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SPIN- WAVE ~THEORY" OF : !HE FIELD-INDUCED ‘M\AGNETIIC
PHASES OF A UNIAXIAL TWO-SUBLATTICE NEEL-TYPE' il
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In Part I of this paper the linear spin-wave theory was applied to a two-sublattice

- antiferrimagnet of Néel type with nearest-neighbour! exchange anisotropy: and- éxternal

magnetic field parallel to the anisotropy axis, and the field-induced. magnetic: phase, trans»

tions were studied. It was shown that the reality and posmveness of the spin-wave energy

spectrum cannot serve as sole criterion for the stability of a magnetic phase, as it often

leads to much wider.stability intervals for the external field strength than those following

.. from_the, minimum conditions for the system S (approxnmate) ground state energy., Here,

“"‘analogous calctilations are carried' through for the case when the extemal magnetlc ﬁe]d
“is perpendxcular to the amsotropy axis. e TR e s padh e D

1. Introduction

In Part I of this paper [1];-a two-sublattice antiferrimagnet of Néel type with nearest-
-neighbour uniaxial exchange anisotropy and ‘external ‘magnetic field parallel to the aniso-
tropy axis has been considered. Using the non-interacting spin waves approximation the
formulae for the ground state energy, for the spin-wave spectra and for the sublattice mag-
netizations in each magnetic phase have been derived. It'was shown that in some cases the
energy spectra are real and positive for fields far beyond the stability region of the system’s
approximate ground state. Therefore, the analysis of the spin-wave spectra alone, without
paying any attention to the stability of the system’s (approximate) ground state, can lead
to erroneous results. In the present paper, we extend: the considerations of Part I to the
case when the external magnetic field is perpendicular to the anisotropy. axis. - ‘

In a previous paper [2], we examined the zero-temperature ‘magnetic properties of
a uniaxial two-sublattice: Néel antiferrimagnet in an external magnetic field perpendicular
to the easy axis. In partlcular the cr1t1ca1 ﬁeld strengths for the phase transitions were

* Address: Instytut FlZykl Teoretycznej, Umwersytet Wroc}awskl Wrocla.w, Cybulsklego 36,
Poland !

** Present address: Instytut Matematykl i szykl Teoretycznej, Pohtechmka Wroclawska, Wroclaw
plac Grunwaldzki, Poland. ‘ i LU

(317)



318.

determined and such thermodynamical quantities as the magnetization and susceptibility
were studied. The approximate ground state of the spin Hamiltonian in [2] was determined
by minimizing its expectation value in a class of trial states corresponding to complete
sublattice spin alignment, the directions of which were chosen as minimization parameters.
Strict solutions of the minimization equations were given, and the critical field strengths
were obtained from the stability conditions for the approximate ground state of the system.
It was shown that, dépending on the magnitude of the anisotropy-and the relative magnitude
of the sublattice magnetic. moments, there are two or four stable magnetic phases, namely,
the canted-spm (CS) and paramagnetic (P) phases found in [3], and the add1t10na1 quasi-
-antlfernmagnetlc (Q) and antiferrimagnetic (A) phases obtained in [2].

The purpose of the present paper is to derive and investigate the spin-wave energy
spectra corresponding to the stable magnetic phases obtained in [2]. Similarly, as in Part I,
it is shown that in some cases the energy spectra are real and positive for fields far beyond
the stability region of the system’s apprommate ground state. This proves that the reality
and positiveness of the spxn—wave energy spectrum cannot serve as sole criterion for the
stability of a magnetic phase.

Furthermore, we discuss the dependence of the spm—wave energy: spectrum in each
magnetic phase on the strength of the external magnetic ﬁeld

2 Spin-wave energies and crztzcal ﬁelds

The general express1on for the spin-wave energles ina two-sublattlce antlferrlmagnet
of Néel type in the approx1mat10n of non-interacting spin-waves, is given by Eq. (1.24),
where the symbol (I.x) denotes formula x of Part. I. As we consider the case when the
external magnetic field is perpendicular to the easy axis, we must put in this formula
@ = nf2. : -

. In the paper [2] the stable magnetic phases were obtained and the critical field strengths
for the phase transitions were determined from the minimum condition for the approximate
ground state energy E,,,. Here, we want to utilize the results of [2] in specifying the general
formula (1.24) for those magnetic phases, and in determining again the -critical field
strengths from the standard condition for the reality and positiveness of the energy spectra.
Finally, we shall compare these results with those obtained in [2].

We consider at first the more complicated case when the anisotropy and the ratio
of the sublattice magnetic moments fulfil the inequality w < w, (see [2]), in which case
we must distinguish four phases: the quasi-antiferrimagnetic (Q), thc antiferrimagnetic (A),
the canted-spin (CS) and the paramagnetic (P)-

In the quasi-antiferrimagnetic and canted-spm phases, the sublattice spins form
the angles 0,- and 6, with the external magnetic field,: which fixes the spin quantization
axes in the two sublattices. These angles were determined in [2] by minimizing E,p as
defined by Eq. (L.10). The solutions which describe the field-dependence of the spin
quantization directions (or equivalently, of the sublattice “‘magnetization directions) in
the Q and CS phases were shown m [2] to have the form

Sin 0, = hw(ZR, —kX), sin 0, = hw-(<ZR; ' ~X), M
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where. R = (kK2h2+w)[(h*+ w); Accordmgly, the quantlties & 14a)—(I 14c) assume the form
B, = SZJZRZ Yo» 32 = SIJZRz'y,, '
G = S IR X ez = Ry X) 1)
. Dy = 3(5152) PR, X = 2wl (kZ~ Ry X) + 1], L 42)

and the general formula (L 24) for the spln-wave energy spectra spec1ﬁes in the Q and cS
pha‘se as follows: : N

i

1
=75 SaIy{Z*(R; > + SR~ 2SR, w™ [ X(h* + W)~ h*ZR; 'k]yi £
ey Z[ZA(R5 - STRD+ASYHw X (24 w)—h?ZR; K]~ SRy} x
X {SR3w™'[X(W*+w)—h*ZR; k] - R; 1. [6)

The energy spectra (3) are real and p'ositive if O'<"h < h' and h"f< h < h, whete

)X — 1) (X — ) — w2, - (4a)
h”' (2x)f1{x(1,—x)+[X2(1—,x)2-v-14xw]‘/2},; @
= ()X (1 + )+ [X2(1 + )2+ 4iew] 72}, . )

We see (cp. [2]) that in the Q and CS phases the region of stability.of the approximate
ground state coincide with those of the positiveness of the energy spectra.

1 “if' w < Ww,, the quasx-antlfernmagnetlc and the canted-spm phase are sepafated from
each’ other by an antlfernmagnetlc phase, in which the sublattice magnetxzatlons are ‘anti-
parallel thh the larger spins pomtmg in the direction of the external magnetlc field.
Thus, we put 0, = —n/2 0, = =/2. Upon spemfymg the expresswns (L 14a)~(L.14c) we

obtam from the general formula (I 24) the spm-wave energy spectrum in the A phase:

\/_ S2Jy,,{(X+h) +S2(X xh) —28Zyi+

g \/ [ +h)?— S’(X —xh)2]2+4Syk[Z(X+h) S(X——xh)][SZ(X——xh) —(X+h)] }‘/z )

The energy spectra (5).are real and pos1t1ve 1f h' < h < h] where h,’,, h,- are. givén by
Egs (4a) (4b), as well as for

v —rc)+[X2(1+rc)2 417} > B ©

It was shown in [2] that the apprommate ground state corresponding to the antiferri-
Vmagnetlc spin conﬁguratlon A is stable only for h, < h < h;. On the other hand, from
Eq. (6) it is seen that the spin-wave energy spectrum is real and positive for fields far
:beyond the stability region' of the system’s approximate ground state.
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' “Inthe paramagnetic phase, all the spins become aligned in the direction of the éxternial
field, ie., 6, = 0, = /2, and (I 24) spe01ﬁes as follows

A SZJy,,{(X h)2+Sz(X —xh)? +2SZyk

L (X = h)? —SHX+ kh)? >+ 4SYE[Z(X — h) + S(X— k) I[SZ(X — k) +(X—B)] }'2.  (7)

The, reality .condition for the energy spectra (7) leads to the following restrictions for:the

external magnetic field: &, < h < h,’ and h > h,, where h, is given by Eq. (4c) and. : -

, = (1) H{X(1+x) — [X2(1 — )2+ 4x] 2}, (8a)

B = QryYX( +R)+[X3(1 = Kk)2+4K]' 5} < B, (8b)

However, we know from [2] that the approximate ground state in the paramagnetic phase

is stable only for 4 > h, . Therefore, in this case the examination of the reality of the energy
spectra leads again to incorrect results. .

When the anisotropy and the ratio of sublattice magnetic moments fulfil the inequality

w > w,, we have only two phases: the canted-spin and the paramagnetic phase, The

energy spectra are given by Eqs (3) and (7), respectively. In the canted-spin phase the

region of stability of the approximate ground state coincides with that of the positiveness

of the energy spectra. However, as shown above in the paramagnetic phase the spin-wave

eriergy spectrum is real and positive for fields beyond the stability region of the system’s

approximate ground state.

" 3. Spin-wave energies as functions of the external magnetic field

The spin-wave energies in the Q, A, CS and P phase are respectively glven by Eqs (3)
(5) and (7). Thus, we can analyze the behaviour of these energies in each magnetic phase
under the influence of the external magnetic field perpendicular to the easy axis..

Let us start from the case w < w, and consider the quasi-antiferrimagnetic phase
From 3) results that

E, (= 0) = 7,81JZR,, E,, 2 =0) = 7o52JZR§1- ®

Therefore, at the point y, = O the first spectrum branch lowers with increasing field
while the second one rises. At the same time, it can be shown that E, (yx = 1)
and E; ,(y, = 1) lower with increasing field. Therefore, in the Q phase the spin-wave
energy spectrum changes under the influence of the field as shown in Fig. 1.
When considering the antiferrimagnetic phase, one easily obtains from Eq. (5) that

E (= 0) = 7,5:1J(X —xh) for h, < h < hyy
B 7.82J(X+h) for hyy < h < hY, (102)
E,(y, = 0) = ')’oSzJ(X+h) for h, < h < hyy . ‘ o
el S, J(X—xh) for by, < b < B, (10b)

AEk = y,,SzJ{(X +h)? +S2(X —Kkh)2— 2SZyk 2S[(X +h)*(X —xh)>—
—(Z2+ DX +R)(X —xh)yE +Z254] 13} = 0, ' 7 (100)
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Hence, in this case the first, branch\hes always above the second one, except when y, =0

and h = hy, as AEk =0 (two-fold degencracy point). Thus,” the first spectrum branch

lowers when the; field i increases from 0 to hy,, and Tises again upon further i increasing the

field. For the second branch the opposite holds. This is illustrated for the A phase in Fig. 2.
As regards Fhe canted-spln phase, we see from 3) that '

B (% = 0) = 1,5,JZR5 ", Ek 2% = 0) = ,S,JZR,, ' (12)

i.e., at the point yk = 0 the first spectrum branch rises with i 1ncreasmg field while the second
one lowers. A numerical analysis shows that i in the’ CS phase the spin-wave energy spectrum
changes as shown in Fig. 3. = .

In the paramagnetic phase we have from @)

Ek, 1 = 0) = 9,8, J(h—X), Ek, 2 = 0) = 9,8, J(xkh—X), | (13a)

" AE, = 9,8,0 {(X —h)*+SA(X —xh)2+2SZy; — 25 [(X — h) (X — kh)?—
—(Z2+1)(X —h)(X—Kh)y2 +Z2%8]"/2) 2 > 0. (13b)

Thus, 1n this case both branches rise with increasing field, as illustrated in Fig. 4.
It can be seen from Eqgs (3), (5) and (7) that the corresponding energy branches of the
neighbouring phases are continuous at the transition points, i.e.,

ERj(h) = Eiyh)),  Egfh)) = Ecy(h),  Egs(h,) = Eg (h). 14

In the case w > w, we have only the paramagnetic phase and the canted-spin phase.
In th¢ paramagnetic phase the energy spectrum behaves analogously as in Fig. 4, but for
the canted-spin phase it results from (3) that

o [1,SJZR, for 0 < h < hyy
Eine = 0) = {y,,SzJZR;‘ for hy, < h < h,, (15a)

v J7eS2JZRGT for 0 < h < hy,
Eio( = 0) = {y,,'s,JZR2 for hy,, < h < h,, (15b)

where |
wiS—-1)7*

By, =] ~—— 2|, 16
- [1+x2S] (16)

Thus, at the point y, = 0 the first spectrum branch at first lowers and then rises with
increasing field. For the second branch the opposite holds. For & = h;, we have a two-fold
degeneracy at the point y, = 0. The behaviour of the spin-wave energy spectrum in the
CS phase under the influence of the field is shown for 0 < & < hy, and hy;, < h < h, in
Figs 5 and 6, respectively.

Similarly as before it can be shown that

Epj(hy) = Eg j(hy). 17
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4. Final remarks

In [2] the approx1mate ground state was. determmed by mmu:nmng the expectatlon
value of the spin Hamiltonian (I.1) in a class of trlal states representing sublattice satura-
tion states. This corresponds actually to minimizing E,y and assuming complete sublattice
spin ahgnment It was shown that the energy of the approximate ground state E,y is
a continuous function of the external field. The same is true for the approximate ground
state energy E, given by Eq. (1.25). From Egs (1.25) and (1.26) it is seen that E, < E,y
(as E,g vanishes in all phases), but the continuity of the energy at the critical points h,,
hy and h, is preserved..

* 'Similarly as in Part I, the magnetlzatlon is defined by the Eqs (1.46)-(1.50), except.
that in the formulae (1.47) and (1.50) we must interchange the indices || and L. Upon spe-
cxfymg 0 and the coefficients  and v in the formulae (1.47)—(I.50), we obtain the expres-
sions for the sublattice magnetizations in each phase. From the explicit formulae for the
magnetizations in all the phases it is easy to see that the magnetizations are continuous
at the transition Q <> A, 4« CS and: CS > P for, the case w <. w.,, and at the transmon
CS < P for the case w > w,. FE I AR A B : ;

In this paper, the physical propertles of the antlfernmagnetlc system‘
tures were examined in the limits of the llnear spm—Wave theory Moreover we T'e
again the cases when the external magnetic :ﬁeld is parallel or perpendlculax to the. anlso-;
tropy axis. The cntlcal field for the phase transitions were': here, detgrmmed fxom the
standard reality and positiveness conditions for the spin-waves energy::spectra;. and:were
compared with those obtained in [2, 4] from the stability conditions for the approximate
ground state of the system. It was shown that in some cases the spin-wave energy spectra
are real and positive for fields far beyond the stability region of the system’s approximate
ground state. This demonstrates that the analysis of the spin-wave spectra alone, when
disregarding the stability of the spin-wave reference state (approximate ground state of
the system), can lead to erroneous results. Thus, the reality and positiveness of the spin-
-wave energy spectrum cannot serve as sole criterion for the stability of a magnetic phase.

A spin-wave theory is constructed by considering the deviations of each spin from its
equilibrium direction. Therefore, we have introduced local co-ordinate axes for each
sublattice (see Eq. (I.5)). The equilibrium axes were obtained by minimizing the approximate
ground state energy and are therefore temperature-independent. It would be interesting
to find the temperature-dependent equilibrium axes and critical fields.

One way of doing it is to follow the procedure applied in [5] to antiferromagnetic
systems. The temperature dependence of the phase boundaries was there obtained by
introducing spin-wave interaction terms and deriving the equations of motion for the
spin-wave operators. When these equations are linearized, by replacing pairs of spin-wave
operators with their thermal expectation values, we obtain renormalized spin-wave spectra
(in low-temperature region) and thus temperature-dependent critical fields.

In the CS phase, we have additional terms in the Hamiltonian which are linear and
cubic in the spin-wave operators. The linear terms contribute a static part to the equations
of motion, and the elimination of this part provides a condition from which the angles 0;
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can be determined as functions of the external field. Now, by linearizing the cubic terms
in the Hamiltonian we get a temperature-dependent static part in the equatlons of motlon
and consequently temperature-dependent equilibrium angles 0;.

" However, the same results can be obtained in another and much simpler way, without
havmg to include spin-wave interactions. Namely, at non-zero temperatures the condition
for a stable equlllbrlum is that the free energy have a m1n1mum with respect to the varlatxon
of the angles 0;. Thus, by minimizing the system’s free energy with respect to 0 one arnves
at temperature-dependent equatlons for these angles, much like in the case of ferromagnet-
ism [6]. s
Such mves’ugatxons are under way and the results will be published in a separate
paper ‘

" The" author Would like to thank Dr W. J. Zigtek for help in preparmg the manuscrxpt.

REFERENCES

[1] S.'Krzeminski, W. J. Zietek, Acta Phys. Polon., A41, 299 (1972)

[2]1 S. Krzeminski, Acta Phys. Polon., A39, 201 (1971).

[3] G. Kozlowski, L. Biegala, S. Krzem1nsk1 Acta Phys. Polon., A39, 417 (1971).

[4]1 S. Krzemifski, Acta Phys. Polon., A39, 661 (1971).

[5] J. Feder, E. Pytte, Phys. Rev., 168, 640 (1968).

[6] S. V. Tyablikov, T. Siklés, Acta Phys. Hungar,12,35 (1960); E. A. Turov, Physical Properties of
Magnetically Ordered Crystals, Academic Préss, New York 1965; D. A. Goodings, B. W. Southern,
Canad. J. Phys., 49, 1137 (1971).



