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A simple derivation of Kaneyoshi’s formula for the magnetization of disordered dilute
-alloys is given by Handrich’s approach. A possible application of this formula (in slightly
modified form) to amorphous ferromagnetics is discussed. The critical concentration of
amorphous binary magnetic alloys, below which ferromagnetism disappears, is predicted
theoretically using a cluster variation method.

Recently, Kaneyoshi {1], using a rather sophisticated formalism of cumulant averages,
derived expressions for dilute magnetic alloys reducing in the molecular field approxi-
mation to the following very simple formula (originally labeled 2.24-2.25):

S§—> = %{tanh (ﬁ 0£+(C)> + tanh (52—:’, 06—(0)>} @

ai(e) = cJo(S>+(S) {c(l —c) Gf Z Ji)}_ @)

with {§) denoting the sample-averaged mean value of spin, J, the Fourier-transform of
the exchange integral, and ¢ the concentration of magnetic atoms.

Itis our aim to give a simple derivation of the formula (1) basing on Handrich’s [2, 3]
decoupling of higher order correlation functions of fluctuations. This is done in Section 1.
Moreover, as Kaneyoshi used his results to explain certain properties of amorphous
ferromagnetics, we shall discuss the modifications of formula (1), originally derived for
a crystal, which are necessary when one wants to apply Eq. (1) to amorphous media
(Section 2). The critical concentration of magnetic dilute amorphous alloys below which
ferromagnetism disappears is calculated in Section 3 using the cluster variation method.

where

* Address: Ir:stytut Fizyki, Uniwersytet im. A. Mickiewicza, Poznan, Grunwaldzka 6, Poland.

(211)



212

1. Derivation of equation (1) for crystalline alloys

For spin 1/2, the expectation value of the i-th spin S; averaged ¢ > over the sample is:

S;
P (w0 Y1)

We have assumed for simplification that, for the neighbours j of site i, {S;> = {(S).
The sum runs over all magnetic neighbours of S;; they are randomly distributed over a
Bravais lattice. J;; is the exchange integral between S; and S;. As before Eq. (2) the
concentration of magnetic atoms is c. Pointed brackets { > denote averaging over the
random distribution of atoms.

In order to simplify the notations, we shall discuss in detail the case of nearest neigh-
bour interactions; however, we also derive expressions (7) and (8) for the general case
involving interactions with any neighbours (¢f. [4]). The i-th magnetic atom has, say,
I magnetic nearest neighbours, so thatin (2) Z;J; = Ji/. We introduce the notation
1 = {z) +4z,;, where {z) denotes the mean value of / over the sample. We expand the
right-hand side of Eq. (3) into a series in fluctuation terms and assume [2, 3]

0 odd
LAz’ = for b
{(42)2HP? even
After re-summing we obtain (¢f. [3])
sy _1 \/<<A 2% , 2>\
5 2{‘( nh x (1—!— ) + tanhx(l— 2 >} G
where
_I @
© 2kT

The probability that a given magnetic atom has / magnetic nearest neighbours in
a lattice with co-ordination number z (and z—/ nonmagnetic ones) is

l'( -n

P(D) = (1—¢)™!

As well known, for the binomial distribution

”MN

PO = 1; (> = 2 IP(l) = cz;

z

{42 =3 (1-<{2))? P(l) = 0% = zc(1—c) (the variance).
=0
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Thus, Eq. (3) takes the following form:

8> 1 1
— tanh — ¥ tanh — ¥ _ 5
s =2 ger FHOF b5 ¥ ©®)
where
¥, (¢) = 2eJ (8> (8> ze(1 =) J7. ©)
On taking into account also interactions J; with z; i-th neighbours [4], we obtain
Sy 1 1
tanh —— + tanh — l 7
S 2{ 57 A+(OF tanh = 2_(0)¢ ™
where
p j 4
Ay = e(XJz)SYELS) [e(l=0) Y, J?z,. ®
i=1 i=1

1
Our X,J,z;and X,J ?z, correspond to Kaneyoshi’s Jo and F » J? %» respectively. We recognize

therefore in Eqs (7) and (8) Kaneyoshi’s formula (1). Thereby we have established the
equivalence of Handrich’s and Kaneyoshi’s approaches to the question — in the limits
of known approximations. The generalization to arbitrary spins can be derived easely.

. 2. Magnetization of amorphous ferromagnetics

We' shall now consider a magnetic metal, pure but amorphous. The structure of
amorphous metals is very like that of the liquid state. It can be described by the radial
distribution function (RDF) in conjunction with the statistical distribution f(/) of the
coordination number / fluctuating about its mean value {z) [5]. If we assume after Ref. [3]
that very roughly J(r) = J for nearest neighbours, our further considerations can run
parallel to those of Section 1. We have, however, to keep in mind that now the number [
of nearest neighbours cannot exceed a maximum value z,,,, as before, but contrary
to the previous case / cannot be less than 7, # 0. We approximate the distribution f(/)
by a binomial distribution P'(l) = P(I—z,;,) = ¢'~min(1 —c)zmaX“lL!/(l — Zi) ! Znax — D 1y
(where L =z, —z...), adjusted to the first two moments of the distribution f(}) and the
same minimum coordination number z,;,. Given f{/), one thus obtains the values of the
three parameters: z,,,, Land ¢ (the latter, however, can no longer be interpreted as a concen-
tration!). Eq. (4) still holds in the present case if we substitute (z) = z,,;,+cL and {(42)?)>
= Le(1—c) (this is .to be compared with ¢z and ze(1—c), respectively, for a crystalline
dilute alloy).* Thus, a direct application of Kaneyoshi’s theory to noncrystalline magnetics
(as he seems to do [1]) requires the above assumptions (or their equivalent), mainly the
existence of a minimum coordination number z_,.

! For comparison, we refer to Egs (7) and (8) rather than to Egs (1) and (2) because of difficulty in
defining the Fourier-transform Ji in a non-crystalline material.
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3. Critical concentration of an amorphous dilute binary alloy

Hitherto, we refrained from considering in detail the dependence of the exchange
integral J(r) on the interatomic distance r and assumed a single constant value of J in
every coordination sphere. As a matter of fact, a main difficulty in the interpretation of
experimental data on amorphous ferromagnetics resides in our unsatisfactory knowledge
of this dependence. It is worthwhile, therefore, to search for effects connected with ferro-
magnetism, but not with the value of the exchange integral. It is well known that the critical
concentration ¢, of magnetic atoms in a non-magnetic host below which the ferromagnetism
of a crystalline binary alloy disappears, does not depend on the value of J [6, 7], but only
on the co-ordination number of the crystal and on the range of J. We ask whether this
is true for amorphous alloys also.

So far, we used the molecular field approximation; as well known [1, 6], this approxi-
mation does not yield any critical concentration except for ¢ = 0. Therefore, we apply
the so-called ““cluster variation method” [6] to an amorphous magnetic alloy containing
one non-magnetic and one magnetic component (as in Section 1, of spin S = 1/2 and
concentration c). As pointed out in Section 2, the number of nearest neighbours / varies
from one atom to another, and so does the interatomic distance. The number of /-neigh-
boured atoms can be described by a probability f{/) of finding them in the sample. Now,
we define nearest neighbours as those atoms (magnetic or not) which lie closer to a given
atom than the range r,, of magnetic interaction, within which the exchange integral J(r)
is appreciably different from zero (Fig. 1). Let their mean number be {z},. This “magnetic
coordination number” must not necessarily be the same (at least in “liquidlike” structures)
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Fig. 1. Numerical density g of atoms in function of interatomic distance r, schematically: (a) for a crystal,

(b) for an amorphous medium, compared with the hypothetical range of the exchange integral J(r), very

schematically (J(r) = 0 for 7 > r,,). The cross-wise shaded area is related to zs, — the usual coordination

nuriber, the cross-wise plus line-shaded area up to r = r,, is related to <{z),,. For a crystal, as obvious
from (a), {zd,, = zsr (the areas in graphs (a) and (b) are not to scale mutually)
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as the “structural” coordination number z,,,, as would in fact be the case if the magnetic
interaction covered neighbours situated near “interstitial” positions between first and
second neighbours. A justification for using the nearest neighbours approximation can
be found in Felsch’s [9] and Hasegawa’s [10] results, who established experimentally
that the magnetic properties of amorphous alloys depend essentially on local ordering
only. The Curie temperature® as obtained from the relation y=! = 0 (y — susceptibility) is:

. <J>am (<Z>—1)C+1 E
B [k’g (<z>—1)c~1]' ©

Here, the exchange integral is averaged over the radial distribution function and the
coordination number over its statistical distribution f(I). We believe that {z) = (z},.,
should be equal- {z),, rather than z,.

We see that T, in an amor\phous magnetic, depends on {J),,, and {z),. For (/> =
= Joye and for e.g. {2D.m smaller than Zeryst> OME would have T, ., < T, .3 We find
the critical concentration ¢, by noting that ¢— ¢, as T,— 0 in the preceding formula.
Indeed, ¢, does not depend on the value of the exchange integral, but only onone parameter,
z). The latter could be estimated from structural (e.g. X-rays) investigations, were one
to assume <{z), = Zy.

The only studies of amorphous magnetic dilute alloys near the critical concentration
are due to the Keck Laboratory group [8, 10] for PdFeSi alloy, which is a three-component
system, whereas our considerations concerned binary alloys only. Further experimental
work would therefore be welcome. -
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% Here, unlike Sections 1 and 2, the influence of structural fluctuations is not taken into account.
® The formulas valid for a crystal are similar, the only difference residing in the nonoccurrence of
the averaging brackets < s of. [6].



