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The fluctuations in magnetic moment and the static spin pair correlation function
in antiferromagnets has been obtained in the regions of temperatures closest to the
critical point both below and above it. An antiferromagnet with spins s = 1/2 localized
in the sites of the cubic lattices has been described by means of the constant coupling approxi-
mation of Kasteleijn and Kranendonk into which a uniaxial anisotropy caused by an exchange
interaction had been introduced. For generalization this model to cover the nonequilibrium
situation the mean effective field acting on a pair of spins has been replaced by local field
dependent on the position in the lattice. The spatial distribution of the magnetic moment
in a fluctuation, which is treated as a subsystem in a reservoir following from the ideas of
Smoluchowski has been calculated by using the variational procedure for the work needed
for the fluctuation to appear. This work has been obtained on the basis of the constant
coupling approximation for two types of thermodynamic variables: magnetic moment
and external field or magnetic moment and local field, which lead to the ‘two correlation
functions, namely exp (—K,r)/r form and |sin X r|/r form. The dependence on temperature and
anisotropy of the correlation ranges Ki‘,t and K, 7 for the transverse and longitudinal compo-
nents respectively (with respect to the direction distinguished by anisotropy) and of the parame-
ters K, K, has been discussed. The dependence on external magnetic field has been obtained
for the longitudinal correlations only. The used method of calculations represents a generali-
zation of paper by J. Kocifiski and L. Wojtczak (J. Appl. Phys., 39, 618 (19€8)) to the temper-
atures below the Néel point and to the case of the anisotropic exchange interaction.

1. The constant coupling approximation of Kasteleijn and van Kranendonk with an anisotropic
exchange interaction

The method of Kasteleijn and van Kranendonk has been originally formulated for the
cubic two sublattices antiferromagnet [3]. The Hamiltonian of the system of N spins
s = % with the antiparalle] exchange coupling between the nearest neighbour spins is
given by

H=2] Y 8-8-2uB*Y & )

<iiy i
The equilibrium properties of the system can be described in the terms of the representative
pair of the nearest neighbour spins in the same way as in the case of a ferromagnet by intro-
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ducing the pair density matrix

é(Z) = €Xp (—Bﬁe)/Tr €Xp (—ﬁﬁe)s (2)
where the effective Hamiltonian

He = _2A1A§1 * §2—2A21§f§;—

—2udy(S7+85)~2pA (87 -85 3
contains now the additional term connected with the effective field 4, ,which alignes the
spins from the different sublattices antiparallel to each other. In the so called constant
coupling approximation the isotropic coupling constant 4, is assumed to be equal to
(—J), J > 0, the anisotropic one 4, = 0 and 43, 4, are determined from the equilibrium
conditions of the system.

We shall alter the Hamiltonian (3) so as to account for an anisotropic exchange
interaction. The Hamiltonian of the system will be written in the form
H =Y [2J8, §;+2J'8:85]—2uB" ¥ &% %)
<y i
Consequently, the anisotropic coupling constant in the effective Hamiltonian will be put
equal to (—=J")
A, =2J8, - 8,+2J' 885 —2uA5(S:+85)—
— 20487~ 53). ®
The presence of the anisotropic term does not change the eigenfunctions of H,

() Lo
T0=cosz%+sm—2—¢2 Y, =¢

. o . o
Y, = — s1né—' Qo+ COSE— @, V3= q;
where

sin w = 2ud,JA2+4p*ATTE, o] <

and the corresponding eigenvalues are
g0 = (A +A4;) —[4] +4p247]"
£2 = 3(dy + Ap) + [T + 42 A5]
&y = —3(d;+Ay)—2pds

&3 = '%(A1+Az)+2ﬂA3- o
The internal energy and entropy of a pair are given by
E,, = Tr [¢®H?] ©)

3
- ~1
Sis = —ks{ § folnfyt+ T In [4(1 - S =)+ D x.
7 .
v=0

x(1=S+s)E7 V(1 4+ S +5) 7+ (1 +'.S,—As)-‘%“‘s+“]} : ™
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where
H® = 2J8, - 8, +2J'8287 —2uB*z~ 187 + 8% ®
and
S'=Tr [¢PST+8)] = fi—f ‘ )
s = Tr [0S 8] = (fo—f)sinw (10)

represent the long range order parameters, while f, denote the eigenvalues of 9. The
form of the equilibrium equations in this case is similar to that given in [3] (formulae
(47)-(50)); The coupling constant J must be replaced by (J'+J), S and s attain their

values obtained with A4, # 0.
S+s = tanh B[uB*—3z(J+ J)HD(S, 5, B)— (S, s, B)}]
S—s = tanh B[uB*—3 2(J+ J){D(S, s, B+ ¢(S, s, H}],

where the functions @ and ¢ are given by

, 1. (1-S—s)(1—S
2 =pTu+I) [zﬁ”A3+ ke £1+s+3 §1+si:;]

S 1 (14S5+s) (1—S+s)
p= 0707 | 2pudi S1a EFI D],

By introducing the new variables
x=exp(BJ) u=exp(2Bud,)
m = exp(BJ) y = exp (2fuB’)
sin @ = 2ud,[J244p243] '/
the equilibrium conditions take the form

[W(1+uX_):|z'1
y=u
u+X,

1+ux, F!
y=u s
Wu+X_)

where
1 . xm .
X, = 5 (1+ sin wyxm+ — (1F sin w)
v

z

W=x""'tanw, v=x">¢
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The calculations based on the method of Kasteleijn and van Kranendonk lead.to the
equation determining the Néel point

A
2my(xg—1)— — [my(xa+1)+2] In xy = 0, an

which in the limit 4, — O is identical with the result obtained for an antiferromagnet
with the isotropic exchange interaction [3],

2 Z 2
2(xN—1)— ;—1 (xN+3) In Xy = 0
and in the limit A4; — O gives the well known result for the Ising antiferromagnet
z
J ! = kBTN ln —_ .
z—2

Equation (11) has two solutions (except for the case 4; = 0). This means that there appears
also the anti-Néel point [3]. We shall represent the exchange Hamiltonian for a pair in
the form

H,, = 2jw(SiS3+5183)+2jSS3, (12)
where the isotropic and anisotropic coupling constants have been replaced respectively by:
J— jw, J'= (1—w)j; w(< 1) is the parameter characterizing the anisotropy of the exchange
interaction. The dependence on w of kgTy/j is shown in Fig. 1 for s.c. and b.c.c. lattices.

kTN
J
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0.2 04 06 08 0 - w

Fig. 1. Dependence of kpTy/j on the anisotropy of the exchange interaction for s. c. and b. ¢.c. lattices

We shall consider the case of a vanishingly small external magnetic field perpendicular
to the direction of easy magnetization. In this case

A=Y [2J8;- 8,+2J'8i85]—2uB™ Y. §F (13)
ijy i
and we can write the effective Hamiltonian in the form
'ﬁe = —2A11§1 * SZ—ZAZSTS';—Z#A:;,(S\T-I-SA'?D—

—2uA (S5 —83), (14)
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where A; = —J, A, = —J'. For a weak external magnetic field the parameter 4; can be
treated as small as compared with 4, and J/u. In the limit B*— 0, 4, goes to zero. The
parameter A4, is connected with the spontaneous antiferromagnetic magnetization along
the z direction. In the molecular field approximation the equilibrium equations are given by

A | 1
ln—-l_f—Zﬁ,:uB ——zJS:,

1-S
148 1
iszln%s = 28 [5 z(J+J')sz], (15)
where
S = \[s?+S2

and in the constant coupling approximation with the anisotropic exchange interaction
we have

S 1+8S

lhh— =2 B*+ —J(D , Sy,

S ﬁ[ﬂ + 5208 S)]

S 1+8

ZIn— = 28| - z2(J+J)® , 9,

s T 5 B[ 2(J+J)D,(B, s, )] (16)

where @, and P, are defined as

a1 1 1+S B ‘
D, =p"(J+J) l:S In i—s 2ﬁyA4]
o, =(BN7! [ ln%;: —2ﬁuA3]- 17)

The quantities A3 and 4, are functions of the temperature and the long range order
parameters S, and s,

S, = Tr [0S +8H)]
s, = Tr [0®)(S7-S$2)]. (18)

In order to determine the effective fields 4, and A, we diagonalize the Hamiltonian H,.
We obtain the eigenvalue equation in the form

—2(A;+ A) A%+ [4,(24, + A4,) —4p (A3 +
+A4)]A +4,u2A 24:+4,) =0 (19)

A = %(Al +‘A2)+8.



In the approximation 4; < 4, the eigenvalues are given by
g, =3(J+J)

e5 = } (J+J)+4u2 43I +J') cos® o[(J +J') cos? 0—J*]7!

1 J
g = — 5(J+J')-— P —2u?AX(1— cos w) cos o[J +(J+J') cos w] "

1 - J ‘
g = — 5(J+J’)+ P +2p2 421+ cos w) cos o[J —(J +J') cos @] ™.

For S, and s, we find

ds 1—-cosw
S, = -2 “15 Oy Ay coR ] e D o
=== Fooa, = 4 w{J+(J+J’)cos.cof°

1+ cos @ it 2 cos w(2J+J") f
J—([J+J)cosw’ " JP—[F+J)cos’ 0’

de,
i 35,2 s o

[(J+J') cos®> w+2J cos w]—J
J[J+J") cos w+J]?

(20)

+2u*A% cos® @

p (1 '2#2142 cos o [-(+J") cos> +2J cos co]+J>
—f, [1-24242 -

J[—-(+J") cos w+J]?
—£,8u2AX2J +J")J cos® w[(J +J')* cos® co—Jz]'z} 1)
and the effective fields 45 and A, satisfy the relations:
Ay = B*+3 (z—Dp'Jod,
Ay =3 - (J+J)9,. 22)

2. Fluctuations in molecular field in the constant coupling approximation with the anisotropic
exchange interaction

In the case of the longitudinal fluctuations we can write the effective Hamiltonian
in the form

Ay = 208, 8,05+ 20818} 5= 2uAs(S74-8745)—

oA (8= 87, ) —2u(ciSE— 74 557 s) (23)
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and for the transverse ones
ﬁe_]_ = 2J§, - 8,5 +20' 8587 5~ 2pAYST+ 85, 5) —
—2uA (S =871 ) =~ 2u(c} $7 — ¢F 5874 (24)

where r and r+J denote the two lattice sites uoccupied by the nearest neighbour spins,
2 = c*(r, 0) and ¢} = ¢™(r, 0) are the fluctuations in the molecular field. In the calculations
of the transverse fluctuations we shall limit ourselves to the case of the external magnetic
field equal to zero and accordingly we put

ﬁe_L =2J8,- 8,5+ 2J"§rz§:+6 —2uAy (887, 5)—
—20(c38T— T4 aST o). : 25)

For the longitudinal fluctuations the eigenfunctions of I-Te” have the same form as in the
equilibrium conditions but @ is now dependent on the fluctuation in the molecular field

2pAgtp Yy cf
[A]+QuAs+p Y )]

and the eigenvalues of H, are given by

sinw =

& = —3(dy+4,)—2pd;+ poc®
g3 = —3(A;+A4,))+2pds— pdc®
fo = (A;+4;) = [} +Qudy + pzcy'?
& = 3 (dy +4p) +[AT+Qudy+ pZc)?]
where
Y& =cistch,  8cF = ciLs—ch

For the transverse fluctuations the effective Hamiltonian H, | in the representation of the
singlet and triplet functions takes the form

—3@J+T) pEcy2 —2pd, —pEc2
o - pECJ2 Y (T+J)  pscly2 0
L 2ud, eI 3T poc 2
—pzc’ly2 0 uoc’l\J2 L (J+J)

and the eigenvalues satisfy the following equation
A 2T+ TN+ [T QT+ T') —4u2A2 —
— 126 + (2N A - [T ((3c™)*+
+(2c)) +2J(6c™)44 + p*(5c)2(2c)? = 0, (26)
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Where B y o f;f'{%;
A= —=3J+T)+e -
Yt = Gaatel 06 = =i

The approximate solutions with accuracy up to second order with respect to,the
powers of Xc* or §c¥, are given by

I , u 2[(6c™)*(1— cos wo)+(z ) (1+ cos )] cos wo;
80 = == "(J+J)_
2 coSs g T2 (1+ cos mg) J +cos weJ’
1 12 [(6YA(L+ cos wg)+(T (1 —
ey = — S+ _l_#_[( ) ( ' .wo) (ZC)(' cos wo)] cos wg
‘ 2 cosw, 2 “ (1= cos we)J —J' cos w,

B = F (4 T) 1 i+ 2TNE) + T BV (16245 +
+[J’(Zc")z—(J’+2J)(5c’32)’/2[J’(2J+J’) — 42 A2
= 3+ T)+ uZJ'(zc")Z[J'(zJ+ T)— 42 A2
ey 1(J+T)+ 2T+ )G VLTI +T)—4pt A2
sin o = 2;1A4[J2+4;12Az]-‘/2 i

In g, and &3 we have neglected under the square root ‘the terms which contain
the parameter A,. This approximation is valid in the vicinity of the critical point and is
the better the smaller the anisotropy.

We shall calculate the work mnecessary to create a fluctuation in magnetic moment
for two pairs of thermodynamic variables: (A) magnetic moment and external magnetic
field, (B) magnetic moment and local field. Tn the case (A) this work is given by the change
in the Gibbs. free energy AG*. In the case (B) this work is equal to?

AP = AG +I,AB, @7

where A4 is the deviation of the effective magnetic field acting on a pair from its equilibrium
value, I, is the equilibrium value of the magnetic moment of a pair and for the calculation
of G’ the internal energy has the form [1]

éar r+6 =Tr [Aflz?]_H(l J_]

1 According to the denotation used in paper [1] G = F” is a thermodynamic potential obtained as the
Legendre transform of the internal energy F’ = U’[T] = F/(T, V, B).

2 This work may be derived in another way; in the form A9 = AG—AIAZ%, where AL is the deviation
of the magnetic moment of a pair from its equlhbrlum value and the internal energy in G is given by the
same expression as in the case (A): By, p45 = Tr [91 ﬁ(z)] The second term in AP represents the energy
of magnetic field connected with the appearance of a fluctuation. This term must be subtracted from the
increase in the thermodynamic potential due to the fact that the fluctuation is now treated as produced
at the cost of the decrease of heat in the system and not by the action of a fictitious magnetic field. The
thermodynamic potential G is taken at the temperature T' of the fluctuation in temperature [12].
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with
Hp), = H‘”ﬂu(cf”‘ﬁf”‘— msSf" (28)
and 7 S
A® =218, 8,,;+20'5:87, = 2uB°2 (S +871.). (29)

In both cases (A) and (B) the entropy for a ﬁair of spins is given by (7), where for the
f,» S, s the nonequilibrium values must be 1nserted In the case of the longitudinal fluctua-

tions
S=8,=Tr [@‘2’(S’+Sf+.s)]

s =5, = Tr 6P -850)] (30a)
and for the_?_trans_verse ones we have put
' s=sPt+ss, S =+/52+5%

where
s, = Tr [0~ 82, 5)]

| S, = Tr[0P@+85.] (30b)
with o = x, z and S
o) = exp (— A, /Tt exp (= Bh.y,. ). 31

Now we can calculate the spatial behaviour of a fluctuation in the molecular field.

Longitudinal fluctuatlons

A. The Gibbs free energy for a pair may be wrltten in the form

Gr r+é — r r+6+[w1(z 4 ) (5C )+W2(Z z)2+W3(5c )2] (32)

where Gf vys is the part of the free energy which does not depend on the fluctuation in the
molecular field, wi(i = 1, 2, 3) are functions of the temperature, external magnetic field and
anisotropy. The work necessary for creating a fluctuation including z pairs of spins is
given by

Z, = Z(G,ms Gils) = A’ +E(V2e))c; + D(VE),

A = 4zw,, E =2a*Qw,+w,), D= 2a%(wy +w,+ws),

where a is the lattice constant. We have passed to a continuous variable r and expanded
(2¢)? and (6¢)? in Taylor series. The Euler-Lagrange equation_ for Z, leads to the following
equation for the fluctuation

(P2—k?,) ¢(r, 0) = 0
2
k2 = “—[ﬁ —1] | (33)
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and with the assumption of spherical symmetry we have
exp (—k
cz(r, O) - _Cf) Xp( 1zr) ;

w, = pula”*xm {(2/3])"1(1}¥v")oc cos® o+

1 .
+ 5[4xm+(u+u"‘) (v+v™ Y] sin® wo—

1 z—l[ (p—9)? (p+9)* ]}
m

2 T =8O+ T 1 (SO0

U, z=1 [ =1 r+1?
W3='2"Bl‘°‘ {r— — [1—(S§°’+s§°’)2+1—(S§°’—s§°’)2

where
p=oao—v)(u—ul) sin @y
q = (BJ)* cos® wo(v—v) + o {Axm+(u+ ) (v+vY)] sin g
r=4+xm@+v?) (utu?)
t = xm—vY) (W—u?) sin [N
o = xm+v ) tut+u?
= exp (BJ) sinwo = 2uA[J2+4p243]""
m = exp (BJ') cos w, = T2 +4u243] "
u = exp (2Buds) v = x'°=°
S© and s are the equilibrium values of the long range order parameters
SO = oY u—u)
s = xmo—Y(v—v?) sin w,. (34)

B. For the work connected with the appearance of a fluctuation (referred to one pair
of spins) we obtain according to (27)

A¢r,r+6 = AG;,r+a+IoA'%,
1A% = 2 Tr [0P(i8i— i1 sS4 )] =
= u(}, ¢*s,—6c"S,)

and
LAB = p[Ec’s® — ¢S],
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Application of the variational procedure to &, = ZA(D,,,,H-, yields the following
equation ¢
(P*+k3.) (00 = 0

2
ky? = a [1_ 12] (35)
with a [sin k,|/r type solution.

u, = pua xm {(ZﬂJ)"l(v—v'l)oc cos® wy+

1 - - .
+é—[4xm+(u+u Y (0+v™")] sin? w,+

xm

L1 z——l[ v-a* 0+ ]}
2 z

1= +5P) T 1= 5Oy

1o, ,f z=1 _,[ (=0 (r+1)
u3_=§ﬂﬂoc {r+ — 1—(S§°)+s§°’)2+1-—(S§°)-—s§°>)2 .

We shall discuss the dependence of k;, and k,, on temperature and anisotropy of
the exchange interaction in the limit of B— 0 for KMnF; which is characterized by z = 6

1 1
W4 Ty-2 W T[KJ

Fig. 2. Temperature dependence of the long fange order parameter s, (without external magnetic field).
I1—for w=0,2—for w=0.5 3—forw=1

and Ty = 88°K [7-9]. Without the external magnetic field ${* = 0 at all the temperatures
and s{® varies with temperature in the way illustrated in Fig. 2. The influence of the aniso-
tropy upon the temperature dependence of k7' is shown in Fig. 3. k3! depends very little
on temperature and anisotropy. This is presented in Table 1.
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9k (klza).g

1 1 1 1
TN'fS;"' : 7;v'3 o 75,"7 TN N 7;\1*1 TN*‘? o Iy*5 o

1 1

Fig. 3. Temperature dependence of tﬁéﬁk{}fcr various values of the anisotropy parameter (in the limit
B=0),1—forw=0,2—for w=05,3—forw=1

TABLE I
K5z for z=6
Tn—5° ‘TN",L'O.OSO ) TN";I—SO "
i
0 0.184 0.192° 0.189
0.1 0.185 0.192 0.189
0.5 0.189 B 0.196‘ 0.192
0.9 0.204 0.206 0.202
1 0.210 L-+0.211 0.207
Transverse fluctuations
In the case of the transverse fluctuations we get
o2 X2 z—=1 4
AGr,r+6 =”‘ (ZC) h 1—4—_Z——B h +
xX\2 z—1 -1 q
+(@c)f(1-4— B (36)
. z )

-1
49, , .5 = w {(Z c*’h <1 +4 = ﬁ_lh) +
z

{(6c”)2f(1 +4f;—1 B"f)} (37)
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where
f = a1cos wo[J2—(J+J)? cos? w1 [(2J+ J') cos wp— qu X
x {(J'+2J) cos wy(v+v~1)— (v v—l) [ cos2 wy+J (1 +0052 o)1}
h = a~tcos wy[J2—(J+ J’)2 cos? wp]™! [.I’ cos wy—% xm ><
x {J' cos wo(v+v-1)+(—v"Y) [J cos? w, —._‘J(l —cos? wq)]}]
S, = A +.E'c"(Vzc")+D’(Vc")2 (38)

and we obtain the following equations for the transverse ﬂuctuatlons in the molecular
field N

(V*—ki) c*(r,0) =0
and
(7> +k3) €, 0) = 0

where ky, and k,, are given by

- -1 -
2[4

kl-x2=2_ -1, (39)

-1 ?
z h(1—4i—-ﬁ'1h)
L\ z g N

| (1+4 =1 ﬁ‘f) ‘
1

a
k2 =—
2 2z

| h(1+4ﬂﬂ_1h> |
i z i

The change of k,, and k,, with temperature for various values of the anisotropy para-
meter w is shown in Fig. 4 and in Table II. For an isotropic exchange interaction, w = 1,
and in the region of temperatures above the Néel point the values of k, and k,, are identical
with those for the longitudinal fluctuations. In the limit T— Ty k3,' & 0.2 and k7,} = o
and below Ty ki, becomes infinite. In the case of an Ising type interaction, w = 0, kit
and k3,} ‘vanish for every temperature both below and above the critical point. In general
kol depends strongly on anisotropy and for all w attains its maximal value at the Néel
point, which is finite except for w = 1. These results are similar to those obtained by
Oguchi and Ono [5]. But the interpretation. of .the dependence of k,, on temperature
by means of transverse transition temperature 7’| introduced by Moriya [10] is not pos-
sible since in our case T}, = T, = Ty. Such an interpretation has been accepted in [11]
to explain the experimental data. The curve k,, = k(T) measured above Ty has. been’
extrapolated to the region of temperatures below Ty and k,, has attained zero at T.

(40)
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04
/ aes
02
w=01
/
1 1 1
Tv =5 Tn Tv+5 Tn*+10 TL°KJ
Fig. 4. Temperature dependence of the k[ for various values of the anisotropy parameter (in the case
B=0)
TABLE II
kxforz=6
w
Ty—5° Ty +0.05° Tn+5°
0 0 0 0
0.1 0.070 0.071 0.069 .
0.5 0.151 0.152 0.148
0.9 0.200 0.200 —
1 0.212 0.211 0.207

This interpretation seems not to be adequate because it is the so-called staggered-suscept-
ibility (which does not diverge), which is proportional to the cross-section and responsible
for the behaviour of the correlation range k7,! in the Ornstein-Zernike sense and not the
susceptibility connected with the magnetization caused by a uniform magnetic field which
has been discussed by Moriya.
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3. Static spin pair correlation functions

In order to calculate the spin pair correlation functions we shall use the approximate
relation [6]

(S30870)> = i[ng —noJy[nS —n/], @n

where n*>~ denote the probabilities of finding the spins at 0, r aligned parallel or anti-
parallel to the a = x, y, z direction.

Longitudinal components

The probabilities #, for the two sublattices have been obtained in [4] (formulae (9), A
(11)—~(13)) and they have been expressed in the terms of the fluctuations in magnetic moment
of the sublattices

1) n—n7 = fi~fi+(fo—fy) sinw =
= S,+s, = 287 = ' M
2) ns=ns = fi~fi—(fi—fa) sino = 42)
= S,—s, = 2875 = u M/,

where M,” and M, ;are the fluctuations in magnetic moment at the lattice sites rand r-+.
~ The form of the relations (42) does not change in our case. They differ only in the
values of the S, and s, parameters, which now are given by

S, = =20 2Bpxm (v—v) (w—u?) sin coo' e
s; = 2xmPuo? {(BJ)~* o (v—v~") cos® wy +
+sin? wg [4xm+@+u=) (v+v Y]} ¢f (43)

in the approximation of the homogeneous fluctuations that means cZ — 0. Because of the
nonvanishing external magnetic field B* the sublattices are not equivalent but in the limit
B*— 0(u— 1 and S, — 0) we have M, = — M, ;. Taking into account the distribution of
the magnetic moment in the fluctuation [2] we obtain for a single sublattice

(0850 = (i o P L=

1 |sin k7|

SO0 = (437 ;= SN CE)
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Transverse components.

., The matrix elements of ¢ in the spin product representat1on ferred to the x axis
needed for calculatmg the probablhtles n, are given by "

o1 2
0r- it =2<focos 7+fzsm2 °»+f1> 55

Ot 4,44 = (fosm 5 +f2 cos® — +f3> Esx"‘ Mon

1 R
Q=+ = —<focos +f2 Sm Y +f1) 23;

O = %(fosin2 a_; +f2 cosz'a—;'- +f3> + % Sy
where s, and S, are equal tt; s o
s, = 2u(Zc") ot cos a3 [J2=(J+ )% cos? wo] {J' cos wy—
—1xm [J' cos @y (v+v7D) +(v=v~Y){J’ cos? w,—J(1 —cos? wp)}1}
S, = —2u(éc®) a1 cos é)o[J 2—(J+ J’)2 cos? we] L {(2J+ J') cos wp—
—3xm [(J'+2J) cos o (u+v‘1) (v v-l) {J ’ cos2 wo+ J(l +cos2 coo)}]}

and we obtaln for each of the sublattlces respectlvely, the followmg expressmns in the
limit 6c*— 0 L L

1) n:._nr_ =8 = ﬂ_lM:
2) nfs—nris = =8 = —p M _
and for the spin pair correlation function

eXp[ kix(r=9)]

(SHOSO) = (4 )

r
1 [sin k e
SHOSI0 = (3 4'31‘174 @

The equations (44), (45) for the spin pair correlation function are valid for all r including
the limiting value r— 0. Consequently, the solutions without spherical symmetry like
those discussed in [13] also exist. The relevant discussion may be performed for temper-
atures below the critical one and also in the case of an antiferromagnet. This will be done
in a separate paper.

I should like to thank Dr B. Mrygon and MISS ‘B. Wentowska for performing
fhe numerical culculations.
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