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One- and two-body distribution functions in the gas phase are obtained by the generali-
zation of the Kirkwood method in the presence of an external field due to a smoothed
solid surface. The numerical calculations of the density distribution function are performed
for the case when the particle-surface interaction is 2.5 times stronger than the particle-
-particle interaction. (This corresponds to the adsorption of methane on silicagel.) The
formation of the second adsorption layer is found.

1. Introduction

Among different theories of the physical adsorption [1], the so-called potential theory
is one which is free of various additional assumptions concerning mainly the structure
of the adsorbed phase. In this theory the substance (gas) is considered as being in the
presence of the force field due to the surface of the adsorbent, and the only assumptions
here are those about the shapes of potentials .of interaction between a pair of particles,
and between a particle and the adsorbent.

A theory of this type permits, among others, the ab initio calculations to be per-
formed of various distribution functions describing the structure of the adsorbate phase,
and may thus be considered as the initial stage of other theories, which require the know-
ledge of this structure. However, very little so far has been done in this field. Only two
methods of obtaining the distribution of particles in the gaseous adsorbate phase are actually
known in literature.

The first, proposed by Ono [2], is the McMillan-Mayer method [3] generalized to the
presence of an external solid field.

The second due to Kuni [4] consists in the expansion into the generalized Taylor
series of the Mayer-Ursell correlation functions, treated as functionals of the functions
Aexp {—v(2)[kT}; A is here the activity of the adsorbate phase, and »(z) is the external
solid surface field.
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Both Ono’s and Kuni’s methods are based on the assumption that the density change
near the solid surface has no influence on the density of the total gas phase. These methods
are thus unable to describe the adsorption system when the adsorbed phase volume is
comparable with the total gas phase volume, as is the case in the gas chromatography,
for example.

We are going to propose in this paper a somewhat different method of the calculation
of one- and two-body distribution functions, free of the above-mentioned assumptions,
and belng the extension of the general Kirkwood treatment of n-body ‘homogeneous
distribution functions [5].

2. Theoretical

Define the n-body symmetrical distribution function [5]:

Pg')(rls o) rn)s ’ (1)

(”)(rl, vy By) =

(N —n)!
where

jv jexp [Pn(ry, - "N)/("kT)]d"H} d")_v
jV Jexp [Dn(ry, ..o P)[(—KT)]dry ... dry
V and @ are respectively, the volume and the potential energy of the system composed

of N identical particles, r; being the position of the i-th particle.
Define later the n-body symmetrlcal correlation function g(") (ry, ..., #,) as:

(n)(rla QPO n) = @(1)(r1) 9(1)(rn) g(n)(rla n): (3)
and n-body asymmetrical distribution and correlation functions as follows:
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For our later purposes, the idea of the so-called ““potential of average force” Wg‘)(rl, cen 1)
will be necessary:
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From the above definitions we have the following relation between W ey, ..., r,) and
(n)(,, r):
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According to Kirkwood’s method [6], we consider the adsorption system with the total
potential energy @ expressed as follows:

N

? = Z U(l‘,)+ Z U(rp rk)f 6k (8)
i=1 1<j<k .
U(r;, r,) is the interaction energy between j-th and k-th molecule, whereas & are the so-
-called “coupling parameters”, their values being within the interval [0, 1]. &, can be regarded
as components of a some n-dimensional vector ¢&. ‘Following Kirkwood we differentiate
o8(ry, ..., r,) with respect to &,. After some rearrangements, quite identical to those
made by Kirkwood we obtain, setting &, = £, &, = ... =fy =1

(n) ) n_1
i W0 D _524 U(rs, )+
i=2
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4
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14 14
¢
- ‘(’;dﬁi!idrn+1U(r1! rn+1)91[\;‘](r1’ Y T é)‘ (9)
Following Ono [2] and Kuni [4], we shall now consider the simple case of the one-dimen-

sional surface field depending on the z-coordinate only. With this assumption o@(r,, ..., r,)
can be rewritten as follows:

(n)(rh seen rm 0) -JX exp [U(zl)/( kT)]Q(n 1)("2,5 ey n)r (10)

where

= ,i dr - exp [0(2)/(—kT)]. (11)

Consider now the expression:

WPy ooy by E— W (" T ) =

(")(1‘1, very Fys 5) 1 95\11) 1(r2) QN 1(",,)
=—kTIn -5 . 3] [ 6] oD ]’ (12)
QN 1 (r29 W00 n) Oon ("23 é) (VZa 6) (r,,,
and assume that:
1)
i) g N o, (13)

o (r, &)

because the local density o ,(r,) in the system composed of a great number of particles
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should belpractically unchariged by the addition of one molecule more. Thyus:
WOy, ooy 0 O—WE Dy, ..u 1) =

oP(ry, .ens 5w §) 9} 1
5‘?—11)("2: SELD! n) @(1)0'1, é)

‘When the average density of the system g— 0, the local density 9(1)(rk)—> 0 too, Then
from Eq. (9),

= —kTh (14)

(g, ney oy -
T YU e g U(r,, #;) for G — 0. (15)
i=2
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It follows from Eqs (10) and (14) that:

WIEJn)(rl’ eV 6) W(n-—_ll)(rZ’ Tty rn) -

" N eXP [v(z)/(—kT)]
- E U(ry, 1)—kThh = :
é i=2 (r ) (1)(7'1, 6) (16)

Thus in particular we have:

N exp [u(z))/(—kT)]

—kT In gP(ry, 1y, &) = EU(ry, r))—kT In 7= oDy, & , amn
19
—kT In gP(ry, v, 3, &) = EU(ry, 1)+ EU(ry, r3)+
+U(ry, 1) —kT In _z\_r_ =L [z)/(—kT)] (18)

oy, &)
This is the so-called “zeroth order approximation” for the correlation functions. This
approximation is to be used in the integrals of the right-hand side of Eq. (9). In particu-
lar for n = 2 we get:

v (1) )
—kT in gN py, 10,8 = kThn — — (1, €) +EU(ry, vy)—

LN exp [v(zl)/< kT)]

4
1 N _—
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o .V v

U(ry, 1) +£U(rs, ra)] (19)

+ de fdr3U(r1, r3)oy (rs, &) exp [ kT

0 14

We assume further, that in the right-hand side of Eq. (19) oP(r,, & does not depend
on & when integrating with respect to €. The above assumptions are consistent with the
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limit in Eq. (13). Integrating with respect to &, and putting & = 1 we get:

In o® ) = U(rl’ r2) e V*Q(l)(rl) .
TR =TT T Nexp e (- k1]
(1)
- jj £;/*(h) exp [0(z)/(—kT)] {e Xp I: U 2;2)] - 1} drydr,+
14 .
+ f g(ry) exp [U(rll,c;'s)] {exp [U(jlk;i)] _1} drs,. (20)

It is easy to check that for v(z) - 0, the above equation becomes the well-known equatlon
for the correlation function %(?)(r;, r,) in the free gas phase, equal to:

U(rla r2)
kT

+0 f{exp I:—— U(%'—‘Z)] — 1} {exp [—— K;;%—r?’—):l - 1} drs. @1y

Thus, if the density distribution function ¢(r,) were known, the function o', 1)
would be easily calculated from Eq. (3). The problem of the practical utility of Eq. 20)
will be discussed in the next Section of this work. Here we would like to call attention
to the lack of symmetry in the Eq. (20). *

This lack of symmetry is a kind of approxxmatlon which can be expressed as follows.
The deviation from the behaviour of a “quas1 ideal” adsorbate phase (i.e., the phase for
which U = 0 and v # 0), expressed by the ratio o{")(r)/e'"(r) (ol" belng the density
of the “quasi-ideal” phase), is the same throughout the adsorbate phase. It arises from the
fact that the parameter £, in differentiating Eq. (1) was chosen quite arbitrarily. Since
the parameter £, may be used as well, the simple symmetrization procedure seems to be
applicable :

08(2)("1> ry) = —

g3 ry, ry) = 3 [g®Xry, r2)+gP(rs, r)l; (22)

S¢@(ry, r,) is the fully symmetrical correlation function, and g? (r,,r,) is the function.
taken from (20) when the positions of the molecules 1 and 2 are exchanged.

3. Numerical results and discussion

It is seen from Eq. (20) that the knowledge of o'V () is necessary for the calculation
of g9 (r,, r,). The method of solution will be the method of successive approximations for
distribution and correlation functions. In the zeroth order approximation we assume
oW (1) in the right-hand side of Eq. (20) to be the density ot (1) of the “quasi-ideal”
adsorbate gas phase (i.e. the phase for which Ur;, r) = 0 and v = v(z,). '
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In this way we obtain the zeroth order approximation for g'? (v, r,), and the zeroth
order approximation for p2(ry, r,) (by using the zeroth order approximation for g (r, 1)
and for oW (r) in Eq. (3)).

Next, using the zeroth order approximation for 0@ (ry, ;) we calculate the first
order approximation for oW(r,) from the following obvious relation:

1
J—V——lf 0 (ry, vy)dr,. 23)
14

9(1)("1) =

We use in the right-hand side of Eq. (20) the first order approximation for o (¢,) to
calculate the first order approximation for gt (ry, ). The method for calculating higher
order approximations in now evident.

To illustrate the above method, the numerical evaluations of the first approximation
for oW () have been performed. Before presenting details of these calculations, we would

like to point out a certain property of Eq. (20).
It is evident that the form of Eq. (20) allows for taking into account the third order

interactions between adsorbate molecules and the solid surface in the form of Sinanoglu’s

term [7].
These third order interactions are interactions between two adsorbate molecules,

perturbed by the presence of solid surface. Our numerical calculations are of an illustrative
character, hence some simplifying assumptions concerning the interaction potentials
have been introduced. First we assume the interactions between the pairs of adsorbate
molecules to be unperturbed by the presence of solid, and to have the form of Lennard-

U =4 ( 511 - 5“ °
(r 7)) = aa[ Vi‘—rj) B ("i‘"’j) ] i

Further we consider the adsorption potential v(r;) as being of the form of Lennard-Jones
potential too, with suitably chosen parameters ¢, and 9,;

i 51) 12 51’ 6
-2 (3]

though in many cases of adsorption systems the [9-6] type potentials seem to be more
adequate [8-10].

Jones potentials:

We have chosen for our calculations the values %’ = 400°K and 2—” = 1000°K.
These values should describe for example the adsorption of methane by some kind of
silicagels. Later J, and &, were assumed to be equal, and have been chosen as a unit.

The calculations were performed using the ODRA-1204 computer for the surface phase
lying between the solid surface and the surface z = 4 (in our units). Since these calculations
are rather lengthy, the first order approximations have been computed only for o®W(r).
The results are shown in Fig. 1. The dashed line shows the density o(r,) of the “quasi-
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-ideal” gas phase (U = O,Z—" = 1000°K), as a function of the distance z from the surface.
&
The continuous line gives the density of the real adsorbate phase (E" = 400°K,

]:p . 1000°K). Higher order approximations were not computed. One sees at once that

there is a rather remarkable difference between the vadsorption of the “quasi-ideal” and
real gas phase.

First of all two peaks appear in the case of the real gas phase, which seems to cor-
respond to earlier assumptions [11] about the formation of the second adsorption layer
in the adsorbate phase.
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Fig. 1. The dashed line shows the density ggl)(rl) of the “quasi-ideal” gas phase [ U = 0, % = 1000°K> as

a function of the distance z from the surface. The continuous line gives the density of the real adsorbate
phase

Moreover, the maximum of the first peak in the case of the real phase is at the distance
z = 1.2, instead of z = 1.1 as is in the case of the “‘quasi-ideal” phase.

The greatest difference is between the net Gibbs® adsorption in these two cases. It
is seen that the net Gibbs’ adsorption decreases considerably for the real adsorbate
phase in comparison with that “quasi-ideal” one. This effect seems to be connected with
the repulsion in the adsorbate phase, and attraction with the free gas phase.

There exists no possibility of comparing our numerical results with experimental

data, since the problem of the experimental determination of o(}(r,) has not been solved so
far.
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