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The angular dependence of resonance field for a system described by a monoclinic spin
Hamiltonian with S= 1 is calculated in the second order of perturbation procedures for strong
and weak magnetic fields. The low symmeiry effects are found to consist in:

departure from 90°-distance between the angles of extremal resonance field values in the
plane perpendicular to the two-fold symmetry axis,

angular asymmeiry. according to the directions of the above extremal values,

non-coincidence of extremal field directions for different transitions,

occurence of more than two extrema within a 180°-period,

deviations from 180° symmetry of the spectrum.

The secular equation is solved for approximate directions of extremal field.

The impossibility of a description, in terms of monoclinic spin Hamiltonian with S=1,
of the lines originated by copper complexes in TGFB: Cu** follows; this suggests that these
lines have to be assigned to complexes consisting of more than two ions.

The strictly mathematical theory of spin Hamiltonian, and its derivation for the case under

investigation, is given in Appendix.

1. Introduction

The angular dependence of resonance field in electron paramagnetic resonance ex-
hibits certain low symmetry effects, such as non-coincidence of the axes of extremal resonance
field values for various transitions and angular asymmetry with regard to these axes, which
do not occur in the well known cases of axial and rhombic symmetry {1], |[2]. Our aim is
to provide a theoretical explanation, on the basis of an effective monoclinic spin Hamiltonian,
of the possibility of these and simmilar effects for the case of S == 1.

The problem is connected with the question of the occurrence of more than two distinct
resonance field extrema within a 180° angular period in systems described by such a Hamil-
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tonian. The presence of more than two such exirema was clearly observed for TGFB:Cu?+
by Stankowski [3] and the possibility of a description in terms of the discussed Hamiltonian
would allow to assign the observed lines to the three energy levels of exchange-coupled
pairs of copper ions (each single ion spin equal to 1/2). The monoclinic or even lover sym-
metry of these pairwise systems follows from the one-ion EPR spectrum and from structural
investigations [4].

2. Spin Hamiltonian

Group-theoretical considerations similar to those of Grant and Strandberg [5] and Hauser
[6] (expounded in a mathematically strict formulaiion in Appendix) admit of the following
form of spin Hamiltonian for the three states, well separated energetically from others, of
the quantum-mechanical system in a monoclinic electrostatic field and uniform magnetic

field H:
A = D'Si+ E'(SE—SD)+F'(S:S,+5,5:) +

+ MB[glch;S;’l" (g;EHg“}‘g:,qu)Sg‘{“(g;nH5+g;an)Sn]- &

The {-direction is taken along the symmetry axis (the line of two-fold symmetry, or the line
perpendicular to the mirror plane); the mutually perpendicular & and # axes (perpendicular
to {) are taken arbitrarily. The g-tensor need not be symmetrical ; however, its skew-symmet-
rical part is presumably very small (in the one-ion model of Abragam and Pryce [7] itis
exactly equal to zero; for the two-ion model, when the Dazyaloshinsky-Moriya interactions
exist, it is of the order of one per cent [8]), and so we will neglect it.

Henceforth, since the -symmetry group defines no particular axes in the &#-plane,
we introduce a new coordinate system xyz, coinciding with the principal axes of the approxi-
mately symmetrical g-tensor (z-axis the same as the {-axis). The thus approximated Hamil-
tonian (1), in the new coordinate system, takes the form:

# = DS+ E(S:—S)+F(S,S,+5,5.)+
+/’LB(ngxSx+ngySy+ngzSz)' (2)

Let us observe that, because of symmetry non-equivalence of the z-axis and the x- and
y-axes, we can make no a priori assumptions about the constants D and F (such as the rela-
tion D > 3F for the thombic case, where all the three mutually perpendicular axes are of
two-fold symmetry and that of maximal anisotropy of the EPR spectrum can be chosen as
z-axis).

The occurrence of the F-term entails a rotation of the system of principal axes of the
“crystal field tensor” by an angle @ (tg 2« = FJE) about the z-axis as compared to those of
the g-tensor. In the case of a single ion with no orbitally degenerate crystal ground term,
this difference in orientation of the two systems is due to spin-spin coupling (Abragam and
Pryce [7], Roytsin [9]). For the case of S = 1, as far as we know, no such differences have
been observed, maybe because of the smallness of the effect (monoclinic local symmetry is
usually related with far distant coordination zones of surrounding ions). For the case of
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pairs of ions (coupled to one another against the background of surrounding diamagnetic
ions constituting a monoclinic crystal field), yet another mechanism connected with different
possible orientations of the interaction axis with regard to the axes of the one-ion g-tensor
and those of the crystal field tensor (Kurzyniski [8]) permits the prediction of a large F-term,
in contradistinction to the one-ion case.

Since the analytical Cardano solutions of the secular equation for the Hamiltonian (2)
are quite useless for their complexity, we will discuss the problem, without numerical
methods, in the two opposite approximations of a strong and weak magnetic field.

3. Strong magnetic field

The idea we shall apply was given, in another mathematical language, by Sachs [10].
For further calculations, it is convenient to express the crystal field part of the Hamiltonian
(2) in terms of irreducible spherical tensor operators P!(S) (see Appendix):
Ho + 3DPY(S) — |3 DPG(S)—
— E(PY(S)+P_3(S)) +iF(P3(S)—P_x(S))- G
The reduced matrix element of operators P%(S), in the basis of eigenstates of the ope-
rator S, is:

CLIPAS)ILy = — }/5. 4)

For a strong magnetic field, the quantization axis lies approximately in the direction
of the magnetic moment which, because of the anisotropy of the g-factor, can differ from the
direction of the external magnetic field. Taking:

g.H, = g H sin & cos ¢y =: gH sin 9 cos ¢,
g, H, = g, H sin 9, sin ¢y =: gH sin § sin ¢,
8. H, = g,H cos 0y =: gH cos ¥, ()

where 9, @, define the direction of the magnetic field and &, g that of the magnetic moment
referred to the principal axes x,y, z of the g-tensor (¢f. Fig. 1), and:

g% = g¥®, ¢) = g2 sin? G cos? py+ g5 sin? & sin? @o-+g2 cos? By,

8=z

cos O = == cos B,
e =1gq, (6)
8x
we write the Zeemann part of the Hamiltonian (2) as:
Hmg = 18HS,, @)
where
S, =S, sin & cos p+38, sin & sin g+, cos I 8)

is the spin operator component along the magnetic moment direction, chosen as z'-axis.
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We now proceed to express the irreducible spherical tensor operators in the new co-
ordinate system in accordance with the defining formula:

Py(S) = Z DE099Y) Pl ©)

m=—2

Az (3
axis of symmetry ——— g‘ﬁ' ‘ H

direction of maynetic
moment (Z-axis) ——f——

direction of magnetic
freld ————— I~ %
5 o

P = L_T,T—V
=1 J |
."; [ o 5,
A T :pl//

\\‘_ e J o

S—prineipzl axis
of crystal field tensor

S prinelpal axis of g-tensor
Fig. 1

where
DO{09g)),, = d2) (H)e™ (10)

({09¢} denotes the Euler angles of rotation of the coordinate system); whence the whole
Hamiltonian (2) in the new coordinate system s’ 5’2" attached to the magnetic moment is:

2
H = upsHS,+3DPY(S") — _22 [/ DAZA(8) -+

A (E—iF)ed0) +(E+iF)e7d® (9)|PL(S"). (1)

Resorting to the Wigner-Eckart theorem, and with regard to (4), the matrix elements

of (11) in the basis of eigenstates of .S, are:
M\ #IND = (uggHM'+3D) 6+ |/3 <2, M'—N', 1, N'2,1, 1, M) ¥
X [V DA o) +(E—iF)e""di)_y o0)+(E+iF)e™ ™3y, o). (12)
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Denoting:
E, = —l—]/E—éTF_Z, thcx:—g,
U= D—FE,cos2(p—a), V==E;sin2 (p—a) (13)

and taking the explicite form of the Wigner functions d{2)

o, We may write this matrix as

given in Table L.

TABLE I

Matrix of Hamiltonian 4 in the basis of eigenstates of S; (component of spin vector operator in the direction of
magnetic moment)

-1 0 vy
T o e _
. 29.

(—V||  —pggH{D—iUsin®d® | bll; (U cos §-+iV) VL L Usin? 9—iV cos &
2

= — | e
&
d i —i¥) Usin® §
)2 B - B | 1/2

in 9

(| Vo LU sin® 9V cos 9 _ Y (Ueos®—i¥) | upgHLtD—1Usin®®

P

In the second order of perturbation calculus for the strong magnetic field casel, i.e. for
upgH> D, E, F, (14)

we obtain from this matrix the following approximate eigenvalues of the Hamiltonian (2):
ﬁf’l = iMBgH+D—— — Usm2 P+

1

+ 2upgH

r .
[Uz sin2 9 <0032 0+ 71L sin? 0) +UV sin? 19+2V2]

W — Usin? 9. (15)

The selection rules in a high frequency magnetic field perpendicular to the constant
field allows, for this case, the transitions 1 —0 and 0 - —1:

Wi(H, +) O(Hr+) = hy
WoH,_)—W_(H, )= hy. (16)

1 This of course, does not mean that the magnetic field is larger in energy than the electric (crystal) field
but, e. g. in the model of Abragam and Pryce, that the effect of the magnetic field on the spin is stronger than
that of the crystal field via the spin-orbit coupling.
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From (15), we derive the following angular dependence of the corresponding resonance

2
{h T (D— 3 Usin? 19) 4 [(hvil: (D— 3 Usinzﬁ)) _
2MBg 2 2

—2 <U2 sin2 (cos3 9+ -isin2 19) + UV sin? 19+2V2>] /2}. (17)

magnetic field:

Hr:l:

or, expanding the square root with regard to the smallness of the second order correction:

H,, = ——1~{hv — (D— 3 U sin? 19) —
uBg 2

_ U?sin? 9 (cos? -+ sin? §) 4 UV sin? '194‘2 e _f_} (18)

hvF(D—3% U sin? )
The first term in the above formula corresponds to the zeroth order of perturbation calculus,
the second — to the first order, whereas the third and the higher terms, proportional to

higher powers of trigonometrical functions (which we neglect) are due to the second order
of perturbation calculus.

4. Weak magnetic field

The matrix of the Hamiltonian (2) in the basis of eigenstates of the operator
S, {—1>, 10>, {1>} (in the system of principal axes of the g-tensor), is given in Table II.

TABLE II

Matrix of Hamiltonian 4 in the basis of eigenstates of S, (component of spin vector operator in the direction of
twofold-symmetry axis)

-1 0> [1>
‘ g . .
1 D—ppe H, ﬁ (8xHyti8,H,) ‘ E+iF
u
<0| l/— (gx x lgy y) ‘ 0 ]/2 (g*c x+ 18y y)
— —— J = N SR
qQl E—iF % (slliig) D+upe.H,

At zero magnetic field, the energy values are:

W, = D-+E, Wy=D—E, W,=0 (19)
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and the corresponding eigenstates of the crystal-ﬁeld part of this Hamiltonian become:
—iF
ay = D+ 11,
| Vz - 1/ E,

E4iF
= |—1> + 11>,
V2 E, 1/5
IC> = |0D>. (20)

The matrix elements of the whole Hamiltonian (2) taken in the basis {|a), [b), c>}
of eigenstates of the crystal field Hamiltonian considered as unperturbed in the case under

by =—

discussion here, are:
Cal#lay = D+ Ly,
<blo# by = D—Ey,
Lel#le> =0,

<awub> — £2 * (B-iF)g.He

b| ey = [(E E)gxH,— FgyHy)+i[FgH:—(Ey+ E)gyH, ]}
0+E)ngx+ngHy]_i[ngHx“‘(Eo_‘E)ngy]}' @1

The first order of perturbation procedure, for E, of the order of § D, contributes no
correction to the zero-field energies; in the second order, we obtain:

(2) N ubg? - U sin2 9 )
W, = D—E, Y (1 D—EO)H’
@  upgtUsin®d
=T (D—E) (D+Ey) @)

From (21) it follows that there are, in general, three permitted transitions in the perpendicular
high-frequency field. The corresponding resonance fields are:

1 2(hw—D— Eq) Ey(D-+ Ey) (D—Eo)
UBE - D*—E3+-(3E,—D) Usin2¢ ~

1 2hw—D+ Ey) Ey(D+ Ey) (D—Ey)
H(b—c)= —-]/ — D2+ E§+(3E,~+D) Usin? 9

(hv—ZEo) LoD+ Eg) (D—Fy)
Hifa —b) = UBg 1/ E;)—DU sin? 9 : @3)

Hoa—c) =
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5. Discussion

By replacing the angles ¢, ¢, by angles @, @, we were able to separate the influence
of g-factor anisotropy from pure crystal-field tensor effects in the angular dependence
of the resonance field, as expressed by formulas (18) and 23).

The contribution from the g-tensor is found, from Eqs (6), to be of the form:

g9, ¢) = (g5 * sin® 9 cos? p+g; * sin? & cos? p+g; 7 cos? 9)-L, (24)
The extrema of this expression are the following:

9 =0; ﬁ:iz’_, p=0; =21 o—

5 25)

ol g

The main term describing the crystal field tensor effects in the resonance magnetic field
anisotropy (due to the first order of perturbation procedure for the strong field (18), and
to the second order for a weak field (23)), is:

Usin? § = (D—E cos 2 (p—a)) sin? 9. (26)
There exist three extrema of this expression:

9 =0, 19=%, p=ua; ﬁ:%, <p=oc—l—-g~. 27

-—

The values (25) and (27) are seen to differ in the xy-plane by an angle a. Hence, the
resultant angles for extremal values of the resonance field lie in the angular intervals

0 <o < and g <o <2§ +a; the angles for these extrema follow the relation of the

anisotropies of the expressions (24) and (26), and depend strongly on the magnitude of the

magnetic field. The angles are not the same for the various transitions. It follows from (18)

and (23) that there exist in general more than single extrema inside the above intervals;

their difference in magnitude is however small, in any case less than the corresponding

g-factor anisotropy. v
For the angles given in (27), the secular equation of the Hamiltonian 2):

W3—2DW?+(D?— Eg— g2 HY W+ U sin® 9g2uiH2 = 0 (28)

possesses one field-independent solution, and the corresponding eigenvalues are easily
found:
for 4 =0:

W, = D+VEs g2 ubH?,
W, = D—VES+ g2 H?,
W, =0, (29a)
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e S
WC:M_]/(D-FE()) 1ot (%7“) pBH?, (29h)

(29¢)

DHE, |
D-B,-,

A diagram of the splitting in function of the magnetic field is given in Fig. 2; as is seen,
it is the same as for the rhombic case, with E; substituted by E.

The crystal field tensor effects are usually larger than those of g-factor anisotropy. It
follows from the preceding remarks that the Zeeman splitting in the directions of the extremal
resonance magnetic field (but not the angular dependence) can be described approximately
in terms of the rhombic Hamiltonian.

The resonance field, as one can see from (28) and (6), is exactly symmetrical with

7

respect to $ =0 and 9;= > but it follows from (6) that for g, # g,

ig oy # — ctg (oz—.L %) and cos 2(p—a)y # — cos 2(—@+a),
0
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so that, assuming the angles of extremal values of the resonance field as those given by (27),
7
we can expect a departure from an angle of ' between the directions of the extremal field

in the xy-plane, as well as a large angular asymmetry with regard to these axes.

The second order of perturbation procedure for a strong magnetic field leads to further
corrections in the angular dependence of the resonance field, such as additional extrema,
but, as one easily sees on putting Ey = E and & = 0 in (18), these corrections are the same
as for the cases of rhombic and even higher symmetry (see for this problem the monograph
of Low [11]). The neglected asymmetry properties of the g-tensor may cause slight deviations
from 180°-symmetry in the spectrum.

The all cases of the small denominators going to zero in the second order cor-
rections in (18) and (23) are connected with the strong angular dependence of the transi-
tion probabilities similar to the higher symmetry cases, and we will not discuss them
here.

From the preceding considerations it follows that it is not possible to explain, on the
basis of a monoclinic spin Hamiltonian, the anomalous behaviour of the observed angular
dependence of the resonance field for TGFB:Cu2* [3], because the deviations from the
approximate shape (18) are much larger than the admissible influence of g-factor anisotropy.
This, in conjunction with the impossibility of a description by way of a rhombic Hamiltonian
in the directions of the extremal resonance field values [12] suggests that the observed
lines belong to a spin larger that 1, attributable to complexes with more than two copper
ions.

APPENDIX A

Let us consider the n-dimensional unitary space L of states of a quantum-mechanical
system with point symmetry described by the group G, and let £ be the Hamiltonian of
the system. There exist, by definition, a representation T of G in L, not necessarily irre-
ducible, for which the relation

[#, T(g)] =0 (A1)

holds for every g € G.

Now let Lg be the 25+1 = n-dimensional space of the representation DS%) of the full
orthogonal group O(3). We can deal with the elements of Lg (transforming by rotations like
spherical harmonics) as eigenstates of the z-component of the angular momentum operator S.

Let o be a one-to-one mapping of L onto Lg such that for every p, ¢ € L, and for every
g et

{plg> = {oylop) (unitarity) (A2a)

D% (g)oy —= 6T(g)y (conservation of transformational properties). (A2b)

Such a mapping exists if and only if T and D*) are unitarily equivalent representations
of the group G C O(3), but in general is not unique.
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L is by definition an invariant subspace of the Hamiltonian # and we may define the

@-picture ,}% of the limitation of # to L, which possesses the following properties:
Loyl #\opy = {y|H|p), for every v, 9 EL, (A3a)
[, DS¥)(g)] = 0, for every g € G. ~ (A3b)

If a mapping o exists, # exists and is, from quantum-mechanical point of view, an exact
effective Hamiltonian for the manifold of states spanning L, and will be referred to as the
spin Hamiltonian for this manifold.

Linear operators in Lg form a linear space isomorphic to Ls® Lf;; in this space,
the product representation DS*) @ DIS#)* of orthogonal group is induced. The Clebsch-
Gordan decomposition

25
DiS+) ® DSHx — @ D) (A4«)
1=0
of this representation is realized in the basis of irreducible spherical tensor operators trans-
forming according to even irreducible representations of the orthogonal group:

i

DS (R)PIDSH(R) = ) DU (R),,P:, for every R € O(3). (A5)
m=—I

The effective Hamiltonian can hence be given in the form of a linear combination of
irreducible spherical tensor operators P! with integer I <(2S, and even with respect to
space inversion. By (A3b), such a combination has to be the same as the one which decomposes
the reducible representations DY+ of group G into irreducible identity representations I'y.
Such combinations are given e.g. in [13] and, for the case of S =1 and monoclinic

symmetry (G = Cy, Gy, C)) we obtain:

# = byPy+ibyPy-+-baPa -+
1 7
+ v b3(P3+P%,) + Ve b2 o(P3—P2,). (A6)

Here, we have taken into account the hermicity of the Hamiltonian, assuming the normalizing
factors to satisty the relation:

(P)* = (—=1)™PL,, (A7)

and the phenomenological constants b}, as real.

Let us note that the spin Hamiltonian is, according to (AS5), invariant under space
inversion, also in the case of a group G containing no such element. This is due to the circum-
stance that the effective Hamiltonian can in general possess higher symmetry than the
“‘real” one.

It is convenient to express the irreducible spherical tensor operators in the form P.(S)
of homogeneous polynomials of degree [ in components of the angular momentum operator S
{Koster and Staatz [14]). Because of antisymmetry of the operator 8 with respect to time
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reversal, the P! (S)’s with even I have to describe the behaviour of the system in an external
electric field (e.g. crystal field), in contradistinction to those with odd I, which describe an
external magnetic field. The term with / = 0 leads to an additive constant in the energy,
which we can take arbiirarily.

According to the above remark, the crystal field spin Hamiltonian for our case has to
be of the form:

y?cr - gDPO(S) - VgDPg(S) -

— E(PYS)+P2yS))+iF(P{(S)— P> «(S)) (A8)
where, in the normalizing convention (A7):
PyS) =1
PYS) = — —— (52— ! 5(5+5))
Ve
PL(S) = — 381 = — §(S: £iS)" (A9)

The &y coordinate system is attached to the crystal field, with & and 7 taken arbitrarily
and {-axis taken along the symmetry axis. We have introduced the usual crystal field para-
meters as phenomenological constants.

For the case of interest here, the magnetic field is much less (by two orders of magnitude
at least) than the electric crystal field, so we can assume, in a good approximation, that it
does not destroy the monoclinic symmetry of the system. The Zeemann part of the Hamilto-
nian has to be contravariant under simultaneous rotations of the magnetic and electric
(EnC system of axes) fields, so that in the approximation assumed, it has to contain the
following terms:

PYSH)= > <1,m,1,—m|l,1,L0PLH)PL (S); 1=0,1,2,

m=—1,0,1

PLS,H) = 3 Am1,—m+2]1,1,2, £2>PLH)PL (S). (A10)

m=—1,0,1,

We have neglected powers of H higher than linear. Substituting the appropriate
Clebsch-Gordan coefficients and taking PL(H) and P2 (S) from Ref. [14] (formally, we have
to multiply operators of Koster and Staatz by factors i’ ini order that the condition (A7) shall
be satisfied), we obtain the Zeeman spin Hamiltonian for the monoclinic system with S == 1
in the form:

Homge = 1pl8rH oS+ (gl i+ q,:H,) e+
+(8t,He 80, H,)S, - (Ally

We have introduced the usual g-tensor in place of the five phenomenological constants
occurring in (A6). Let us observe that, because of Pgin (A6), g}, differs in general from G-
For the particular. theory of effective operators, see e.g. the monograph by Judd [15].
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