to the contract of the first terminal contract of the contract of the contract of the contract of the first terminal and the contract of the c

ON NUCLEAR SPIN RELAXATION IN LIQUIDS IN THE PRESENCE OF CONTINUOUS DISTRIBUTION OF THE CORRELATION TIMES

By B. BLICHARSKA AND J. S. BLICHARSKI

Institute of Physics, Jagellonian University, Cracow*

Institute of Nuclear Physics, Cracow

(Received October 7, 1971)

The influence of Log-Gauss distribution of the correlation times on the frequency dependence of nuclear spin relaxation times T_1 nad T_2 is considered.

Distributions of the correlation times and their effect on the nuclear spin relaxation times T_1 and T_2 were considered in the series of papers [1–15]. In these papers several types of distributions were used. The most realistic of them seems to be Log-Gauss distribution, which reflects a Gaussian distribution of the activation free energy, provided that the temperature variations of the correlation time is given by the Arrhenius form of the activation law. It was shown [14–15] that the observed temperature dependence and frequency dependence of the proton spin-lattice relaxation time T_1 for water adsorbed by charcoal and for protein solutions may be explained assuming Log-Gauss distribution of the correlation times.

The purpose of this note is to show the theoretical calculations of the frequency dependence of the spin-spin relaxation time T_2 and the ratio T_1/T_2 in the presence of Log-Gauss distribution of the correlation times. According to the theory of nuclear spin relaxation [16-18] the relaxation times T_1 and T_2 are functions of the correlation time τ and Larmor precession angular frequency $\omega = \gamma H_0$ (γ — the giromagnetic ratio H_0 — the external magnetic field). In the system of identical nuclear spins (like spins) and in the presence of dipolar interaction the theory gives

$$\frac{1}{T_1(\omega,\tau)} = A \left[\frac{\tau}{1 + \omega^2 \tau^2} + \frac{4\tau}{1 + 4\omega^2 \tau^2} \right] \tag{1}$$

$$\frac{1}{T_2(\omega, \tau)} = \frac{A}{2} \left[3\tau + \frac{5\tau}{1 + \omega^2 \tau^2} + \frac{2\tau}{1 + 4\omega^2 \tau^2} \right]$$
 (2)

^{*} Address: Instytut Fizyki, Uniwersytet Jagielloński, Kraków, Reymonta 4, Poland.

where the constant A is proportional to the second moment M_2 for a rigid lattice [18]

$$A = \frac{2}{3}M_2. \tag{3}$$

In the presence of the continuous distribution of correlation times described by density function $G(\tau)$ the average values of the relaxation times may be expressed in the form

$$\frac{1}{T_n(\omega)} = \int_0^\infty \frac{1}{T_n(\omega, \tau)} G(\tau) d\tau, \quad (n = 1, 2)$$
 (4)

where

$$\int_{0}^{\infty} G(\tau)d\tau = 1.$$
 (5)

The density function $G(\tau)$ may be expressed in terms of a logarithmic correlation time scale. Namely, introducing a new variable [7] $s = \ln \frac{\tau}{\tau_0}$ where τ_0 is a centre of the distribution on a logarithmic scale one can replace $G(\tau)$ by a function F(s), provided that

$$F(s) ds = G(\tau) d\tau \tag{6}$$

$$\int_{-\infty}^{\infty} F(s)ds = 1. \tag{7}$$

Assuming a Gaussian distribution in the logarithmic scale and taking into account the last condition, one gets

$$F(s) = \frac{\alpha}{\sqrt{\pi}} e^{-\alpha^2 s^2} \tag{8}$$

where α is a parameter determining the width of the distribution. The relaxation times T_1 and T_2 in the presence of the Log-Gauss (logarithmic-Gaussian) distribution F(s) may be calculated from the following expression

$$\frac{1}{T_n(\omega)} = \int_{-\infty}^{+\infty} \frac{1}{T_n(\omega, s)} F(s) ds \tag{9}$$

where

$$\frac{1}{T_n(\omega, s)} = \left(\frac{1}{T_n(\omega, \tau)}\right)_{\tau = \tau_0 e^s} \quad (n = 1, 2). \tag{10}$$

From the above equations one can easily obtain the explicit form of $T_1(\omega)$, $T_2(\omega)$ and $T_1(\omega)/T_2(\omega)$ in very low and high frequency limits. At low frequencies for $\omega^2 \tau^2 \ll 1$

one gets

$$\frac{1}{T_1(\omega)} = \frac{1}{T_2(\omega)} = 5A\tau_0 e^{\frac{1}{4\alpha^2}}$$
 (11)

whereas at high frequencies for $\omega^2 \tau^2 \gg 1$ one finds

$$\frac{1}{T_1(\omega)} = \frac{2A}{\omega^2 \tau_0} e^{\frac{1}{4\alpha^2}}$$
 (12)

$$\frac{1}{T_2(\omega)} = \frac{3}{2} A \tau_0 e^{\frac{1}{4\alpha^2}} \tag{13}$$

$$\frac{T_1(\omega)}{T_2(\omega)} = \frac{3}{4} (\omega \tau_0)^{-2}.$$
 (14)

Generally, the above-considered values may be found by numerical integration.

Fig. 1. Frequency dependence of the spin-spin relaxation time (in arbitrary units $5A\tau_0 = 1$) in the presence of Log-Gauss distribution of the correlation times

In Figs 1 and 2 are presented frequency dependences of $T_2(\omega)$ and $T_1(\omega)/T_2(\omega)$ respectively, calculated for different values of the parameter α . The numerical calculations were carried out using the "Odra 1204" digital computer at the Computing Centre of the Institute of Nuclear Physics in Cracow.

The theoretical results for $T_1(\omega)/T_2(\omega)$ in Fig. 2 can be compared with experimental data for protein solutions. At low concentration of proteins the observed values of the relaxation times T_1 and T_2 may be expressed in the following form [15]:

Fig. 2. Frequency dependence of the ratio of the spin-lattice relaxation time to spin-spin relaxation time in the presence of Log-Gauss distribution of the correlation times

where c is the relative concentration of protein, T_{nw} are the relaxation times for protons in free water (solvent), and the coefficients k_n are proportional to the relaxation rate $T_n^{-1}(\omega)$ for protons bound to the protein molecules. Therefore one gets

$$\frac{T_1(\omega)}{T_2(\omega)} = \frac{k_2}{k_1}.$$
 (16)

Taking the theoretical dependence $T_1(\omega)$ for $\tau_0 = 1.5$ ns and $\alpha = 0.34$ and 0.46, it was possible to explain the observed frequency dependence of T_1 in aqueous solutions of protein at the concentration 9.3% and 4.5% respectively [15]. Using the above-mentioned values τ_0 and α for the concentrations 9.3% and 4.5% one can find from Fig. 2, the ratio $\frac{T_1(\omega)}{T_2(\omega)}$ at the resonant frequency 14 MHz should be equal to 3.3 and 1.7 respectively. The observed experimental value $k_0/k_1 = (2.5 \pm 0.8)$ within limits of the experimental

The observed experimental value $k_2/k_1 = (2.5 \pm 0.8)$ within limits of the experimental error is in agreement with the theoretical prediction.

The authors wish to express their thanks to Mr W. Nosel for assistance in the numerical calculations.

REFERENCES

- [1] H. S. Gutowsky, A. Saika, M. Takeda, D. E. Woessner, J. Chem. Phys., 27, 534 (1957).
- [2] A. J. Miyake, Polymer. Sci., 28, 47 (1958).
- [3] D. W. McCall, D. C. Douglass, E. W. Anderson, J. Chem. Phys., 30, 1272 (1959).
- [4] A. Odajima, Progr. Theor. Phys. Suppl., 10, 142 (1959).
- [5] J. G. Powles, K. Luszczyński, Physica, 25, 455 (1959).
- [6] K. Luszczyński, J. G. Powles, Proc. Phys. Soc., 74, 408 (1959).
- [7] T. M. Connor, Trans. Faraday Soc., 60, 1574 (1964).
- [8] A. G. Favret, R. Meister, J. Chem. Phys., 41, 1011 (1964).
- [9] H. A. Resing, J. K. Thompson, J. J. Krebs, J. Chem. Phys., 68, 1621 (1964).
- [10] H. A. Resing, J. Chem. Phys., 43, 669 (1965).
- [11] J. Clifford, B. Sheard, Biopolymers, 4, 1057 (1966).
- [12] F. Noack, G. Preissing, Proc. of the XIV Colloque Ampère, Ljubliana 1966, p. 104.
- [13] F. Noack, G. Pressing, Z. Naturforsch., 24a, 143 (1969).
- [14] L. J. Lynch, K. H. Marsden, E. P. George, J. Chem. Phys., 51, 5673 (1969).
- [15] B. Blicharska, Z. Florkowski, J. W. Hennel, G. Held, F. Noack, Biochim. Biophys. Acta, 207, 381 (1970).
- [16] M. Bloembergen, E. M. Purcell, R. V. Pound, Phys. Rev., 73, 679 (1948).
- [17] R. Kubo, K. Tomita, J. Phys. Soc. (Japan), 9, 888 (1954).
- [18] A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford 1961.