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The equilibrium properties of a two-component mixture are calculated in the so-called
one-chain approximation (OCA). OCA consists in retaining only the simplest terms (these
represented by one-chain graphs) from every virial coefficient, summing the resulting infinite
series, and treating the final formulas as analytic continuations of the original series. No
additional assumptions are made here — the properties and structure of the system are
determined only by the values of state parameters (temperature, density, and composition),
and by the shape of two-particle interactions. The computed quantities are the Helmholtz
free energy and pressure (equation of state), and the radial distribution functions. Short-range
two-particle interactions of the Lennard-Jones type are chosen here in such a way that the
attractive force between unlike particles is weaker than that between like particles, all other
particle properties being identical for both species. The formation of two coexistent liquid
phases, with limited solubility of one species in the other, is found in a certain region of
temperatures and densities. Besides, there is an indication of the existence of the point of
equal concentrations (azeotropic point) in the gas-liquid transition.

1. Introduction

Very little work has been so far devoted to the microscopic description of many-
-component fluids. The long-known general formulations of the cluster and virial expansions
of distribution functions and of the equation of state (cf. e. g. [1]) permit a calculation of
lower virial coefficients to be made for multicomponent gases. Apart from that, only
some very simplified models of binary mixtures have been developed to the point at
which some conclusions might be stated. We may quote here, for example, the model of
Gaussian molecules examined by Helfand and Stillinger [2], the Ising model description
considered by Heims [3], and a somewhat similar Griffiths’ model of 3He —He* mix-
tures [4]. Moreover, the semi-guessed equation of state for mixtures of hard spheres has.
been recently proposed by Boublik [5]. _

Of the more involved methods, the Percus-Yevick [6] (PY), and hypernetted chain
[71 (HNC) approximations have been generalized for many-component systems {[8].
These approximations are known to yield satisfactory quantitative agreement with
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experiment (or with a computer experiment) for one-component systems (cf. e. g. [9]), and
may thus be expected to be able to describe the properties of mixtures as well. However,
the PY and HNC approximations for n-component system [8] require the simultaneous
solution of a set of non-linear integral equations for n(n+ 1)/2 different radial distribution
functions, and as far as the authors know, no attempt has yet been made towards a practical
calculation of any property of a mixture by means of these methods.

We have recently shown that the so-called one-chain (OC) approximation describes
qualitatively the phase transitions and the structure of the condensed phases in one-
-component systems [10]. This approximation represents the analytic continuation of some
simple infinite part (that described by graphs build of one chain only) of the Ursell-Mayer
virial expansion [1], and may be considered as an approximation to both HNC and PY
approximations®. It may be also considered as the first iteration of some other methods —
this point will be discussed in the last Section (cf. also Refs [10] and [11]). The formulae
for the radial distribution functions, free energy, pressure, and other thermodynamical
functions in the OC approximation may be also easily obtained for many-component
systems [11]. Because these formulae are simple enough for numerical computations
(with any form of interparticle interactions), and because they lead to quite sensible (quali-
tatively) results for one-component systems, it seemed interesting to see how does the OC
approximation describe the properties of mixtures.

The purpose of this paper is to present the results of such an investigation. We have
examined a binary system with the two-particle interactions chosen in such a way that the
attraction between the unlike particles is weaker than the attraction between the like part-
icles, all other properties of the particles of both species being identical. This is perhaps
a somewhat simplified situation describing no actual mixture; however, the OC approxi-
mation itself is much too simple to yield quantitatively correct results; and thus we may
look for the qualitative description only. We have found that, in a certain of temperatures
and densities, two coexistent liquid phases appear. Besides, an indication of the existence
of the point of equal concentrations in liquid and gaseous phases (the azeotropic point)
is also found. These results are presented in Section 4; Sections 2 and 3 contain the OC
formulae and the details of the assumed interparticle interactions, while some possibility
of the extension of these results towards a more quantitative description is discussed
shortly in the last Section. ‘

2. OC formulae

A system composed of two different species, « and B, is considered. The thermodynam-
ical limit of an infinitely large system, and the classical limit (negligible quantum effects)
are assumed. The independent intensive bulk parameters are: temperature T, mean volume
per one particle v (or mean number density ¢ = 1/v), and the mole fraction (number
fraction) of the particles «, x,; X3 = 1—x,. The particles interact with each other through

* OC approximation is described by graphs which are contained also in the HNC and PY approxi-
mations. In fact, the OC formulae are equivalent with the first iteration of the HNC integral equation.
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the pair potentials V; (r) (i,j = a, B, V;; = V), where r denotes the relative distance
between a given pair of particles.

The OC approximation [11] leads to the following results for the Helmholtz free
energy per particle, F, pressure (equation of state P, and the radial distribution functions
(RDF) g,(1): |
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and Ggg(q) is given by the exchange of the labels o and f in Eq. (8). All these quantities are
expressed in terms of the temperature-dependent functions ;(q), defined as Fourier
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transforms of the Mayer functions:

) = = j drr sin (gr) [e™ O 1], (10)
g 0
k denotes here the Boltzmann constant, B, is the second virial coefficient of the binary
mixture, F, is the Helmholtz free energy of the ideal gas mixture, and 4, = (27rh2/ka)1/ 2
is the thermal de Broglie wavelength, m being the mass of the particle of species i.
The integrals in (6) and (7), containing the demominator M{q) = M(q; T, v, x,),
are singular in some regions of 7, v, and x,, and thus are to be interpreted as Cauchy
principal values. This interpretation may be justified as follows: the formula (1) represents
the sum of the OC graphs of the virial series for the free energy, and may be considered
as the analytic continuation of this series beyond its radius of convergence, the latter being
determined by the condition

|v2—M(@)| < 1. ¢8))

‘When the condition (11) is not fulfilled, the integrand in Eq. (1) is singular at some values
of the integration variable g. However, because this singularity is logarithmic, the integral
in Eq. (1) is still convergent. The pressure P should, in fact, be calculated by the (numerical)
differentiation of F with respect to the volume. When the integrand in F is non-singular,
the order of differentiation over v and integration over ¢ may be reversed and we are let
to Eq. (6). This is not the case when the condition (11) is not fulfilled ; however, the formula
(6) may still be used when the integral is taken in the sense of the Cauchy principal value?.
The integrals in Eqgs (7) may be, analogously, taken as their principal values, or may be
computed according to the theory of Fourier transforms of distributions (generalized
functions) [12]. Both these treatments lead to identical results.

3. Intermolecular potentials

All the physics of the considered system is determined in the OC approximation —
through Egs (1)-(10) — by the assumed values of T, v, and x,, and by the details of the
‘potentials of interactions between different pairs of particles. We assume here that these
interactions are described by potential functions V(r) of the Lennard-Jones type. For
simplicity we assume further the interactions between like particles to be identical for both
species:

Veolr) = 42 [(0/r)*2—(0/r)°] (12)

2 These statements may be verified by considering the integrals
b
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{a < y < b); the singular parts of the integrals invoived in Eqs (1) and (6) are reduced to the above forms
by expanding the function M(q) into a Taylor series around the singular point.
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i.e., that both the “particles diameters” ¢ and the strength of interaction ¢ are the same for
o and f particles. The interaction between unlike particles is assumed to be:

V() = 4e [(6/r)12—0.5 (a/r)%], (13)
i e., its repulsivé part is the same as for like particles, whereas the attraction between

unlike particles is twice weaker.
Tt is convenient to express all the computed quantities in terms of reduced variables.

The following choice is assumed:
V¥ = vfy,, T% =FkTle, P = Pyle,
by = 2n63/3, x =rlo,
Fle—x,1In (bo/2] )—x, In (bo/4; ). (14)

F*

4. Numerical results

a. Gas-liquid transition: azeotropy

Let us begin with the examination of the properties of the binary system under con-
sideration from the gas side, decreasing the volume V'* at constant temperature. Fig. 1
presents the typical behaviour of the isotherms of free energy F* and the pressure P* vs V¥,
calculated from the OC approximation equations (1) and (6). It is seen that there appears
a region of V* where F* ceases to be concave, and the compressibility (OP*[0V*) . is

~2.5-
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Fig. 1. Free energy, F*, and pressure, P*, vs the specific volume ¥*, in the OC approximation. T* =
= 1.2, x, = 0.15. The fragments of dashed lines contained between circles show the region of V* where
the stability condition, §*F > 0, is not fulfilled
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positive. Such features are commonly interpreted as the indication of the separation of the
system into two phases. It was shown [10] that, for one-component system, this transition
vanishes at higher temperatures (7. e., the critical point exists), hence we may interpret
the medium density phase (V* < 2.7 in the case presented in Fig. 1) as liquid; further
support to this intepretation is given by the shapes of rdf which will be discussed below
(¢f. Figs 6 and 7). The stability condition, §2F > 0, leads to the well-known Maxwell
construction of the sector of coexisting phases — the dashed lines in Fig. 1. The results for
different values of x,, ¥*, and T* are collected in Fig. 2, where the phase diagrams are
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Fig. 2. Phase diagrams for the gas-liquid transition

plotted for the gas-liquid transition. These diagrams show that the condensation of our
mixture occurs at lower temperatures and at higher densities than the condensation of
a pure substance.- »

The pressure at which the condensation occurs also depends on the composition of the
mixture. The plot of the pressure of the system vs concentration, at constant temperature,
is given in Fig. 3. The curves labeled V* = 4.2 and V* = 2.8 (full lines) are plotted at the
constant value of overall volume (of both phases together), and show that the pressure of
the system increases when the amount of second substance increases, attaining its maxi-
mum value at x, = x; = 0.5. The curve P*(x,) at V'* = 2.3 features unstable regions,
and points of discontinuity, connected with the gas-liquid transitions. The dashed line
in Fig. 3 presents the pressure at which the condensation of the gas mixture of a given
composition (at constant T* but at different densities) begins (according with the phase
diagram of Fig. 23). This diagram possesses one interesting feature:

3 The dashed line runs, in some parts below the “gas” line at constant volume: this fact shows that
the “gas” of a given composition is unstable at this temperature and volume, i.e., that condensation
begins at a lower pressure - compare with Fig. 1.
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Fig. 3. Pressure P* vs the composition of the system. Full lines denote the isochors, V* = 4.2 and 2.8;
the dashed line shows the pressure at which the condensation of the gas of a given composition begins.
T =1.2

Let us return for a moment to Fig. 1. The points (densities) at which the gas of a given
composition begins and ceases to condense (or the liquid of the same composition begins
and ceases to boil) are determined from the shape of the energy F* vs V*, according to the
stability requirements. These points determine, in turn, the values of the pressure P,
of the condensing gas, and P, of the boiling liquid of this composition. These pressures
are not equal, P, > P,, which, in agreement with the well-known facts, means that the
condensing gas of a given composition x, will be in equilibrium with the liquid of another
composition, x, # x,, corresponding to the same boiling pressure, P, = P.. Now, the
condensation pressure vs composition, P,(x,) (dashed line in Fig. 3) possesses an ex-
tremum (maximum), which is usually connected with the existence of the point of equal
concentrations of the vapour and liquid being in mutual equilibrium, 7. e., with the pheno-
menon of azeotropy: the destillation of the liquid (and the condensation of the vapour)
of this . composition does not lead to the separation. of the species. In our case this point
corresponds to equal concentrations of both species. In order to prove that the OC approxi-
mation predicts indeed the occurrence of the azeotropy phenomenon, the boiling pressure
should be also plotted vs composition of the liquid, and in the azeotropic point P, should
be equal to P,. However, more detailed computations are needed (requiring considerable
computer time), for a sufficiently exact determination of P,.

b. Liquid phases: unmixing effect

Let us now look at the properties of our mixture at liquid densities. Fig. 4 shows the
dependence of the free energy F* on the composition, at constant 7% and V'*, for a few
values of ¥*. According to the stability conditions, the curves labeled V* = 1.9 and V* =
= 1.6 correspond to the stable system (composed of one phase), whereas the case ¥'* = 1.2
exhibits instability. Such an instability is usually interpreted as the evidence of the separa-
tion of the liquid into two non-miscible liquid phases. The dashed line shows the construc-



200

F* A

1 i i L 1 i 1

1 '}
0.2 04 06 08 x
Fig. 4. Free energy F* vs composition, in the liquid region. 7% = 1.6

tion -of the two-phase region. The results for different values of T* and V'* are collected
in Fig. 5 in the form of phase diagrams (isotherms and isochors) to the mixing-unmixing
transition. It is seen that the mixture of the substances « and f in the liquid phase possesses
the critical temperature and the critical density of mixing, below which the system separates
itself into two liquid phases.

In order to get some insight into the structure of the liquid phases, the rdfs have been
computed for the compositions corresponding to one- and two-phase regions. These
are shown in Figs 6 and 7, respectively. The full lines, labeled N-N, denote the average rdf,
gyn(r), which describes the correlations between all particles, irrespective of the species:

gwn(r) = xigaa(r)_"zxaxﬁgaﬂ(r)+x)29gﬁﬂ(r)' (15)
In the region of one liquid phase (x, = 0.091, Fig. 6) both the gyyand the rdf of the
solvent, gz;, exhibit a typical liquid structure: the weak second peak of the second coordi-
nation sphere. The rdf of the dissolved species, g,,, shows a fairly strong clustering of « part-
icles near a given particle. The most interesting is, however, the rdf for unlike particles,
2,5, Which demonstrates clearly that indeed we have here the solution of the species a
in the liquid B: the amount of unlike particles around a given particle is above the
average homogeneous distribution (the solvatation effect)*.

4 According to its definition, the radial distribution function g describes the correlations between
particles: g = 1 means that the particles are distributed homogeneously (at random); ¢ < 1 means that
at a given distance from a given particle there is lower/greater probability of finding a second particle
than that resulting from homogeneous distribution.
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Fig. 5. Phase diagrams for the mixing-unmixing transition. /;, /, denote different liquid phases
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Fig. 6. Radial distribution functions in the one liquid phase region. 7% = 1.2, V* = 1.4, x, = 0.091

A completely reverse situation is seen in the region of concentration (x, = 0.474,
Fig. 7) interpreted above as the two unmixed liquids phases. First of all, the amount of the
unlike particles is the close neighbourhood (x = r/o < 2.5) of a given particle is below
the average distribution, whereas the correlations between like particles are here fairly
strong. Such a picture supports the above interpretation of the existance of two liquid
phases with limited solubility of one species in the other.

The second interesting feature is that the situation is reversed for greater interparticle
distances (x > 2.5): here g, is above, and g,, and g, below the homogeneous distribu-
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Fig. 7. Radial distribution functions in the region of two liquid phases. T# = 1.2, V* = 1.4, x = 0474

tion. This results seems to suggest that the average linear extent of a ‘““droplet” of one-phase
liquid, given by the OC approximation, is about 5¢ (at T* = 1.2, V'* = 1.4), and that at
greater .distances we find the second liquid phase. Further, the “droplets” of different
phases are distributed rather at random, because gyy, describing the situation when the
differentiation between both species is postponed, shows no structure for greater inter-
particle distances. This is a gas-like situation, however the existence of the (negative or
positive) correlations, when we look at the species, proves that we deal here with the lig-
uid phase.

5. Final remarks

The results presented in this work seem to be physically sensible in the respect that they
reproduce correctly the qualitative behaviour of a binary mixture, including the properties
of binary liquids. This fact seems to support the reliability of the OC approximation as
a relatively simple method of the description of condensed phases. All the physics of the
system is determined. in this approach by the assumed shapes of intermolecular potentials,
and by the values of the state parameters, 7T, v, x, only. Besides, the knowledge of the free
energy as the function of the state parameters permits us to calculate all other thermo-
dynamic functions, whereas the radial distribution functions give at the time an insight
into the microscopic structure of the system. The OC approximation — if assumed to
be reliable enough — opens thus the possibility of examining the relations between va-
rious properties of mixtures, including their microscopic structure, and the characteristics of
two-particle interactions, like the strength and range of repulsive and attractive forces,
molecular size, etc.
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The OC approximation is however able to provide the qualitative characteristics
only. Quantitative results might be obtained, for example, by means of the PY or HNC
methods: as we have mentioned, OC formulae may be considered as approximate solutions
of PY and HNC integral equations. Other generalizations of the OC approximation may
be also proposed — the simplest of these is perhaps the following one [11] (¢f. also
Refs [10]):

The quantity

W) = —kTIn g,(r)
is usually interpreted as the effective potential of interaction between pair of particles,

iand j, taking into account the influence of all other particles of the system. It seems thus
quite sensible to use the quantities #(r), calculated from Egs (7) (first OC approximation)

P*|
0.2}

1 1 1 i .

2 4 6 8 y*

Fig. 8. Comparison of the isotherms P*(V'*), at T* = 1.0, for one-component system, in the first (full
line) and second (dot-dashed line) OC approximations

*

in the place of V,(r) in Eqs (10), and compute from Eqs (1)~(9), the second OC approxima-
tion. This procedure may be repeated recursively until the convergence (if any) is obtained.
Such a recursive OC approximation seems to be somewhat simpler than the solution of
the sets of PY or HNC nonlinear integral equations. However, the computer (ODRA 1204)
being at our disposal is not able to carry out such calculations with sufficient accuracy,
mainly because of the principal part integrations involved here. The only result obtained
by us is shown in Fig. 8, where the lower-density part of the second OC approximation
of the isotherm P* vs V'* is compared with such an isotherm of the first OC approxi-
mation, for one-component system with a Lennard-Jones potential, Eq. (12). It is seen
that the second approximation shifts the gas-liquid transition towards lower densities
(greater ¥*). The third approximation seems to diminish this effect, but the results are far
too inaccurate to be shown here.
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