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The domain structure of ferromagnets is approximately determined by the authors on the
basis of physical and geometrical parameters of a sample, i. e. by assuming a suitable Hamil-
tonjan. The possible directions of magnetization appearing in the sample are calculated under
the assumption that the domain walls-have no thickness. The boundaries of domains are de-
termined by some equatwns dependmg on the demagnetizing factors. -Next it is stated that if
for the domams calculated in such a way the domainwalls have some thickness, then our method
leads to the well- known, standard variational procedure for calculating domain parameters.
The general method is 1llustrated by effectwe calculations given in some particular cases.

Introductwn

This paper is concerned with the problem of determmat;on of the domain structure
-in ferromagnets on the basis of physical parameters of a sample: the exchange integral,
the uniaxial and cubic anisotropy constants, and the geometrical dimensions of this sample
which, in particular, imply the demagnetizing factors. The domain structure is determined
by the direction of magnetization in each site-of the crystallographic lattice. This direction
can be derived by minimizing the free energy calculated within the class of eigenstates in
which the Hamiltonian is diagonal. Given physical parameters of the -sample, which have
been: mentioned above, we do not assume the geometric form of domains, but obtain it
.as a result of our considerations. For the sake of simplicity we confine ourselves to the case
.where the absolute temperature is zero, and the sample may be regarded as a thin film.
The first assumption implies that the free energy reduces to that part of the ,‘mternal energy
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which corresponds to the ground energy of ferromagnets without spin deviations. The
second assumption enables us to treat the problem in two dimensions since the distribution
of magnetization across the film may be regarded as homogeneous.

1. The Hamiltonian of a sample

Let x;, %y, %3 denote the rectangular coordinates of a point x. Consider a sample as
a film being a superposition of n monoatomic layers labelled by » = x;/a, where a can be
expressed effectively by the lattice constant. Throughout the paper we confine ourselves
to films so thin that the domain structure across the thickness is homogeneous. The position
of an atom in the plane of a layer x; = va is given by z = x,+ix,, where i is the imaginary
unit; 2¥ = x;—ix,. The easy axis of magnetization is supposed to be directed along Re z = 0.

Suppose that properties of the sample in question are described by the Hamiltonian

H=H-+H,+H, M

where H,, H,, and H; denote the isotropic Heisenberg exchange term, the anisotropic
uniaxial, unidirectional and cubic terms, and the demagnetizing term, respectively. The
Hamiltonian is composed from terms used in various approaches to the problem (¢f. e.g-
[4, 6, 7]). More exactly,

He = —nl Z Z S].sfl‘s}'paw

<j’j1,> @

H, = —n 3} (K, Shs+ K St K,SS;0+KoS2 T S5,
j . o

Hd et L JZ “Z ]w;',zsiz,w'

Here I is the exchange integral, K, K”, K,, and K, denote the anisotropy constants:
-uniaxial perpendicular to the sample, uniaxial parallel with the sample, unidirectional, and

cubic, respectively. Further, M;  is the classical demagnetizing factor corresponding to

fl-4

the ¢-component at the atom z;, S is the value of spin, and Sj,a resp. Sj,.z denote the &-compo-
nents of the spin operator at z; resp. z; . Here z; is situated in the plane of any fixed layer,
while z; is situated in the plane of the layer %3 = va.

From the quantum mechanical point of view the demagnetizing field is connected with
the magnetic dipolar interactions of long range. However, this leads to repeated summation
over all the sites of the sample in the term H, Thus, since the remaining terms of H are
given in the nearest neighbours approximation, we replace the long range interactions by the
effective demagnetizing field at the site considered. This demagnetizing field is supposed
to be proportional to magnetization with a factor of proportionality which can be inter-
preted as the demagnetizing factor. The energy of demagnetizing field, introduced in such
a way, was discussed in [4']} This approximation is not essential for the method presented
by .the authors, its aim being to simplify further calculations.

The Hamiltonian (1) is written in a coordinate system, in which the easy axis of magneti-
zation is supposed to be directed along Re z = 0. In order to find the eigenvalues of (1),
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for each z; resp. z; we transform the spin operators into some local rectangular coordinate
1 4
system (x,) such that the magnetization of z; resp. z; is directed along Rez’ = 0. This

transformation, usually applied in the theory of screw structures (¢f. e.g. [5]), gives at the
absolute temperature zero the following results:

S}',a = Syf,a resp. Sj,,,a = Syj,,,z’ (2)
where y;, resp. y; , denote the direction cosines of x, corresponding to z; Tesp.
) 4

corresponding to z; with respect to the coordinate system (x,). Formulae (2) may be

checked by the standard procedure for small number of excited magnons after letting the
number of magnons to decrease to zero since this corresponds to the state of the sample
at the absolute temperature zero.

By (2), the energy E of the system of spins, being equal to the energy of its ground
eigenstate, is given by the formula

E = —n8? ; [K _Lyj2,3+KHyj?,2+KTyj,2+

+ E (Koy},a_l_]u},uy_?,a—l_l <_Z> yj,ayj,,,u) ]' (3)
3 . Jy

Now, in order to find the distribution of magnetization within the sample, we have to mini-
mize E with respect to direction cosines.

2. Main steps of the method

Let us suppose that the sample in question satisfies the hypotheses of Section 1. Our
method consists of three steps:

(?) We determine approximatively the possible directions of magnetization within the
sample.

(if) We determine the possible boundaries of domains. The domains are defined as
sets of neighbouring sites, where the magnetization is nearly constant. The magnetization
vectors are found in Step (i). Therefore we discuss the possible domain structures within
the sample.

(1) We determine more exactly the possible directions of magnetization in the neigh-
bourhood of the domain boundaries, i.e. we determine the domain walls.

3. The first approximation

In Step (¢) we consider regions with homogeneous magnetization, which may be inter-
preted as magnetic domains. In the first approximation we assume that the domain walls
have no thickness, the magnetization changing by jumps over the boundaries of regions
in question. This assumption allows us to consider the neighbouring atoms as having the
same directions of spin. An error appears only for atoms lying in a nearest neighbourhood
of the boundaries, and is connected with the ratio of area of walls and domains. This error
is rather small and will be eliminated in the second approximation.
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meg to the ﬁrst approxunatlon the formula 3y becomes

E*—nSZ\ff [K_L73+K||7/2‘}‘K172 + Z (KOVu g 5IV¢)]CZ0'9 Canet (4")..
where D denotes the section of the sample by the z- plane, do‘ — the area element, 3 — the
number of nearest neighbours ‘of an atom in thé film, while M, and y,— step functions
of z-and z* correspondmg to M ‘and y;,, respectively, z; ranging over all atoms in"the’

zplane Slnce yh=1—9y3—93, formula (4) yields

E——n$t [[ Bdo, )
' D

Wherer,.: 2 - N
E=s,+K, 72+(Re 8—2K0)71+(Im S—2Ko)yz+21< i+t e,
so =3I+ Myt KoK 1 5 = My— My K +i(My= “My+K,—K,).

U} For better illustration‘of our method we;,conﬁne' ourselves in this section to the case
where K, = 0 and K, = 0. A more general discussion will ‘appear in the two forthcoming
sections. :

Under the above hypotheses’

E = sy+(Re s)yi-+(Im s}y

Now we have the following possibilitie’s\‘
(A) yi is arbitrary such that. 71+'}’2 # 1 for.Re s =0, while y; =0 for Res # 0;
yy is arbitrary (such that y3+y3 # 1) for Im s = 0, while- yg =0 for Ims # 0; E_,. = so.
- (B) w2-F93; v, is arbittary such that y, # 1,—1for Re s = Im s, while y, =0 for Re s +
#Ims; E —so—!—Res .

max
(©) 11=0; yp= 1 and —1; E’mx = s;—l—Im s.

An easy calculation gives the result that the reglons in the s-plane, Corre%pondmg to
the cases (A), (B) and (C) are determined by the inequalities — L —arg (—s) <—
tn <arg's <l and to << arg s < , respectlvely, _where we include the point s = 0
to each of the above ‘regions.
Our discussion implies that the only possible directions of magnetization within
4 magnelic domain in the case in question are:
(a) perpendicular to the easy axis of magnetlzatlon in the direction parallel or anti-
parallel with the normal to the section of the sample by the z- plane, '
‘(b) perpendicular to the same axis in the direction parallel or antiparallel with the
section of the sample by the z-plane, '
(c) parallel or antiparallel with the same axis.
The other directions of magnetization obtained above correspond to boundaries of the
magnetic domains and this shows the self-consistency of our assumption that the magneti~
zation changes by jumps over the boundaries of regions in question.
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S lems 'wzthout cubzc a,msotropy

* Now we cons1der the more general case where the, cublc anlsotropy constant Ko vamshes ‘
and no restrictions for the unldlrectlonal anlsotropy constant K, are made Then the energy
E of the system of ¢ spms is glven by formula ®)s wherc

E= 50+K1 Vz‘l'(Re s)yﬁ—(Im S)ng
so = §I+Mz+K, s = M~ M;—K | +i(M;—M;+K—K ).

We shall consider, separately, two cases: tK . >0 and K, < 0.
" "In"the case where K, >0 we have the followmg poss1b111tles

1.1. y, is arbitrary such that yi+92 # 1 for Re s = 0, while y, =0 for Res # 03
Vg is arbitrary (such that yi+y3 # 1) for Im s=0and K, =0, while y, = —4K, Ims#1,
~1 for Im s#0 or 'K, #0; E, = Ey = —K /Ims This pos51b1hty may hold
in the case where [Ims| > 1K L only. If K, ;éOthls restriction may be replaced by |Im s| >3K

1.2. Y2 4yi=1; y, is arbltrary such that vy # L, —1 for Re s =Im s and K,
while y, = 3K, [(Re s—Im s) 1, —1 for Re s % Ims or K, #0; Epp= 12_30_-]—::
+ Re s++K3/(Res—Ims). This possibility may hold in the case where |Re s—Ims| >
> 1K, only If K, # 0 this restriction may be replaced by [Re s—Im s| > iK,.

13, yy=0; 72—1and —1 for K, =0, while y, =1 for K, # 0;" Foa =E13£
= so—l—Im s—I—K :

s-plane

En

| e ot o e v e e e e

I
a
]

———— e

Fig. 1

An easy calculation gives the result that the regions in the s-plane, corresponding to
the cases B, = Ey, p=1, 2, 3,are ‘such as shown in Flg 1, Where 31 = —}K,iand
s = 3K, (2+10). .

In the case where K, <0 we have the following possibilities:

2.1, y; is arbltrary such that y1+y2 # 1 for Re s =0, while y, = 0 for Re's 7& 0;
Yo = —3K,/Im s #1, -1, Egox = By = sy—31K%[Ims. This possibility may hold in
the case where |[Ims| > —4K, only. ca R
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22. Yi+9i=1; y=3K,/Res—1Ims) # 1, —1; E,, = Ep =s,+ Res+ K2/
[(Re s—Im s). This possibility may hold in the case where Res —Ims| > — 4 K, only.

23. =05 yg=—1; E o = Eyg=s¢o+Ims—K,.

Obviously the analogue of Fig. 1 is obtainable by formal replacing of 1K ywith—4K,
in the formulae for s, and s,, and of 14 with 28 in E;, f=1,2,3.

5. Films without the unidirectional anisotropy

Finally, we consider the case where the unidirectional anisotropy constant K, vanishes
and no restrictions for the cubic anisotropy constant K, are made. Then the energy E of
the system of spins is given by formula (5), where

E= so+(Re s—2K)y;+(Im S_ZKO):};2+2KO()—}%+ 7717_/2"1‘3—’;),
sg=3l+M;+Ky+K,, s= M,—M,—K | +i(M,—M,+K—K ),
"= ?7:1 7_’2 . ?_’g
Let
Ky = 1/24K,,.

We shall consider, separately, two cases: Ky >0 and K, <0. The case Ky=0 has
been discussed in Section 4.

8 S-ptane

Eys

Fig. 2

In the case where Ky >0 we have the following possibilities:

LL =0, y,=0, Emax = Ligg = So-

12, yy =1, ¥,=0, Ep e = Ejp=35+Res.

13. 3, =0, y,=1, E,. = Ej3=s,+Ims.

The regions in the s-plane, corresponding to the cases —Emax= Eyg =1,2,3,
are shown in Fig. 2, where s; = 2K(1+10).



17

In the case where K, < 0 we have the following possibilities:

291‘ ;1 = 0’ 3—}2 = O’ Emax s E21 = So-

22 y1=1, ,=0, Ep,, = Epy=s,+Res.

23. 71 =0, Yp=1, Epp. = Eys = s+ Ims.

2.4. y; =% —6K, (Re s—Im s) # 0, 7, = } -6K; (Re s—Im s) # 0, Bogr = By =
=s5— 4 Ko+ 3 Re s+Im s)—3K, (Re s—Im )2 This possibility may hold in the case
where |Re s—Im s| << —2K,, only.

25. 9, =0, py=134—6K,Ims #0,1, E . = Ep=s,—3K,(Im s—2K,)2. This
possibility may hold in the case where [Im s| < —2K; only.

26. py=3—6K,Res #0,1, y,=0, E,, = Ep;=5,—3K,(Re s—2K)% This
possibility may hold in the case where |Res| << —2K; only.

277 = §—4K, 2Res—Im s) # 0,7y, = L+4K, (Re s—2Tm s) + 0, y+9, # 1,
By = By =s5—4K, [Re s—2K)?°—Re s—2K)(Im s—2K)+(Im s—2Ky)?]. This
possibility may only hold in the case where s lies in the interior of the triangle with vertices
at 2Ky(1+i), —2K, and 2Ki.

[
} s-plane 5
|
E
Ep i
]
|
1
%
S5 Sy
l
_________ Fos ______[L_E
i
— sf |
2 7 )
| Fz
|
E;
{162
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21 } Ss
1
I
SsT :
1
Fig. 3

It is not difficult to verify that the regions in the s-plane, corresponding to the cases
Eogy= Eop, =1, ..., 7, are such as shown in Fig. 3, where
sy = —2K(3+4i), s, = 2K(4+1i), s3 = —2K(1—3i),
5y = —2Ky(4+4-30), s5=2K((3—1), s = 2K(1+4i),
8y = 2Ky(147), sg = —2K,, sy =2K,i.
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6. An example: influence of an applied magnetic field

To the best of our knowledge, in papers treating the domain structure of ferromagnets
the possible directions of magnetization were preassigned (cf. e.g. [4]). Our method gives
approximate but effective results concerning the problem in question, predicting not only
the simple possibilities discussed in Section 3 (cases (a)—(c)), but also more complicated
situations which may be observed in case of various impurities.

It is worthi-while to notice that our method enables us to discuss the influence of an
applied magnetic field. For instance, taking into account the results of Section 4 with K,
replaced by some magnetic field K, K > 0, applied along the easy axis of magnetization,
we see that in the case where K| is sufficiently large (namely for K, > max (M;, — M,
My— M,+K ), the vector of magnetization is parallel with the easy axis of magnetization,
and the magnetic field K does not change the direction of magnetization.

Similarly, in the case where —K | is sufficiently large (namely for K | < max (M;—M,,
M,—M;3+Ky)), the vector of magnetization is perpendicular to the easy axis in the direction
parallel with the z-plane, and the magnetic field K turns the vector of magnetization over
a normal to the z-plane to the direction of the easy axis, as shown on the following scheme:
the vector of magnetization lies in the z-plane and y,=1% Kj(M,—M,—K,) for
K < 2(M;—M,—K,), while y, =1 for K > 2(M,—M,—K).

The last case corresponds to the homogeneous magnetization stimulated by an external
field. Here the vector of magnetization lies in a plane perpendicular to the z-plane. This
vector is not parallel with the z-plane provided the perpendicular anisotropy constant K
is sufficiently large (namely for K| > max (M;— M, My— M3+ K+ § K)). Applying some
sufficiently strong field K (namely K > 2(M,—M,—K}+K)) we obtain the situation
where the vector of magnetization is parallel with the z-plane. If, in addition
K > 2(M;—M,—K\), this vector is directed along the easy axis of magnetization.

7. Configurations of domains within the sample

In Section 3 we have given an effective method of an approximate determination of
the possible directions of magnetization. If L(s, s*, s, 83‘) =0 is the equation of a line
separating some regions of these directions in the s-plane, then

L(s(z, z%), s¥(z, 2%), solz, 2%), 's:,k(z, 2y =0 6)

is the equation of the corresponding line in the z-plane, i.e. the plane of a layer in the sample.
Curves of the form z* = f(z), determined as solutions of Eq. (6), represent boundaries of
magnetic-domains effectively. In this way one can characterize theoretically various configura-
tions of domains that may be observed in experiments.

Eq. (6) depends on the demagnetizing factors which themselves are functions of z
and z*. The shape of these functions is connected with the distribution of magnetization, 7.e.
with the boundaries of domains, given by Eq. (6). The relation between the demagnetizing
factors and the distribution of magnetization may be found e.g. in {2]. In this way Eq. (6)
is a self-consistent equation for determining the curves z* = f{(z).
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In order to illustrate Step (ii) we present Eqs (6) in their explicit form in the case
where K, = 0 and K, = 0; this corresponds to the example discussed in Section 3. Denote
by (ab) the situation where the lines in question separate the regions corresponding to (a)
and (b). Further let (bc) and (ca) have the analogous meaning. Then, by (A)—(C), we have

M (z; 2%)—Mylz, 2*) = K|, (ab)
My(z, 2%)— M,y (z, 2*) = — K, (be)
My(z, 2%)— My(z, 2*) = K —K . (ca)

Given some concrete values of the parameters appearing in the Hamiltonian (1), Eqs
(ab), (bc), and (ca) can be solved effectively with the help of standard numerical computations.
For better clarity this is illustrated in the forthcoming section by a simple example.

8. An example: influence of the uniaxial anisotropy on the shape of the closure domains

Consider a square thin film with the dimensions D, D, and na, where D ~ 1.5 - 10~2 cm
and na ~ 10-% cm, characterized by the Hamiltonian (1) with

Ha = —n Z K||'S'12,2'
J

Here K| is the parameter of the problem in question, I ~ 10~ erg, gu%/v, ~ 103 erg/cm?,
where g is the gyromagnetic factor, pip is the Bohr magneton, and v, is the volume of an
elementary cell. In this case, according to Sections 3 and 4, the only possible directions
of magnetization within a magnetic domain are:

(b) perpendicular to the easy axis of magnetization in the direction parallel or anti-
parallel with the section of the sample by a plane parallel to the surface (e.g. the z-plane),

(c) parallel or antiparallel with the same axis. ‘

According to Section 4 the lines that separate the regions corresponding to (b) and (c)
satisfy Eq. (bc).

Since the numerical calculations in this case are rather complicated, we take into account
the empirical fact that the shape of domain structure is such as shown in Fig. 4, where K,
on €y, Gy, G, and €y is a function of b. Under this hypothesis we will calculate this K,
and show that Eq. (bc) is self-consistent.

By [2], pp. 56-59, the demagnetizing factors M,, M,, and Mj at the poini z of the
layer x; = va are given by the formulae

th na
Re(zi—2)y(z, 28) | d
o | [ e |0
! Ck'f J  (m—z2+{t—val?®: | dt 2| drds,
K o
tf; na
Im (z2e—2)Ny(2, 2£) | d
(k) — i 2 d
M2 * f _/‘(lzk—z|2—}—]-,;_,,042)3/ﬁ i 3y dtdi,
113 0 )

MP & 0.
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Here z = z,(t), t, <t < t,'e,‘ k=1,2,3,4, are the boundary curves corresponding to the
four magnetic domains shown in Fig. 4, and n(z, z;), @ = 1, 2, 3, are the rectangular
coordinates of the versor normal to z = 2,(t), £, <t < t, at z;,. The parametric equations

Cz?l ]Co 4*2:7 |

|
i
|
|
t
|
|
|
|
@ G j
‘}(b) 1bD i 4 }
1 $ I met.3=0
ff {
Ca ‘

Fig. 4

of the curves in question are chosen so that these curves are oriented positively with respect
to the corresponding domains. The constants ¢, are determined by the conditions

M+ MP+ M = gup/v,.

After an easy calculation we get

%
— d
Ml(k) = J’ Mz Re (zk—z) Im —d—tzkdt
%

and

tf
= d
M® = c f MIm (z:—2) Re "d—t"zkdtv

where

M, = algy—al2D(5—a*-1%0%) =) (5= =+ (—19a) 7 ~

~ nals—at2(m 7%+  n%a?)"
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Let now

| (w2422 +n%a?) % —na l
\ (wB+v2+n2a?)%+na

I{u,v) =

, na v
J(u, v) = 2 arctan (7,,— ' Wm) .

By the symmetry with respect to the axes Im z = 0 and Re 2 = 0, we may, without any
loss of generality, confine ourselves to the case where z is situated on Cj. Hence, for
z = x+iy of C;, we get :

MO = ¢, {J(D'—2x, D—2y)+J(D—2x, D+2y)—J(—2x, D—bD—2y) —

—J(—2x, D—bD+2y) — I(D—2x, D+2y)+I(D—2x, D—2y) —

b
1452 [

B2 D+2y—b(D-+2
—I(—2x, D—bD+2y)—I(—2x, D—bD=2)| + 1775 v [J(—ﬁ?({ +b§)y2+ x),

p—_zxgr_b(D_Jrzy)_) B J(D——bD—l—2y+2bx —2x+b(D—bD+2_y))]}

R (REE LR (RO
Mél) . 01{- _sz [[(D—2x, D+2y)+I(D—2x, D—2y)—I(—2x, D—bD+2y) —
= Cn o L D+2y—b(D—2x) D— 22+ b(D +2y)
I(—2x, D—bD—2y)] e [.f( (T£b2)% ) (1—{—62)’/2 _
_ ( D—bD+2y+-2bw —2x+b(D—bD+2y)\ |
(1-+0%% ’ (1+62)% ’

, ;
M@ = c, {m [({(D—2%, D—2y)~I(D+2x, D—2y)—I(—2x, D—bD—2y) —

—I(2x, D—bD—2y)]— [J (9"2y — oD +2) D“’Lb@—zy)) _

1+b2 1+03% (1Y%
B J< D—bD—2y—2bx 2x--b(D—bD—2y)
(1+69)% (1+69)% ;

M) = c {—J(Dny, D+22)—J(D—2y, D—2x) + 1{—55 [H(D—2x, D—2y) +

—|—I(D'+2x,'D—2y)—I(—2x, D—bD—2y)—I(2x, D—bD—2y)] +

Lo [J(D 2y—b(D+2x) D~+2x+b(D—2y)
152 A+2)% 0 (1%

_J<_D bD—2y—2bx  2x+b(D—bD— 2y))”

A+69% 0 (Q+Ey%




MO = c, {J(D+2x, D+29)+J(D+2x, D—2y)+J(—2x, D—bD—2y) +

' b
+J(—23, D—bD~+29)— 53 [H(D-+22, D—29)+[(D++2x, D-+2y) -

b2 [ J( D—2y—b(D+2x)
1+52 (1+80)%

D+2x+b(D—2y)) (P2 —b(D+2%) _2—{—_2x+_b(D—|—2y))
N DY .

—I(2%, D—bD—2y)—I(2x, D—bD-+2y)]+

A% (1+6%
7 D—bD—2y—2bx) x+b(D—0D—2y)\
7% 7 (16%
_j(D=bD+2y—2bx x+b(D—bD-+2) ]}
(14+-02)% ’ (14-62)% i
M® =, {_ _1% [[(D-+2%, D—2y)+I(D+2x, D4-2y)—I(2%, D—bD—2y) —

1 -[J(D——Zy—b(DJer) D+2x+b(D—2y)) i

— (2%, D—bD+2y)]—

1452 A+o3)% (1Y%
Ly D+ —bD+22) D+24+b(D=2)) _ ; (D_—bD—Zy—_.‘Zb_x
A+e)%  ° (1+0)% (+e3)%
25--b(D—bD—2) \ ]<_D—"bD+2y—2@_ 254 b(D—bD—+2y) ]}
(1+b2)% A+o2)% (1+52)% ’

M® =, {ﬁ [I(D+2%, D+2y)+[(D—2x, D+2y)—I(2x, D—bD--2y) —

—[(—2x, D—bD+2y)]— [J (D 12y =b(bt24) D +2”+b—(D—+2y)> +

142 A+on% 0 (1+bd)%
N J(D+2y—.b(D_—_2£) D—2+b(D+2)\ _ ( D—bD-+2y—2bx
Vo AEeE T (e A+e3% 7

2x+b(D—bD+2y) | 7 ( D—bD+2y+2bx —2x+b(D—bD+2y))]>
(1+6%)% (1+63)%  ° (1+03)% ’

b

+-I(D— 24, D+2y)—I(2%, D—bD+2y)—I(—2x, D—bD+2y)]+

1 [](D+2y—b(D_+2x) D25 +b(D+2y) +J(D+2y—b(D~—_2_x_)
1152 1+63% (1Y%

[(D-+2x, D+2y) +

+ (1169%

D—2x+b(D+2y)\ _ ( D—bD~+2y—2bx 2x—|—b(D—bD—|—2y)) B
a+e9% | o9k 0 (1+6yR

J(D=bD+2y+2b —25H(D—bD+2) ]}
TITaEmE T Ay '
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Analogously, for 2 of the domain bounded by the curve Cy+Cy—C—Cy we get

b2 D—2y—b(D—2
hmM(1>=(hmcl){ MO+ 1152 [J( (iv+b2()% x)’

D—2x-+b(D— 2y)) J_(D bD—2y+2bx —2x+b(D—bD— 2y))]}_
(b))% A+e3% 0 (1494

1 27b
— (hm Cl){ + 1+b2}

P

and

27
1) — 1)
llinzM glhn: ) { M2 1—{—b2'}’

while for 2z’ of the domain bounded by the curve C;+Cy,—C, we get

2mb?
M = (im CZ){ MP+ 1+b2}

and

27
:1_.sz(2) — (211_13;02){ M(Z)__ 1—1—62}'

Here we recall that, since z belongs to C;, we have
y = bx+ % (1—b)D. )

Next, since we evaluate K| | for z of C; which, in fact, is a domain wall, in order to get the
more appropriate value we have to take the average value of the demagnetizing factors for
which C; is a line of discontinuity:

@ [ MBP)  MPE) / ! 1 }
Maav(z),—l}rjlz {[ ck(z) + ch(z,) ] [ck(z) + ck(z,)] )

where ¢ = 1,2; k=1, 2, and 2’ tends to z within the domain bounded by the curve

Ct+Cy—C—Cy for k=1
and
Ci+GC—Cy, for k=2

Finally we can check by direct calculation that the contribution of M®, M, M®,
and M to the K, evaluated at some z of Cj, is very small. Consequently,

O V2 O N 7y ¢ guk Asb—Byb? Py By+4,b J
Ky~ Miay— Moy = v [32—-c:2+2ﬂtzb—(Bz+cz)132 B,— Cy+24,6—(By+ )b |’
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where
Ay = I(D—2x, D—2y)+-I(D—2x, D+2y) —
—I(—24x, D—bD—2y)—I(—2x, D—bD+2y),
Ay = [(D—2%, D—2y)+I(D+2x, D—2y) —
—I(—2x, D—bD—2y)—I(2%, D—bD—2y),
D-+2y—b(D—21) D——2x+b(D—]—2_y2)_
+69% T (1roy%

_j{D=tD+2y+2bx —25+b(D—bD+2)
A+69% (1+0%)% g

B, = rc—{—.]'(

B——at J(D—‘zy—b(p+2x) £+2x—f—b(D—2y)> B

mz)yz ’ (1 . b2)‘/_z_
_s ( D—bD—2y—2bx  2x+b(D—bD—2y) )

\ s adeE )
€, = J(D—2%, D—2y)+J(D—2x, D+2y)—
—~J(—2%, D—bD—2y)— J(—2x, D—bD--2y),
Cy = J(D—2y, D—2x)+-J(D—2y, D+24),

where y is given by (7). In particular,

Ky =0 for b =1, z arbitrary on C,

2 2
_ges, __at+J@D.D) 1yz=gnh mD .o 10 s
K= v T, 2D)—J@D, D)~ 3 1/5— 5. lio a2 3.51 - 108 erg/cm

for b =0, z=1%D and z = }(1+i)D.

The above results show that the structure consisting of four isosceles triangles with
the vertices at the centre of the sample corresponds to K| = 0. The growth of K|, causes
that the closure domains appear in the direction of the easy axis of magnetization, decrease
and, finally, vanish for some critical value of K”, in our case for K ~ 3.51 - 10 erg[cm?,
Further growth of K|, corresponds to the stripe domain structure. In this way the above
discussed simple example points out the well-known experimental facts, qualitative and
quantitative as well. For instance, in the case where K, =4.75 - 10% erg/cm?® or K =
= 5.28 + 108 ergfem® and the physical parameters of the sample were of the same order as
in our calculations, the stripe domain structure has been observed in [1].

‘9. The second approximation

Considerations concerned with the first approximation allowed us to find the magnetic
domains with boundaries having no thickness. This fact was connected with the assumption
for spins in their nearest neighbourhood to have the same directions. Now, in the second
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approximation, we also take into account a change of spin directions in a neighbourhood G
of any boundary curve C of a domain, determined above in the form z* = f(2). The boundary
curves of C may be expressed in the form

#* = fla)—&(2), &% = f(2)+ex(2)- @)

From the physical point of view the strip bounded by the curves (8) corresponds to a domain
wall. In particular, if the curves (8) are parallel with C and equidistant from C, then the seg-
ment of the normal to C at any point z, with end points on (8), may be interpreted as the
thickness of the domain wall in question.

In this way the problem is reduced to a form that can be investigated with the help
of a usual procedure based on the variational principle (cf. e.g. [6] and [4]), and determining
the parameters of the preassigned structure only. In our method this structure was determined
in the first approximation.

The authors are indebted to Professor-S. Szczeniowski for his interest in this paper
and to Professor A. Sukiennicki for helpful discussions.
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