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SPIN WAVE THEORY OF THE FIELD-INDUCED MAGNETIC
PHASES OF A UNIAXIAL TWO-SUBLATTICE NEEL-TYPE
ANTIFERRIMAGNET. I. LONGITUDINAL MAGNETIC FIELD
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The linear spin-wave theory is applied to a two-sublattice uniaxial antiferrimagnet
of Néel type with nearest-neighbour exchange anisotropy and external magnetic field
parallel (Part I) or perpendicular (Part II) to the anisotropy axis, and the field-induced
magnetic phase transitions are studied. It is shown that in some cases the spin-wave energy
spectra are real and positive for fields far beyond the stability region of the system’s approxi-
mate ground state. This proves that the reality and positiveness of the spin-wave energy
spectrum cannot serve as sole criterion for the stability of a magnetic phase. The dependence
of the spin-wave energy spectra on the field strength is determined and discussed for each
magnetic phase, and the influence of the temperature and the magnetic field on the magnetiza-
tion is qualitatively examined.

1. Introduction

In a previous paper [1] we examined the zero-temperature magnetic properties of
a uniaxial two-sublattice Néel antiferrimagnet in an external magnetic field parallel to
the easy axis. In particular, the critical field strengths for the phase transitions were deter-
mined and such thermodynamic quantities as the magnetization and susceptibility were
studied. Since the exact ground state of an antiferrimagnet is unknown, various mathe-
matical procedures are being used in order to determine it at least approximately (cp. [2]).
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In [1], the approximate ground state of the spin Hamiltonian was determined by mini-
mizing its expectation value in a class of trial states corresponding to complete sublattice
spin alignment, the directions of which were chosen as minimization parameters. Strict
solutions of the minimization equations were given, and the critical field strengths were
obtained from the stability conditions for the approximate ground state of the system. It
was shown that there exist three stable magnetic phases, namely, the antlfemmagnetlc (A)
the canted-spin. (CS), and the paramagnetic (P) phase. - a8 .

‘A -similar- zero-temperature ‘analysis for the perpendxcular—ﬁeld ‘case - was. carrled
through in [3, 4]. It was shown that, dependmg on the magnitude of the amsotropy and the
relative magmtude of the sublattice magnetic moments, there are in this case two [3] or
four [4] stable magnetic phases, namely, the CS and P phases found in [3], and the addi-
tional quasi-antiferrimagnetic (Q) and A phases obtained in [4].

The purpose of the present paper is to derive and investigate the spin-wave energy
spectra corresponding to the stable magnetic phases obtained in [1] and [4]. The physical
properties of the system at low temperatures. are examined in the limits of the linear spin-
-wave theory. Moreover, we re-examine the problem of field-induced phase transitions,
considering again the cases when the external magnetic field is parallel (Part I) or perpendic-
ular (Part II) to the anisotropy axis. While assuming nearest-neighbour interactions and
uniaxial exchange anisotropy, we ‘do' not :specify the icrystal lattice. The critical fields
for the phase transitions are now obtained from the standard reality and positiveness
conditions for the spin-wave energy spectra, and are compared with those obtained in
{1, 4]. It is shown that in some cases the energy spectra are real and positive for fields far
beyond the stablhty region of the system’s approximate ground state Thereforc the in-
vestigation of the spin-wave spectra alone, without paying any attentlon to the (approxi-
mate) ground state of the system (as e. g. in [5]), can lead to erroneous results.

" Furthermore, we discuss the dependence of the spin-wave energy spectrum in each
magnetic phase on the strength of the external magnetic field. Also, we examine qualita-
tively the influence of the temperature and the magnetic field on the magnetization.

2. The Hamiltonian

- We assume that the crystalis composed of two crystallographically equivalent sublattices
interpenetrating each other, and that the nearest neighbours of an atom belong to the
other  sublattice. For simplicity, only nearest-neighbour  interaction is considered. The
Hamiltonian of the spin system is taken to be

H=TH, A=} T PSS -HTS, O

J.a m

where j = 1,2 and / = j+(—1)’*! are sublattice indices; m;, n, are sublattice vectors;

a=1,2,3 is a vector index; S5, , denotes the vector components of the spin operator ascri-

bed to the lattice site »z;, and Py, ,, - is the interaction tensor between spins at sites m;,
which has- the form

m,n; ijm + Kfnjn;((sal + 6a3)’ (2)
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where Jy, -describes isotropic and K., ‘anisotropic- interactions: As we consxder only
nearest-neighbour interaction, we put :

J for n = m+5 Cw: VK for n =m+9d
ij”l { : ' = { (3)

0 otherw1se, ™™ =0 otherwise,
where 6 denotes the neares_t-nmghbour vector. We assume J>0, K;> K, >0 and

(H;) = p;H(sin <p, 0, cos ), H>0, @

where p; is the effective magnetic moment per lattice atom in the j’s sublattice; H is the
magnitude of the (homogeneous) external magnetic field, and ¢ is the angle between the
field and the x,-axis (direction of easiest magnetization).

We now introduce. the .following transformations: .

83, = Sy, cos 0;—e;S5 sin 6,

2 Q2
Sinj = Sm’_,-a'

S’,‘:‘,j €;Sn sin0.+S3‘\COS(‘9,~,‘* O o)

where e; = (— 1), hxs transformatlon introduces a dlfferent co-ordmate system in each

sublattlce (1, 6].
The next step resides in passing to Bose operators, which we shall do by employing
the Holstein-Primakoff mapping [7] in the lowest approximation

n (Sjlz)%(amﬁa;,,
Sn, = 1ef(S;/2*(am,~an),
S',i',j - ej(a;jamj—Sj). ©)

S, and S, are the intrinsic spins associated with the atoms of the sublattices 1 and 2, res-
pectively. (We assume a unit system in which & = 1.) The operators a,,, a,',','j satisfy the
standard boson commutation rules

[ Qs ] = 5,",,5}1, [qmj, anJ = 0. (7)

Finally, the Hamiltonian can be expressed in the k-representatien by means of the Fourier
transformation

G, = N7*Y a, ;exp (iejk. m)), (8a)
' k
a,;=N*Y a,, exp (—ie;k - m)), (8b)

where N is the number of sublattice atoms.
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- When the transformations (5)-(8) are substituted in the spin Hamiltonian (1) and
terms higher than bilinear (with respect to the Bose operators) rejected, the free-spin-wave
Hamiltonian can be written in the following form:

H =E0M+=#1+;#29 (9)
EOM = SISZNJvo(X Sln 01 Sin 02 _Z CoS 01 Cos 02)“NS1(H{ Sin 01 +
+H3 cos 0,)— NSy(Hj sin 0,— H3 cos 6,), (10)
Hy = Z;:cAj(“l:j‘i' ax, )00 (11)
I

A; = (NS;/2)'"* [y,JS(Z sin 6, cos 0,+ X cos 6 sin 0,)— H} cos 0;—
—e;H}sin0,], (12)

H, = Z;,‘ {Bjal::jak,j +3[Cua; -k ta tk,lak,j) +

Js

+Dyai @+ ag ja )]} 13)

B; = y,JS(Z cos 8; cos ;,— X sin 0; sin 0)) +H} sin Oj—ejH;’-‘ cos 0, (14a)
C, = X(5,5,)""? Jy(X cos 0, cos 0, —Z sin 6, sin 0, —1), (14b)

Dy, = 3(8,S,)""2 Jy(X cos 6, cos 0, —Z sin 0, sin 0, + 1), (14c)

where X = 1+K,[J,Z = 1+K;[J, and y, is the number of nearest neighbours. Here,
we have introduced the structure factor

Ve = ;exp (ik - 8). 15)
If the crystal has inversion symmetry, the structure factor is real: y, = y_;, = -

(In the above formulae, the wave vector k is restricted to the first Brillouin zone.)
The linear terms in the Hamiltonian (9) can be eliminated by the transformation [8]

ay,; = pfk)+cy,; (16)
which converts the Hamiltonian into the form
H = Epy+Eos+H,, an
where
E,s = JZ;,‘ [24;p;8¢0+B;p5+(Ci+Dop;p] = ;Ajpj(o)’ (18)

#r =Y, {Bjci jci i+ [Culed e —iatclicr )+
s

+ Dk(clz jCI:t + ¢ i)} 19
This leads to the following expressions for the (real) shifting parameters p;(k):

A(Cy+Dy)—A;B,
B;B,—(Ci+ D))* ko

pik) = (20
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The bilinear Hamiltonian (19) can be diagonalized by using a canonical transforma-
tion which leads to the result

;# = Eo+ z Ek,jbl::jbk,j’ (21)

Jk
where the magnon operators b, ; are defined by
by = uys6y +“21c—k,2"vuctk,1 “U21cr:2’
byy = Uy5C g1 +UssCh2— V1501 —V25C14 5. (22a)
The expressions for the spin-wave operators (22a) can be inverted to give
oy = Ugyb g +uib_y o +0 0T, +015bg,
Crz = Ugib_p g +tgsby + 02y b 5507, 5, (22b)
where we assume the coefficients ¥ and v to be real and even functions of k.
The energy spectra E, ; follow in a standard way from the equation system
(Bl_Ek,j)ulj+Cku2j+DkUZj =0
Cku1j+(B2—Ek’j)qu+Dkvlj = 0
Dyzj+(By+Ey Jvyj+ Copy = 0
Dku1j+ckvlj+(B2+Ek’j)l72j = 0 (23)
for the transformation coefficients « and v [6, 9]. Thus, we obtain the non-trivial solutions
E;; = ${B}+B;—2(D}— CD £ [(B}—B3)’—4D}(B, —B,)* +4C3(B, +B,)*1*}. (24)
This formula gives a general expression for the spin-wave energies in a two-sublattice
antiferrimagnet of Néel type, in the approximation of non-interacting spin-waves.

The ground state energy E, consists actually of the three parts: E,), E,s and E,p,
corresponding respectively to the three transformations (6), (16) and (22b). Thus,

Eo = EoM +E0S +EoD7 (25)
where
Ep=— Z"Ek,j(vij"'v%j) (26)
Js
and E,y, E,s are given by Eqgs (9), (18).

In determining the coefficients v and v from Eqs (23) we must take into account the
canonical conditions of the Bogolyubov transformation [6, 9] which in our case read

;(U%j—vfl‘) =1, ;(ugj—vi,-) =1,
;(“11'”21'—“21'”11) =0, ;(uljuzj—vljvﬁ) =0,
‘;(”12‘1_012'1) =1, ;(ufz—vjz'z) =1,
zj:(u}lujz—vjlvp) =0, ;(ujlvjz—ujzvjl) =0. 27

A general solution can be obtained if 4, = 2B,C,D; # 0 (see Appendix A).



“There are two’ ‘particular cases‘in- which 4;°=0, namer, : Co

(i) if K; = 0 in the A and P phase for ¢ = 0 (i. e., when' the field is parallél*to the
easy axis; these cases are considered ‘separatély in Appendix B), and

(ii) if 7, = 0 which occurs for certain spin wave lengths k in each phase. The latter
case, (ii), need not be examined any further; since for y, = 0 we have 'C, = D= 0-and
the non-diagonal terms in the Hamiltonian (19) vanish. Thus, the transformation (22b)
becomes trivial, as the only non-zero coefficients are ul 1 = U, =1 and the contribution
E;p to the system’s ground state energy, Eq. (26), is equal to zero. However, one easily
verifies that the coefficients v; ;, v, j»Uaq, Uy as given by Eqs (A.1)-(A.3) vanish automatic- .
ally if y, = 0, that uy;,4,,— 1 as y,— 0, and that the general formula (24) for the two
branches of the spin-wave spectrum reduces to B, and B, as required. Hence, despite the
fact that 4, = 0 the formulae (24) and (A 1)—(A 3) remain valid for y, = 0.

3. Spm-wave energzes and crztzcal ﬁelds A

Henceforth we consider only the case when, the external magnetic field is parallel to
the easy axis, i. e., ¢ = 0, and defer the case of the transversal magnetic field to the second
part of this paper.

- In [1] we examined the zero-temperature magnetic properties of a uniaxial two-
-sublattice Néel antiferrimagnet in an external field parallel to the easy axis. In particular,
the stable magnetic phases were obtained and the critical field strengths for the phase
transitions were determined from the minimum condition for the approximate _ground
state energy E,,,. It was shown that there exist three stable magnetic phases, namely, the
antiferrimagnetic (A), the canted-spin (CS) and the paramagnetic (P) phase.

Here, we want to utilize the results of [1] in specifying the general formula. (24) for
those magnetic phases, and in determining again the critical field strengths from the standard
condition for the reality and positiveness of the energy spectra. Finally, we shall compare
these results with those obtained in. [1]. -

As was shown in [1], in the antlferrlmagnetlc phase (A) one has to distinguish between
the antiferrimagnetic configuration A, (w1th the larger spins pomtmg in the direction of
the external magnetic field) and the opposite configuration A, (smaller spins pointing
in the direction of the field). We consider at first'the configuration A;. Thus, we put 6y =
= f; = 0. With the notation k. = u,S,/1;S1, S = 81/S2, Yi = V/V0» b = pyH|JS,y, andupon
specifying the expressions - (14a)-(14c) we obtain from the general formula (24) the.spin-
-wave energy spectrum in the A; phase

E; = 5 S2J7.{ (Z+h)2 SZ(Z hh)z—ZSka

\/

+ V[(Z +h)* = S*(Z—xh)* T+ 4Sy,,[X(_Z +h)=S(Z~xh)] [SX(Z—xh)—(Z+ n}E  (28)

We adopt the standard limitation for the external field which ensures the lower branch
in (28) to be real and non-negative at its minimum points y, = + 1. This leads for & > 0
to the followmg restrictions for the external magnetic field:

B < by = Q) {Z(0 —K) +[22(1 — )2+ ]2} 7 (29a)
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and :
h > b = Q) {Z(1 - 1) +[Z2(1 + 1) >— 4]} > By, " (29b)

where h, is the upper critical field for the A; phase[1] and w = Z2= X2, It was shown in [1]
that the approximate ground state for the antiferrimagnetic spin configuration A, is
stable only for fields up to ;. On the other-hand, from (29b)-it is.seen that the spin-wave
energy spectrum is real and positive for fields far beyond the stability region of the system’s
approximate ground state. .

As regards the configuration A2 we have

1 J ’ . N
Evy = 5 Sonl(@ =+ %@ ) -25Xy}t

++/ [(Z—hy*— S2(Z+xh)2]2+4Syk[X(Z -h)—S(Z+xh)] [SX(Z+:ch) —(Z-m]1} (30)
The spectra (30) are positive for -
h < h, = Qi) {Zc— 1) +[Z2(1— )+ diw] 17} (3la)
as well as for
h >¢h; = (@) {Z(x- 1) +[2°( +r)2—4x]"/ 2} > h,. (31v)

However, similarly as in the phase A, the approximate ground state for the configuration
A, is stable only for fields up to A, [1].

In the canted-spin phase, the sublattice spins form the angles 6; and 6, with the ex-
ternal magnetic field, which fixes the spin quantization axes in the two sublattices (or,
in other words, the directions of parallel spin alignment in the sublattice reference states).
Three methods are being used in determining 0;, of which the first one resides in the mini-
mization of E,, as defined by Eq (10) while in the second one the angles 0; are obtained
from the conditions 4; = 0 which eliminate the linear terms in the Hamlltoman (11). In
[2] both methods were shown to be equivalent (in a limited sense). A third method was
introduced in [6] and shown to be equivalent to the above methods in the non-interacting
spin-waves approximation. In the latter method one determines 6; from the condition that
the quantization axes be parallel to the sublattice magnetizations.

In [1], the first method was applied, and the- solutions which describe the field-
-dependence of the spin quantization directions (or, equivalently, of the sublattice magne-
tization directions) in the canted-spin phase were shown to have the form

cos 0; = hw(kZ—XR,), cos 0, = —hw(Z—kXR7"), (32
where R? = (x?h*—w)[(h*—w). Accordingly, the quantities (14a)-(14b) assume the form
B, = SyJXR 'y, B, = S,JXRyj,

Cy = 38,8, = R Z— ow YR, Z— X))~ 1],
Dy = }(S1S,) 2y [RZ — h2w-Y(R,Z—xX) +1], (33)



306

and the general formula (24) for the spin-wave energy spectra specifies in the CS phase
as follows:

Ey

1
= 7 S,Jy,{X*(R7*+S%R?)—2SR,w™ '[h*XR[ 'k —Z(h* —w)]yi+
+ X[X*(R]{2—S?R3)* +4SyX{w™ [ XR] 'k — Z(h* —w)] — SR} x

x {SR}w ™ '[h*XR[ 'k —Z(h* —w)]—R; '} ]} }. (34)

The expressions under the square roots in (34) have minima at the points y, = +1.
Thus, the energy spectra are real and positive if

by < h < b, = Q)HZ(1 +©)+[Z2(1 +1)2—4xcw] 12}, (35)

We see that for the canted-spin phase the value of the lower (k) as well as the upper (h,)
critical field determined from the spectrum agrees with that obtained in [1] from the
stability conditions for the approximate ground state. Therefore, in the CS phase the
region of stability of the approximate ground state coincides with that of the positiveness
of the energy spectra.

As regards the paramagnetic phase, all the spins become aligned in the direction
of the external field, i.e., 6, =0, 0, = 7, and (24) specifies as follows:

1 )
E,; = 72 S,J9,{(Z — h)* + SH(Z —xh)* +2S Xy} +

+ V(Z—h)? = SHZ—kh)* ] +4Sy [ X(Z — h) + S(Z —xh)] [SX(Z—xh)+(Z—-h)]}E. (36)

The reality condition for the energy spectra (36) leads to the following restrictions for the
external magnetic field: 0 < h < h;, h;) < h < h;/’ and h > h,, where

hy = 1) HZ(1 +1) —[Z2(1 —x)*+4x] "}, (372)
Ky = Q) {Z(1+ 1) — [Z2(1 + 12— 4iew] 12, (370)
B = @Ry HZA 410+ (251 —k)*+4x] 7} < b, (37¢)

and h, is given by Eq. (35). However, we know from [1] that the approximate ground
state in the paramagnetic phase is stable only for # > h,. Therefore, in this case the exami-
nation of the reality of the energy spectra leads again to erroneous results.

4. Spin-wave energies as functions of the external magnetic field

The spin-wave energies in the Ay, A,, CS and P phase are respectively given by Eqgs (28),
(30), (34) and (36). Thus, we may analyze the behaviour of these energies in each magnetic
phase under the influence of the external magnetic field.
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Let us start from the phase A, and first consider the simpler case K; = 0. From
(B.6) results that

E1(yi = 0) = 3 JSUZ—xh), E (i = 0) = 0JS2(Z+h), (38a)
AEk = Ek,l = Ek,2 = y()JSz[Z(S— 1) _(1 +KS)h]. (38b)
From Eq. (38b):it is seen that the difference between the two branches of the energy spectrum

does not depend upon the wave vector k. Moreover, it is seen that 4E, is positive for
0 < h-< h; and negative for h; < h < h;, where

_Z(s-1)

= . 39
4 1+xS (39)

Heﬁ'gé; ;and from Eq. (38a) it is seen that the first spectrum branch lowers with increasing
field: while the second one rises. For 2 = h; both branches coincide (two-fold degeneracy

of the spectrum).
Consider now the same phase A; in the more general case K; > 0. From (28) one

easily ‘obtains
", 9IS (Z—xh) for O0<h<h

Ek;l(yk = O) - {YOJSZ(Z'Fh) for hd < h < hla (40a)
v (9. IS:(Z+h) for O<h<hy
E,(»e =0) = {%JSI(Z —Kh) for hy<h<h, (406)
AE, = y,JS,{(Z+h)* +SAZ ~ kh)*~ 25Xy = 2S((Z + W) (Z — xh)*~
~ (X2 + D(Z+R)Z~rh)yE + X371 > 0. (40c)

Hence, in this case the difference between the two branches depends upon the wave
vector: k and is always positive which means that the first branch lies always above the
second one, except when y, = 0 and h = h, as 4E, = 0 (two-fold degeneracy point).
Thus, the first spectrum branch lowers when the field increases from O to A, and rises
again upon further increasing the field. For the second branch the opposite holds. The
behaviour of the spin-wave energy spectrum in the phase A, for the cases K; = 0 and
K, > 0 is illustrated in Figs 1 and 2, respectively.

The lack of correspondence in the shifting of the energy branches under the influence
of the field in the case K; = 0 (Fig. 1) and for the limiting case K; — 0 (Fig. 2) is merely
apparent and results from the rather arbitrary labelling of the particles ascribed to the
particular branch. Indeed, the spectra (B.6) may also be written in the form

By = 38, ,{|(1+18)h—Z(S— )|+ V[Z(1 +8) +(1 — kS)k1 —4Sy? },
By = 38,07~ |1+ —Z(S = 1)|+ VIZL +8) +(1 -S> —4SyE ), (41)

which preserves in the whole interval 0 </ < /,a uniform division of the particles in “heavy”
(E;,;) and “light” (Ey.,) ones and ensures the correspondence between the case K; = 0
from Fig. 1 and the limiting case K; — 0 from Fig. 2 — according to Eq. (40c). Of course,
this is"a purely descriptive matter and has no influence whatever on the results.
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In the phase A, we have from Eq. (30)

Ek l(yk = 0) = y,JSW(Z+xh), E (i = 0) = y,JS:(Z—h), (42a)
AEk = volsz{(Z —h)*+SHZ +xh)*—25Xy; - 2S(Z - h)Z(Z.+ ich)2
— (X241 Z—h)Z +Kh)yE + X2y > 0, (42b)

It is seen that with increasing field the first spectrum branch rlses whlle the second one
lowers. The only difference between the case K; = 0 and - Kl > 0 1s that in the first case
C AT

Eyj lr /

[—V%sszzj

1 " .
0 0.2 04 06 08 10y

" Fig. 3. Free-spin-wave energy spectra in the antiferrimagnetic phase A,

AE, does not depend on the wave vector k. The spin-wave energy spectra in the phase A,
are given in Fig. 3.
As regards the CS phase, we see from (34) that

E, () =0)= )’:J52XR1_1’ E (v = 0) = y,JS1XR,, (43)

i.e., at the point y, = 0 the first spectrum branch lowers with increasing field while the
second one rises. A numerical analysis shows that in the CS phase the spin-wave energy
spectrum changes under the influence of the field as shown in Fig. 4.

In the paramagnetic phase we have from (36)

Ek,l(yk = 0) = 9,JS,(h—Z), Ei (v = 0) = 9,JS,(xh—Z), (44a)
AE; = y,JS,{(Z—h)*+S*(Z —xh)*+2SXy%—2S[(Z - h)*(Z — xh)* -
—(X*+1)(Z—-h) Z-xh)yi+X?yi]EE > 0. (44b)
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Thus, in this case both branches rise with increasing field, as illustrated in Fig. 5.
It can be seen from Eqs (28), (34) and (36) that the corresponding energy branches
of the neighbouring phases are continuous at the transition points, i.e.,

Epi(h) = EG(h),  EQS(h,) = Ef (h,), (452)
except for the transition A,— A, for which we have

Egi(h) # ERi(h,). (45b)

5. The magnetization as function of the external field and temperature

In [1] the approximate ground state was determined by minimizing the expectation
value of the spin Hamiltonian (1) in a class of trial states representing sublattice saturation
states. This corresponds actually to minimizing E,, and assuming complete sublattice
spin alignment. It was shown that the energy of the approximate ground state E, v is
a continuous function of the external field, except for 4, if the phase transition A, » A 1
oceurs. The same is true for the approximate ground state energy E, given by Eq. (25).
(Note that E, is the exact ground state energy of the Hamiltonian (9) which is an approxi-
mation of the Hamiltonian (1).) From Egs (25) and (26) it is seen that E, < E,\y (as Eg
vanishes in all three phases), but the continuity of the energy at the critical points A, ,
is preserved. One easily verifies that there is no complete sublattice spin alignment in the
direction 6; in the ground state (25).

The components of the sublattice magnetization vectors M ;.o are defined as follows:

Mo =1 5800 (=12 a=1,23) (46)

Noting the fact that p;(k) = 0 for all phases we obtain from (5), (6), (8a), (16) and (22b)

2
Mj = M;; - ;NS;sin0;—p;sin 0, Y [(uh+03)m,+0v3],

J
k r=1
2 —
M3 = M — —eju;NS;cos 0;+e;u;c080; . Y [(uf+v3)m,+02],
k r=1

M;,=0 47
where
My = (biyby,> = [exp (BEL)—1]7", B = (kT)~* (48)

is the average number of r-type particles (spin waves) at temperature 7.
Let us write the transversal M, and longitudinal M}, components of the sublattice

magnetizations in the form

M) = Mg +Mopjy +Mzjy = M,y +Mgy,

M) = Moy +Mopj +Mrj) = My +My;, 49)



312
where; according -to- (47), . :
vMoMj‘H’ = -'-'ejﬂ,-NSj"cos Oj,

Sy,
R 2
M,pjy| = e;i; cos 9;2}(, El,vjn
. e

DIRCEET A ' (502

r=1

2

MTJ“ = €;l; cos 01;
MoMjJ_ = ﬂJNSj sin 01,

. : 2 5

MoDj_L = —”'J sin 01§ Zl Ujr’

k 2
My = =y sin 0; % 3 (et} (50b)

The lower indices “0” and ““T”’ denote respectively the parts independent and dependent
on the temperature, and the index “M” denotes the value of the corresponding quantity
in.the approximate ground state E,) (which corresponds to complete sublattice spin

M |
LuaSINT

-~

Fig. 6. Schematic curves for the longitudinal components of the sublattice magnetizations as functions of
the external magnetic field, The solid line corresponds to the approximate ground state Eon, the dashed
line — to the approximate ground state E,, and the dotted line — to non-zero temperature

alignment). The index “D” denotes the contribution originating from the diagonalizing
transformation (22b). Upon specifying 6; and the coefficients v and v in the formulae
(47)~(50), we obtain the expressions for the sublattice magnetizations in each phase.

From the explicit formulae for the magnetizations in all the phases it is easy to see
that the magnetizations are continuous at the transitions A ;< CS and CS « P, except for
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the transition A, — A . To illustrate the influence of the temperature and magnetic field
on the sublattice magnetizations, schematic curves for 7 = 0°K and T > 0°K are given
in Fig. 6 for the longitudinal components of the sublattice magnetizations.

APPENDIX A

Following the procedure applied in [6] one easily proves that for 4, 5 0 the coefficients
u, v of the transformation (22a, b) have the form

A%

v, = 7"(412422-4324,‘), (A.1)
42
v} = Zk (d3,4,— 45,4, ), (A2)
u1j=AZ—lkjv'1j, u2j=j—2kjvlj, vzji=j—3:vlj, - (A3)
Wh:ége
4 = (45— 40412455~ A3, 4) — (43, ~ 43 (A1 185, — 45 14)), (A4)

4y;= —3(B,+E, ) (Bi~Bi—e,G)+ DB, ~B,)—~C¥B, +B;),  (AS)

35 = =Cl(Bi+By)E,;+3 (B, + B, ~e,G.]), (A.6)
431 = Dk:{(Bl L—BZ)IEk,j'I'%[(IBl.";BZ.)Z _'eij]}s e o (A
G = [(B] - B3)*~4D(B, —B,)* +4C¥(B, + B,)*]*. (A3)

A "“Sitraightforward calculation - shows that these coefficients fulfil the canonical
conditions (27).

" APPENDIX B

‘There are two special casés in which due to 4, = 0 the general formulae (A-1)—(A.3)
are no longer valid, namely, when K; = Oand ¢ = 0in the A and P phases. Let us consider
briefly these cases. k

First note that K, = ¢ = 0 implies Ci = 0 in the antiferrimagnetic phase, in which
case the set of equations (23) splits in two subsets:

(Bl—Ek,j)u1j+Dkvzj =0,
Dyuyj+(By+Ey j)v,; = 0; (B.1)
(By = Ey j)uz;+ Dy, = 0,
Dyu,;+ (B, +E vy = 0. (B.2)
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The corresponding secular equations lead to the energy spe"ctra y sl
B = 3 (B, ~ B, £ [(B, + B, ~ 4D},
Ei',’,-” — 3 (B,—B,+[(B, +B,*—4D]}. (B3)

Similarly as in [6], one easily verifies that a careful analysis of the solutions and the canonical
COI‘ldlthnS leads unequlvocally to the two different energy branches, namely,

B — 3{B,—B,+[(B,+By)*— —ap21'), .
E, = ${B,—B,+[(B,+B,*—4D{1"7}. (B.4)

The coefﬁc1ents u and v have the form

-D%‘
Ui = u - .
Tty D~ (B, —E; )’
N s vz (Bl—Ek 1)
2 = ’
T D (B~ Ei)
U12=u21=U11 =1.722=0. (B.S)

As for the Ay phase we have

E, ‘—lSZJy,{(1+xS)h Z(S 1)+ VIZS+D+(1— xS’ —4Syi ),

Ers=1 ssz.,{Z(s 1) (1+1<S)h+ \/[Z(S+1)+(1 xS)h]2—4Sy,,} (B.6)

In the paramagnetlc phase we have Dk = 0(as K1 = (;o = 0) In this case the equation
system (23) splits again in two subsets,

(By—EyJuyj+Cittaj = 0,0 :

Ciuyj+ (B2 - Ep uzj = 0; - (B.7)
(By+Ej)v1j+Cp; =0, I
Cyyj+(By+ Ep jJvaj = 0, (B.8)

of which only one has. non-trivial solutions if Ej ; # 0. Choosing the set (B. 7) and taking
into account the canonical condltlons (27) one easily obtains - :

B, = Sszo{—Z(S+1)+(1+KS)h+\/[Z(S+1)+(1——xS)h]2+4Syk}

E,;'ZI_ZSZJy.,{ ZS+1)+(1 +1S)h— VIZS+ D)+ —=SIE+4S2E)* (B9)

w2, =ul,- ——-—-C2
11 = Uz =
Ci+(B,— Ek1)2’
, -
2l = 2 Ck
Uy = Uy =

C2+(By—Ex)*’

Uy = Vyipg = Uyy = Uao —_'-»0. (B.].O)
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