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- Coherence properties of a plane blackbody radiation beam in an arbitrary Lorentz
frame are considered. The invariant formula for the degree of coherence of such a beam
is derived. A discussion showing how the coherence results are related to the problem of the
transformation law of temperature and to the cosmic blackbody radiation, is presented.

1. Introduction

In our previous papers (Eberly and Kujawski 1967, 1968) devoted to relativistic statis-
tical mechanics and blackbody radiation we have derived the manifestly Lorentz invariant
thermal-equlhbnum density matrix. By means of this invariant density matrix we could
easily calculate space-time and spectral coherence functions describing blackbody radia-
tion in an arbitrary Lorentz inertial frame. The detailed discussion of different correlation
functions for electric and magnetic field components and its dependence on the velocity
of a movmg observer has been illustrated graphically. Our results have also been general-
ized (Brev1k and Suhonen 1968, 1969, 1970) for the case of blackbody radiation within
a transparent medium.

In this paper we want to complete the discussion of coherence properties of black-
body radiation by investigating the coherence properties of a plane blackbody radiation
beam in an arbitrary Lorentz frame.

Our coherence results are related to two problems which recently have been widely
dlscussed ‘The first one is the relativistic formulation of thermodynamxcs, and the second
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is the cosmic blackbody radiation field. The thermal-equilibrium radiation field is an exam-
ple of a thermodynamical system for which it is easy to investigate the relativistic transfor

mation properties. As a matter of fact, the blackbody radiation thermal field served in the
past for the derivation of the transformation law of temperature (Planck 1908, Pauli 1958).

Because of the known controversy (for references and discussion see Landsberg and
Johns 1967, Balescu 1968, van Kampen 1968, Yuen 1970) and .the many unclear points
in discussions of relativistic thermodynamics, we again discuss the problem of the temper-
ature transformation formula. ‘One can mean by the temperature of the moving system
the proper temperature Ty, i. e., the temperature which is measured by a thermometer at
rest with respect to the system. Since a system described in a moving frame of refer-
ence possesses momentum, an interpretation in which a momentum temperature-vector
appears is mecessary. In the spirit of thermodynamics based on information theory
(Jaynes 1957, 1958, Ingarden and Urbanik 1961, Ingarden 1965, 1965a) one should
characterize the system by the four-vector of temperature which in our case is equal to
v / Ty, where V), is the four-velocity vector.

An example of blackbody radiation for which a relativistic description may play an
especially important role is the cosmic blackbody radiation (references and a review of
this subject may be found i in Dantcourt and Willis 1968 or Partridge 1969). A lot of atten-
tion has been paid to the problem of anisotropy of that radiation. One of the causes of the
anisotropy could be the fact that the galaxy is moving. In Section 5 we discuss the aniso-
tropy problem in terms of coherence quantities and show how they can charcterize
the anisotropy of the cosmic blackbody radiation.

2. Basic concepts of relativistic coherence theory

At the foundation of all of our results lies the statistical character of -the electro-
magnetic fields we deal with. It is appropriate, therefore, that we begin. w1th a brlef
review of our earlier discussion (Eberly and Kujawski, 1967, 1968) of the mamfestly
Lorentz-mvanant density operator .

We may say, first of all, that the operational significance of g is one of enumeratlon or
counting. That is, o has to do only with the relative occupation probabilities assoc1ated
with the eigenstates of the quantum system under consideration. For this reason it is
clearly a Lorentz scalar. It is usually not easy, however, to cast ¢ into a form in whlch its
scalar nature is manifest. For the purposes of relativistic coherence theory, though the
manifestly invariant form is practically indispensible. With its aid one is able to compute
relativistic correlation functions in arbitrary Lorentz frames as simply as the correspondlng
rest frame quantities.

We have shown, in the first reference mentioned above, that entropy maxumzatlon
can lead one to the desired manifestly scalar form for . If one assumes that the system
of interest is characterized by an energy-momentum four vector operator whose average
value is measured, and if the motion of the system can be labelled by its unit four-velocity,

= (p,yv), V¥, =1, 2.1)
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then :the manifestly ‘invariant form for ¢ is simply
0 =2Z"%'exp(—aP- V). a : (22)

Here P -V = P‘V,, where P* is the .System’s four-véctor energy-momentum operator;
and Z is the partition function, defined so that trace of ¢ is unity:

Z =Tr{exp(—aP-V)}, ‘ 2.3)

and. 1/a = KT,, Boltzmann’s constant times the rest system temperature.

' Of course the four-vector momentum and velocity are not the only quantities which
might:be needed to characterize a relativistic system. One could imagine needing to use the
stress-energy tensor, for example. In such an unusual case the resulting operator o would
not, of course, bear any simple relation to the expression in (2.2). For the most part we
will consider only density operators of the form (2.2). As should be expected, When appliéd
to systems consisting of electromagnetic radiation, such density operators afford a descrip-
tion of blackbody radiation generalized to an arbitrary Lorentz frame.

In this first case of interest, that of a free electromagnetic radiation field, the energy
and momentum of the system are familiar objects. We may write them in terms of the
usual photon creation and annihilation operators as follows:

PO = ;ha’kakj‘ak} (2.4)
P =Y hkagag, 2.5)
kA :

and then the density operator can also be written explicitly in terms of ai; and ay; as
a product over all field modes k:

e =[] ow (2.6)
kA-
o = (1= exp (—ak - V)) exp (—ak - Vagsap), 2.7

where k - V = k, V¥ and k* is the momentum four-vector of a photon of mode kA,
k" = (wy, ke).

In the remainder of this paper we will be concerned with electric and magnetic field
space-time correlation functions in a moving reference frame. We define here some of the
notation that we will find convenient in our investigation. As is usual in the quantum theory
of coherence we will ignore vacuum fluctuations and the zero point energy (Glauber 1963).
All correlation functions are then normally ordered, with pdsitive-frequency operators.
We may establish our system of units by writing here explicitly the positive and negative
frequency parts of the electric field operator at space-time point x = (¢, r) in the volume ¥":

2m\* — ;
E{(x) = ii<17n> Z V ogl(age™™ . (2.8)
kyA

As before, k and A refer to the wave vector and polarization component of the mode.
We have now adopted, and will retain, the conventions that & = ¢ = 1, that the vector
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index i (and later j, k, I as well) denotes a cartesian component of the field, and that:the
triad &!(k), eX(k), k is right-handed and orthonormal, so that

A_Z (&Mt Z)j = 5ij"‘Ei’€j- , : A (29)

We now introduce the second-order electric field space -time autocorrelation tensor
with components &;:

Eunss x2) = CEOGDE(x))- - 10)

Because ‘of the temporal stationarity and spatial homogeneity implied by the density
operator g, in (2.7), and by ¢ = [ Toxs as well (see, in this connection, Eberly and Kujawski
1967a), both of which propertles hold in all Lorentz frames, &;; can depend only on the

space-time differences © = #;—1, and r = r1 — r,. Thus, without loss of generality, we

will' concentrate our attention on &;;(x) = &;;(x;—x,, 0).
"The expectatlon in (2.10) may be evaluated if o is given by (2.6), for example, in the
following form: .
: e—ik-x d3 o
Eiix) = — IW'T o’ (2:11)

where D;; is the differential operator 8,0;,—p?d;;, and &; = 0/0r;, etc. We may point
out the manifest Lorentz invariance of the integral in (2.11), recalling that d% /2w, =
= d* o(k?).

" In addition to the electric auto-correlation tensor defined in (2.10) there are three
other second-order tensors of interest: a magnetic auto-correlation tensor and two mixed,
or cross-correlation, tensors. They are defined as follows

H ij(x) = <H§—,)(x)H§‘+)(Q)>,
M ij(x) = <E§_)(x)H§-+)(0)),
N if(x) = CHTOXEST(0)). (2.12)

Of course, the 36 separate correlation functions defined by (2.10) and (2.12) are equally
well expressed as components of the Lorentz-covariant tensor

uvaﬁ(x) = <F(~)(X)F(+)(0)>, . (2.13)

where F,, is the usual electromagnetic field tensor. In fact, the correlatlon functlons glven
in (2. 10) and (2.12) are the only possible non-zero components of P,

- Tt is useful to state immediately some of the symmetry properties of our electromagnetic
coherence tensors, again for the especially interesting o given in (2.6) (Eberly and Ku-
jawski 1967). In any Lorentz frame one has, for such a o,

E.(x) = Hifx), and My(x) = — N (). (2.14)
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Thus at most half of the coherence tensors are independent in this case, and it is sufficient
to consider only &; and .#;;. For this reason we now give the explicit evaluation of M i(x)
which is analogous to (2.11) for &;;(x):
T oem B

Mif(x) = 2711—2 €109 fe——“k'v— 1' o (2.15)
where ¢ is the totally anti-symmetric symbol of Levi-Civita, 0o = 0[0,, and summation
from 1 to 3 over the repeated index is understood. Note that the same Lorentz-invariant
integral as in (2.11) occurs here also. Taken together, Eqgs (2.11) and (2.15) provide a com-
plete description of the second order coherence properties of blackbody radiation in
any Lorentz frame.

One further point remains to be established. Coherence theory customarily deals
with normalized correlations, and we want to introduce a normalization factor into our
discussion, in order to speak hereafter about degrees of coherence in a sensible way.
We may do this (see, for example, Mehta and Wolf 1964) by dividing the fields Ej(x)
and Hj(x) everywhere by their amplitudes, that is, by the square roots of the corresponding
electric and magnetic intensities &;;(0) and #;(0). One may then show (Metha and Wolf
1964) that the degrees of coherence defined thereby,

(%) = & #(X)[[€:(0)& jj(O)]%ﬁ (2.16)
0; j(x) =M ij(x)/ [(g’ i#(0)H# jj(o)]% (2.17)

are bounded in absolute value between 0 and 1.

We close this section by indicating the explicit value of the desired normalization
factors in any Lorentz frame in our case of special interest, when ¢ is given by (2.6).
According to the first part of (2.14) the two factors are equal to each other, so it suffices
‘to give &(0):

4\ T1+0* 207
Ei0) = — |- ) [ —— 2. 2.18
- o

3. Coherence in a blackbody field

The formulas for correlation tensors describing the blackbody radiation field in an
arbitrary inertial frame of reference, wich have been ;prcse:nted in Section 2, refer to the
whole field existing in a sufficiently large cavity. The complete discussion of those formulas
is a complicated matter. A number of curves illustrating temporal and spatial dependence
of correlation tensors was discussed in our previous papers. In this section we shall discuss
some of our graphs which reveal features showing essential differences from those for
a plane beam which possesses a blackbody spectrum. N

In our discussion we shall restrict ourselves to spatial coherence. We shall specify
coherence tensors by field components taken in the plane x = 0 which is perpendicular



G

015 —

010 —

05
005 —

0 5 0

/623("I)/

Fig. 2

to the v direction. Let us consider as an example the normalized coefficients 7,5 and 6,3
defined in Eqgs (2.16) and (2.17). These cases are illustrated by Figs 1 and 2 where r’ = rfa
and in the first case r is along the line y = zin the x = 0 plane, and in the second case r
is in the y—z plane. The characteristic feature of the first curve is the fact that for r = 0
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in each Lorentz frame the orthogonal field components which are perpendicular to the
v-direction are not correlated. From this Figure it is seen that for increasing velocity
of the observer the coherence coefficient decreases. The reverse situation is illustrated
by Fig. 2 where for larger values of v the observer finds an increasing coherence parameter.
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For r = 0 0,5(0,0) is proportional to the expectation value of the Poynting vector, and
it is understandable that for » = 0 o,; = 0 since the average energy flux in the fstationary
system is equal to zero. '

In the spectral domain one can find that the coefficient m,; defined by m,;(r, ®) =
=M ,5(r, ©)[[&,3(0,0)5# ,5(0,0)]'"* is not a monotonic function of ». For v = 0 and v = 1
m, 3 vanishes. Fig. 3 illustrates this case, when r’ = r/« and r is along the line y = z, x = 0.

It is a very difficult matter to give any explicit formulas for the coherence time and
the coherence length. From the curves shown above and other graphs published previously
one finds that these coherence parameters may increase as well as decrease with increasing
velocity of the observer. On the other hand there is no difficulty in calculating formulas
for the coherence time and the coherence length for a plane beam. This will be discussed
in the next Section.
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4. Coherence aspects of a pencil of radiation

Though coherence properties of the entire blackbody radiation field depend on the
velocity of the moving observer in a way which reveals many interesting features, their
practical value does not seem to be high. Most detectors are highly directional in character,
so, in our opinion, from a practical point of view it is more important to investigate
coherence properties associated with a pencil of radiation rather than with the entire
field. This is the reason for which we shall now apply the coherence concepts developed in
Section 2 to a pencil of electromagnetic radiation. With such a pencil we may associate the
four-momentum operator p* = hk“afay;, specifying the energy and direction of propaga-
tion of the pencil. In the case of a blackbody spectrum the statistical properties of the
beam are characterized by an invariant g,, defined by (2.7).

The degree of coherence for the transverse (in general non-monochromatic)
field associated with the k-direction is defined by

punrs 1) = <E{(x)ER"(x2) ) [61(0)8 ()] “4.1)

This quantity is closely related to y;;(x) defined in (2.16). The different notation will
serve to emphasize hereafter our concern with a single pencil of radiation. To be precise,
the only distinctions between (2.16) and (4.1) lie in the averaging. For (4.1) the relevant
density operator is of course g, given in (2.7), while o = [] g, is the appropriate density

[

operator for the whole field. Fortunately it is not necessary to repeat all the details of
earlier calculations, this time using the density operator (2.7) rather than (2.6). We may
simply write the results of the earlier work, given in (2.11) and (2.15), as follows:

1 [(k26;,—kik;)e™™*
éaij(x) = Z;Z-J\ Jeak'V__Jl kdkdgk, (4.2)
1 [euke ™ a
,/ﬂij(X) = 4_71:2 W——l k dkdgk'j (4.3)

From the inspection of (4.2) and (4.3) one can see that the integrands
~ 1 [(K*6;—kik) .
6ij(x) = o J W e~ **kdk, 4.9

—ik-x
&ike

~ 1
) = g f P

k*dk, . 4.5)

characterize the coherence properties of the field in a plane wave associated with the
k-direction.

For the sake of simplicity we consider the frame of reference in which the z-axis coinci-
des with the k-direction. From (4.4) it follows that &_(r,7) = 0 and é?xy(r, 1) = 0. The
first equality simply expresses the fact that the field is transverse with the respect to the
k-direction. For r = 0 and t = 0 the second equality together with &,,(0,0) = &,,(0,0)
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shows that the field associated with each k-direction is completely unpolarized in any
Lorentz frame. Moreover, from (4.5) .4, (r, ©), #,(r, 7) and the diagonal elements all
vanish, and A,,(r, ©) = &,,(r, ©) = &,,(r, 7). The last equalities are due to the plane
wave properties |E| = | H| and E is perpendicular to H. 3 o

If we specialize (4.1) to the x and y directions and use the fact that &, = &,,, we
obtain g, = p,, = p. On introducing the four vector n, defined by k; = n»,,*lk| we may
carry out the integrations in (4.4) and find:

¢(4, 1 ;)
ﬂ(}', T) = T’D““‘ s (4°6)

where { denotes the Riemann zeta function. Since n - x and n -V are Lorentz invariants,
we see from (4.6) that the value of u depends only on 7 - x in the rest frame and on the
rest-frame parameter «, which is specified by the temperature T, defined in the rest frame.

[p(T2)f

Fig. 4

The curves illustrating the dependence of |u| on n - x = 71—z for some values of v
are shown in Fig. 4. As a matter of fact the family of curves could be obtained by variation
of the parameter o which governs the curve illustrating temporal coherence of blackbody
radiation given by Kano and Wolf 1962 (see also Mandel and Wolf 1965). Due to the fact
that 1 depends on r and 7 through t—z, for z = 7 we have u = 1. This means that, for
points lying on the light cone, the components of the field are completely correlated.
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We may mention that the pencil of radiation being considered has “polarization
purity”. This condition, analogous to that of spectral purity (the concept introduced and
discussed by Mandel 1961; see also Mandel and Wolf 1961) is p1,,(r, 7) = 5,,(0,0) p.(, 1),
where  p,(r, 1) = &(r, 1)/8,,(0,0). It is satisfied here because p(r, 1) = p,,(r, 7). Of
course, it means that the equality p,. = p,, is independent of the x and y axis.

From (4.6) it is also seen that for r in the plane perpendicular to the direction of the
wave, there is no dependence on the spatial variables. This is understandable since for the
considered radiation field the state of the field is the same at each point of the plane
perpendicular to the direction of the wave.

For r = 0 and © = 0 .#,, (0,0) represents the z-component of the Poynting vector.
Since the degree of coherence defined by my(r, 7) = M (r, 1)/[8,,# )"/ is equal to u
from Fig. 4 we see that the average flux of energy is different from zero in any inertial,
frame. '

The Fourier transform of u given by (4.6) yields the normalized space-dependent
spectral coefficient “

o3(n - V)*a* exp (inz)
L(4)¢4, 1) [exp (an - V)—1]

which for r = 0 is the normalized Planck curve. From (4.7) it follows that for each direction n
the spectral distribution is given by Planck’s function, with temperature defined by T =
= T,[y(1—v - n), the result obtained a long time ago by Mosengeil and Planck (see Pauli
1958) by different considerations.

We have already pointed out in the previous Section that it is a very difficult matter
to give the dependence of the coherence time (or the coherence length) and the spectral
width on » in a closed mathematical form for the entire blackbody field. However, in the
case of a plane wave, for which the coherence properties are given by (4.6), one can calculate
the coherence time 7, and the spectral width o, in a way similar to that used by Mehta
(1963). Let us recall that the cohefence time 7, is defined (see Born and Wolf 1966, Mandel
and Wolf 1965) by 3

d(r, ) = 4.7

O = [ e | s )
or by
@, = | |u@)|de. " (4.9)

Making use of the definitions above and the fact that the spectral width is the reciprocal
of the coherence time one obtains

1, = 1p(1—v.cos y), (4.10)
o, =Py {(1—vcos ), (4.11)

where v is the angle bétween » and m, and where 7i” and o’ are defined in the rest
frame, i.e., in the frame in which the field is isotropic. Of course, (4.11) may be deri-
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ved from the relativistic Doppler theory too. For » =0 or v = n we obtain 7, =
= 101 =v)/(1+0) or 7, = 791 +0v)/(1-v) which show that the coherence time may
get either shorter or longer when the value of v increases. Let us recall that » denotes the
velocity of the moving system, i.e., in the case of blackbody radiation the velocity of
the frame of reference in which the radiation is isotropic. It is, however, convenient to
introduce the velocity v’ of the moving observer with respect to the rest frame associated
‘with the isotropic radiation. Since » = —o’ holds, all formulas may be expressed in terms
of v’. The case ' = 4n corresponds to an observer travelling at velocity v’ = % in the
same direction as the plane beam. For »' = —n an observer is travelling opposxte to
the beam direction. Fig. 4 illustrates both situations: In the case of the blackbody radiation
tensors for the entire field it is very difficult to give closed formulas expressing the depend-
ence of 7, on v. The definitions given by (4.8) and (4.9) can be slightly generalized in order
to characterize the coherence time for values of z different from zero. In the case of S
it easily follows that ‘®t, does not depend on z.

The derivation of the invariant form of u given by (4.6) refers to blackbody radiation.
One can raise the question whether this invariance property is characteristic for blackbody
radla’uon or is a specific feature of a pencil of electromagnetic radiation. '

‘Consider an arbitrary plane wave which, for simplicity, we shall assume to be statistic-
ally time-stationary and space-homogeneous. We do not assume anything about the polari-
zation states in this plane. Let the /-axis be perpendicular to the z-axis which, as previously,
is the direction of propagation. We want to investigate the second order coherence pro-
perties of the l-component of the E field which is labelled by E;. One can show (Kujawski
1969) that the degree of coherence p, defined by (4.1) is relativistically invariant.
That is,

(X145 X2) = pdxy, X3), 4.12)

where ;.. is defined like (4.1) in a new Lorentz frame. Of course, the plane determined
by z' and /' is the transformed plane corresponding to the plane determined by z and /.
This relativistic invariance is a consequence of the fact that for plane waves |H l = I.E I
and E and H are perpendicular.

One can also show that, for normalized coefficients characterizing coherence properties
of higher order, at least for the definitions given by Glauber, Mehta and Sudarshan (see
Klauder and Sudarshan 1968), the invariance relations of the type (4.12) are valid. In this
way we may say that the coherence “‘structure” of a plane wave described by normalized
coherence coefficients (in general they depend on the parameter /) of all orders is invariant.
Here we discuss the second order coherence degree only. If in this case the plane beam is
“pure” with respect to polarization states (Mandel and Wolf 1961), for each I p; is the same,
and of course u; does not depend on I From (4.12) it follows immediately that the plané
wave field which is pure with respect to polarization states in some Lorentz frame is pure
in any other frame.

Finally, let us pay attention to two points. First, the electric field of an arbitrary plane
wave depends on time and space through the four vector product n - x; = ¢, —z,, and in
the case of time stationary and space homogeneous statistical fields the two-point second
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order coherence tensors depend on the difference n* x = (#; —¢,) —(z, —z,). Second, though
we derived (4.10) and (4.11) for a plane beam possessing a blackbody spectrum they are
valid for any stationary and homogeneous electromagnetic plane wave with arbitrary
spectrum.-

5. Remarks on possible applications

The discovery that the universe is apparently permeated with blackbody radiation
at a temperature of about 3 K (for references and discussion see- Dantcourt and Wallis
1968, Partridge 1969) has interesting astrophysical implications. It has led to a number
of difficult and ingenious experimental efforts. From the point of view of relativistic cohe-
rence theory the most striking possibility is that a measurement of the earth’s velocity
relative to the rest system of the radiation field might be contemplated.

We have seen that the reference frame in which the radiation field appears isotropic is
the zero-average-momentum frame (or, simply, the rest frame). It is difficult to imagine
that our galaxy is by chance in this frame. Our relative velocity with respect to this frame
could, in principle, be very large. Even if this relative velocity is not large, two certain
sources of apparent anisotropy are the revolution of the earth about the sun, and the
motion of the solar system in the galaxy. A common estimate for the relative velocity
of the earth with respect to the center of the galaxy is 300 km/sec.

In this section we will explore briefly the ways in which the coherence theory we have
developed for blackbody radiation in an arbitrary Lorentz frame may be applied to the
problem of the earth’s velocity. Because most sensitive radiation detectors are highly
directional, we will naturally concentrate on applications of the relations derived in Sec-
tion 4 for a pencil of radiation.

The basic quantity in discussing a pencil of radiation is the normalized space-dependent
spectral distribution ®(r, ) introduced in Section 4 in (4.7). It is clear from the structure
of @ that v-dependence is intimately related to yp-dependence. Clearly, if an observer knows
the direction of » but not its magnitude, a measurement of @ at any two angles y will be
sufficient to reveal the magnitude of ».

Of course not only the spectral properties characterize the interrelation of velocity
dependence and anisotropy. In principle, each of the correlation tensors discussed in detail
previously (Eberly and Kujawski 1967a, 1968) may be used as a measure of velocity or
anisotropy. But the degree of coherence, given in (4.6), is especially simple to use for this
purpose. One measure of anisotropy is the difference | uln - x; zp—n)|—- | um - x; 1p)| which
vanishes for y = =n/2, and takes its maximum value when % = 7. The ratio |u(n - X; 1,0-—7'c)|/
/ | u(n - x; 1p)| could also be used.

In a similar way, using (4.10) we see that 7 (n — ) —7.(y) = 2v cos y. Thus the coherence
time itself may be used as device for measuring velocity and anisotropy. The same may be
said for the spectral width, of course, since it is merely the reciprocal of the coherence time,
apart from unimportant numerical factors which change as the precise definition of coher-
ence time changes (Mehta 1963, and references therein).

If we assume that v has a magnitude of about 300 km/sec for the sake of illustration,
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we can easily estimate a maximum coherence time difference of about 2 x 10-3 times the
rest-system coherence time. At the peak of the 3K blackbody curve such time differences
lie in the range of 10-1° sec., well beyond experimental capabilities. Thus the earth’s
relative velocity with respect to the blackbody rest system must be more than an order
of magnitude greater than our assumption if these correlation techniques are to be useful.

We may mention in closing this Section the existence of a more fundamental measure
of anisotropy. The inequivalence of directions in space has as one consequence the failure
of the density operator to commute with the total angular momentum operator (the gene-
rator of rotations). Thus one obtains a measure of anisotropy by estimating the amount
by which this commutator differs from zero. Such a measure of anisotropy is closely related
to the measure of time stationary proposed by one of us (see Eberly and Singh 1970, and
also Eberly and Kujawski 1968), and will not be pursued here.

Recently a lot of attention has been paid to relativistic thermodynamics (for references
see Eberly and Kujawski 1967, Landsberg and Johns 1967, Balescu 1968, Yuen 1970).
Our blackbody radiation considerations shed light on the problem of the ambiguous
transformation formula for temperature, considered as a parameter characterizing black-
body radiation field. From all the formulas discussed in this paper one easily sees that the
parameter which appears in them is the temperature four-vector (1/T), = V,/T;. It simply
shows that the considered system of blackbody radiation is characterized by this four-
-vector, of which the invariant length is 1/7;.

If one calls the temperature of the moving system the coefficient associated with the
energy, one obtains T = Ty[y (Eberly 1967). On the other hand, since the only thermo-
dynamical parameter which enters into all the formulas is the temperature T, defined
in the rest system, one can claim there is no need to introduce the transformed temperature T’
(Kujawski 1969a). This interpretation corresponds to the point of view that an observer
who makes measurements of temperature on a moving system is forced to interpret his
measurements in terms of the rest temperature of the system (Anderson 1964). To make
this point of view even stronger let us pay attention to the fact that in the rest frame Eq. (4.6)
takes the form

C(4 1+ i(To“Zo))

o
H(ro, T) = @ . (5.1)

This form can always be associated with (4.6) in any frame, simply by assigning the temper-
ature T to the beam by the relation

T =Tyn-V. (5.2)
We may see this point directly by writing the formula (4.6) as follows

¢ (4, 1+ '(tfz)>
o
{4, 1) ’
Clearly the form is the same as that in (5.1), with the temperature defined according to (5.2).

ur, 1) = " = 1/KT. (5.3)
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The formula (5.2) T = 1},/)’(1 v cos ) has been prev1ous1y derived in a ‘different
way and discussed in many papers in connection with the cosmic ‘blackbody radiation
(Heer and Kohl 1968, Henry and others 1968, Peebles and Wilkinson 1968). Of course
if one wants to compute T, for the entire blackbody radiation field, in general it is necessary
to measure T in three independent directions. Finally, let us point out that the interpreta-
tion leading from (4.6) to (5.3) is possible since p is the parameter which characterizes
the plane wave and, as it is known, one cannot associate in a unique way a rest framie with
a plane wave (Hamity 1969).
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