, may be expressed in the
form

- versaypary @~ DIQI+I+1)! [ I
| (OCIAlmlﬂ) (— )T oy (_%ﬂm> &
M(l) i (II|AzolH) el e by meeen -

m iy
equal ‘to Ze, u, eQ/2, Q Q("') for l— O 1,-2,-3, 4- respectlvely [1} [3] o e
Taking into account the orthogonality of the functions F,,,(¢) and assuming the 1sotr0plc
molecular motion, one finds

where <'Ifﬂ[2‘ IS) are ngner s 3] symbols [2] and MY are nuclear multlpole moments

aﬁ = |(alAlm|ﬁ)l2<IFlm|2>](waﬂ) ©

Z IFlm|2 e ey
(10)

2
IFuf*> = 20+1
27,
() _1_+;)___ _ [ ETT TR (11)

where Fj, are constant values of the function F,,(¢) in the molecular reference frame:
In particular, the values Fy =-MY may be calIed the multipole moments of the electronic
shell. These values are equal to ' .

o ( v

162V 1 16°H, 18*V ‘
VH,- —=-el— ——5,——
20z° 2 773! 0z 410z

for/ = 0, 1, 2, 3, 4 respectively where ¥ and H are the electric potential and local magnetic
field produced by the electronic cloud at the.position of the considered nucleus. “
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Finally, using the Eqs (3)—(1 1) one can present thc transition probability W, in the
following form A 2

g = 2 Q 1)

| c, (1 +a,) I-DlI+1+1)!
QI+ [2D1T?

a(tli) = <|Gap|2>J (waﬂ)

ST ONELE e e it o mle

hc = M(’)M“) , 14
séo |F’m|2 )

SO | a9

where cris the coupling constant for multipole interaction and @, may be called the asym-
metry factor. 7

The above-presented matrix elements and transition probabilities may also be calcul-
ated directly if one uses an effective spin Hamlltoman for multipole interactions. This
Hamiltonian can be constructed from Eq. (2) by introducing the nuclear spin components
I, I, I, in the place of the position variables x,, y,, z,, followed by symmetrization.
The explicit form of the spin Hamiltonian is well known for. magnetic dipole and electric
quadrupole interaction [1]. In the Appendlx of this- -paper the: effective spin Hamiltonian
is presented for magnetic octupole and electric hexadecapole interaction.

The time dependence of the expec’bation value {I) (¢) of the nuclear spin’ conmiponents

= (I, I, I) in the presence of multipole interactions may be calculated on the basis
of the theory of the density mairix a,,, [4], [5] "

<I>(t) = Z (I)au aa’ (t) ] (16)
do ey
dt aa' Oaa’ = Z Ram'ﬁﬁ’(aﬂﬁ’—aﬂﬂ') (17)
v. ﬂﬁ"

where oL, are density matrix elements at the thermal equilibrium and R, is the relaxa-
tion matrlx

Further consideration will be hmlted to the longitudinal spin component I, (along
H, field) obeying the eigenequation

Ll =m|o) = a|l). (18)
In this case one can find

A0 = Y apt) (19)

a
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dp,
Do Ratr-p) ©0)
Py = Opq (21)
Ruﬁ = Ruﬁﬂ = vvaﬂ_aaﬁzy. u’aﬁ (22)

where p, are the relative populations of the Zeman levels and J,, is Kronecker’s delta.
The rate of change of the expectation value {I,> may be written in the form

ddd, i
%Z = z &R, 4pp- (23)

ap

; o
In the extreme narrowing case for wyt, < 1 one can note that the sum ) —ﬂ—
4
independent of B. Taking into account the above fact and the definition of the spin-lattice
relaxation time T;, one can present Eq. (23) in the form

R,; is

d I
L =15 24)
) e p—a _
"ﬁ‘"Zﬂ 0 = Z( ﬁ)W“” @)
with solution
<Iz>(t)_10 a - "_'l' )
Ay -1, = RO=¢" .9

where R(t) is the relaxation function and J, is the value of <I,) at the thermal equilibrium.
As a final result, for the relaxation time 77, it follows from the Egs (11)-(13)and (25)

that:
1 ‘ 1

( 1 ) 2c¢Z(1+ayr. QI-n)\(1+n)!
iy (21+1)I(21)' (n Dii—n)!

(1+az)l(l+1)tc I (21+n+1> .;.5(28)

CQI+DIT+1) A-n+1

n=
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The above-presented results for T; may also be derived on the basis of the well-known
Gorter relation [6]

| SC@P Wy T
2 S 2IA+1)QI+1)

(29)

The, application of the Egs (11)-(13) and (29) in the extreme narrowing case leads to the
same final result as that presented in Egs (27) and (28). Moreover, in this case (w7, < 1)
one can expect to find the spin-spin relaxation time 7, equal to 7;. Thus the Eqs (27)
and (28) are valid both for Ty and T,.

As a special case (/ = 1) one can get from Eq. (28) the following expressions for
nuclear relaxation times in the presence of magnetic dipole (A1) interaction and hypo-
thetical electric dipole (E1) interaction [1], [7]

(). 3%

2
it YH?Y = <I£h) CH?Y  (for M1) (31)

Cesz === = P
I VB = (;‘—;) CE®  (for El) (32)

where p, iz, 9, &, CH?), <E*) are nuclear magnetic and electric moment, gyromagnetic
and gyroelectric ratio, average square of the local magnetic and electric field respectively.
The Egs (30) and (31) may also be applied if the local magnetic field is produced by
neighbouring nuclei of spins I; with gyromagnetic ratios y,. A simple calculation leads to
the following expression for the effective square of local magnetic field:

LI+ 1)y%
(H?y = 2h? z L (33)

Fik .
k
where r;, is the distance between the considered nucleus i and the nucleus k. The T; result-
ing from the Egs (30), (31) and (33) is identical with that for dipolar relaxation in the
system of unlike spins, presented elsewhere [8].

The expressions (30) and (32) for electric dipole relaxation rate (1/T7)g; may be applied
if the local electric field E produced by the electronic cloud is modulated by rapid molecular
reorientations in liquids. Generally the electric dipole contribution may be written in
the form :

0 (34)
—] == ).
T, ) 3 YE )

In the case of gases the local electric field may be produced during the molecular
collisions. A pulse of the local electric field in a collision is proportional to the momentum
transfer. It was shown elsewhere [9] that these pulses cannot be independent and in conse-
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quence “the- spectral densny j() has to ‘bemodified: ( ](0) = 0). As‘a final’ result for electric
dipole relaxation rate in monoatomic gases [9-11] one gets: :

1 2MkT 'wé% '
T1 LEy Ih 14wty =

where the correlation time 7, is equal to the average time between atomic collisions, M is
atomlc mass, Z is atomic number, % is Boltzmann constant and T is absolute temperature: '
In the case of crystals of denS1ty g the calculatlons 91, [12] lead to the following result:

1\ M%Teb [, f
1) - MTes (o) D)
ATy /1 : 2n°Z%*oc* \Ih .
where ¢ is the velocity ‘of sound of the crystal. - _
From the general expression (27) follows (for / = 2) the ‘well-known formula for

q}}aglrupole rate [13]
1 () L Ty
— " a1 —
(T) T srei-D cill+are.

3 2043 qu n”\ \,
401(21 1)( )_(H?)T” ) (37)

where n is the asymmetry parameter related with the factor a, = y?%/3.
-~ Furthermore, for /=3 and 4 one gets from Eq. (27) the followmg expressions:

1\ 12 QI+3)A+D) S |

-.(TT)Ms 7 Pai-na-n T .
1 _%H,

= &

( 1 ) 20 @I+3)T+2) QI+5)
E4

) ‘Tl 3 12(21—1) (I._ 1) (21_3) 64(1 + a4)Tc (40)
‘ ' UL
Q(4) 2 V - (41):

The expreéssions- (38)—(41) can be important from the theoretical point of -view. In prac-:
tice, the contributions te the relaxation rate produced by magnetic octupole (M3) and electric
hexadecapole (E4) interactions are usually negligible compared with the contributions
followmg from M1 and E2 interactions, because the coupling constants c; and c, are
very small. From a very rough evaluation [1] it follows that cs/c; ~ ¢4/co ~ R%[a? ~ 1075,
where R is the nuclear radius and a = ay/Z is the effective radius of the electronic shell.

The presented theory - of multlpole ‘relaxations (/ = 2, 3,4, ...) is -valid only in the
extreme narrowing case (rapid ‘motion) for e, < T and may be applied in liquids of low-
V150051ty and (with some . restrictions) in dense gases. If molecular motion is not rapid
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the multipole relaxations can'be nonexponential: In the case of quadrupole interaction
it was shown: [14] that-the relaxation. function is the sum of I decaying exponential terms
if spin I'is a 1nteger or thc sum of I +l the decaylng exponentlal terms if 7 is half an odd
integer. : e g = o . :

‘Generally, in-the presence of arbltrary multipole interactions the relaxation function
R(t) followmg from the Eqs (12)-(23) and (29) may be written in the form

R@) = Z Cre™ 5 - 42)
where

ZCk Zlka -1 7 43)

dln R(t)) _ 1’ B 3c2(1—ay) 5

( At )y Ty Zz(zl+1)21(1.+1)
D R
— s T 2I+n+1 ol

t_x,v,,xzmj(mwo) |(27_——n+1> | @

m=-1 n=1

.. In the case of wyt, < 1 the Eqs (42) and (44) lead to the same expressions as those
presented in the Eqgs (26) nad (27)—(28) respectlvely For greater values of oy, (e. g.wyt, ~1)
one should observe a deviation of the relaxation function from the single exponential
decay. The number of the exponential terms in Eq. (42) increases with increasing number /
and‘I. To find the values 4, and C, in Eq. (42) one has to calculate the eigenvalues and
eigenvectors of the matrix R, A method of numerical solut1on of this problem was
presented elsewhere [15].

APPENDIX

An arbitrary electric (E/) and magnetic (Ml) multipole interaction of the order Pt
may. be written as a scalar product of two irreducible spherical tensors A4,,(r,) and

Fin(rd) T11:

1
hGP = ¥ D ) Fr (). (A1)
The éxpectation values of the above tensor elements may be presented in the form:
<Alm> j f n'n Clm(en’ ¢n)dt (A2)
<Flm> = jfer;(l+1)clm(0es Qe)d‘ce . (A3)
4z
Cin(®, @) = \/ 25 [0 @) (Ad)

y _fo.  (for El, s =¢,n) (A5)
§ -V - mg (for Ml, s = e, n) (A6)
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where Y;,,(0, @) are spherical harmonics, g, is the density of the electric charge and m,
is the density of magnetization for a nucleus (#) and electronic cloud (e), and r,, r, are
nuclear and electron position coordinates.

To find the effective spin Hamiltonian G&} which gives the same matrix elements
as G® one has to introduce the tensor operators A;,(I) in place of the spherical tensors
Ay, (r,). These tensor operators can be constructed by polarization of the spherical tensors
Apm(r,), [2], which are proportional to the harmonic polynomials #'C,. Neglecting the
constant factor one can express the tensor operators in the form [16]:

Ap(D) = (I-V)7'Cy. (A7)

The constant factor C may be found from the following condition for the matrix
elements:

CUI|Ai(DID) = (U] dig(r)|IT) = MP. (A8)

Moreover, the time dependent elements of the spherical tensor F,(t) = Fy,(r,(?)) in the
laboratory reference frame can be expressed by the constant elements Fp, in the molecular
reference frame [2], [17]

Fi(f) = Z Dg')m(“a B, V)F ?m’ (A9)

with
DY), B, ) = Cin(B, 1) (A10)

where a, f8, y are the time dependent Euler angles.
In the case of axial symmetry one gets:

Fl = 8moFio (A11)
13V 1 " 1E,
1 al—l
F}, G —  (for MI) (A13)

where E and H are the local electric and magnetic fields respectively and V is the electric

potential.
Using the Eqs (A1) and (A7)-(A13) and o = 0(¢), y = &(¢) one can express the effective
spin Hamiltonian for the interaction M3 and E4 in the following form:

2c,4
IQRI-1)(I-1)

3
G¥I() = Z (= )" 43,(DC5-(6(1), 2()) (A14)

m=-3



4c,
12I-1)I-1) (21 3)

G = Z( 1)'"A4m(1)C4 m(9(t), (1))

m=-—4

Aso(D) = 1{SB3—1,[31(I+1)~1]}
Ay = — *? [SI2—SI,—I(I+1)+2]1,

30
As(I) = \/ (I B+LLI +13) =

30 |
= %‘ (I.-nr;

Js

A33(D) =

Auo(D) = %{351:+1§[301(1+ 1)-25]+

+310+1) [IT+1)—2]}
- \/_g 3 2 2 3
A41(I) D 4 [IzI+ +IzI+Iz+IzI+Iz+I+Iz—

— I I T+ LI B+ LIAT_ 1,1 I, +
I I LI+ LI T 41, I I I,+1A01_+

+ I L+I_LIA+I_I.1I, +1_I%1)]
10 _
Agp(D = 1/4— [A 411, + 11T+

SN 00 4 (RS 3 O ) Ty .y

-3+ I, +1,I_ A +1_13)]

J35
Ay = — TG—(IiIz'i‘IiIzh +1, LI +LIY)
V70 .,
A =1
aa(D) 16 [+

(D) = (=1 45,(D).
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