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ON A BREAKDOWN OF THE PAIRING PROPERTIES
IN CONJUGATED IONS OF ALTERNANT HYDROCARBONS*

By J. WaAsLEWsKI
Institute of Physics, Nicholas Copernicus University, Toruf**
(Received December 30, 1970)

Calculations on electronic structures of conjugated ions of naphthalene and anthracene
are reported. The SCF CI method for open-shell configurations is used, together with a modified
senmiiempirical method, based on a transformation of atomic orbitals into the Léwdin orthogonalized
atomic orbitals. An explicit breakdown of the pairing propeities of the investigated alternant
ions is shown.

Introduction

Conjugated anions and cations of aromatic hydrocarbons display strong absorption
spectra in the visible and near ultra-violet region, cf. e. g. [1-7], as well as the electron spin
resonance (ESR) spectra with well- resolved hyperﬁne structure, ¢f. e. g. [8-10]. It was
found, that the optical absorption spectra of both the ions — anion and cation — of the same
alternant aromatic system are similar; some small differences between them are usually
considered as being caused by solvent effects. On the other hand, the hyperfine structures
of the ESR spectra of these ions indicate characteristic differences: the largest hyperfine
splittings in the cation spectra are. 31gn1ﬁcantly larger.than the corresponding splittings for
the anions. The similarity of absorption spectra of the alternant hydrocarbon anions and
cations was fully explained on the basis of the pairing properties of pi-electronic molecular
orbitals in these systems [11, 12]. These properties have been revealed when using the
standard PPP semiempirical method for closed-shell configurations [13, 14], as well as its
open-shell analogue [15, 16]. However, taking into consideration the same pairing proper-
ties, we cannot interpret the above mentioned differences in the ESR specira in terms of the
simple McConnell’s relation [17], which assumes a linear propertionality between the hy-
perfine splittings and the spin density on the conjugated atoms.
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One of the trends in improving the standard PPP semiempirical method is a more
proper consideration of the atomic overlap integrals, as well as inclusion of all elements of
the core Hamiltonian matrix, cf. e. g. [18-22]. These modifications result, among others,
in breaking down the pairing properties of the neutral alternant molecules. In particular,
the Coulson-Rushbrooke theorem [23] and the Pariser’s selection rule for some electronic
transitions [24], prove invalid. Hence, there arises a possibility for interpretation of the
excess electronic charge on conjugated atom as some reactivity index; also more accurate
results of calculations for some weak electronic transitions become available. The applica-
tion of the semiempirical PPP method, modified in such a way, to the calculations for the
ions of alternant hydrocarbons is very interesting just for the reason of the possible break-
down of the pairing properties. This may create a possibility of interpreting the differences
in the ESR spectra in the most simple way; but it is also interesting to know, how far the
theoretical similarity of the optical absorption spectra of anions and cations is retained.
In this paper, the modified semiempirical method proposed by Woznicki [21] starting from
the standard SCF equations [25], is adapted to the SCF equations for open-shell configura-
tions[26]. According to this method, the calculations have been carried out on the electronic
structures of the anions and cations-of naphthalene and anthracene. The configuration in-
teraction (CI) procedure for doublet configurations has been used in the standard way [16].

Open-shell SCF equations in atomic and orthogonalized orbital basis

Let us assume ¥ as the wave function of the system considered, belonging to certain
definite values of the S and S, operators, in the independent particle model. We consider
the cases, in which the expectation values of the Hamiltonian

(&) Nl
R RIED W N
have the form [26]:
FIHP) =23 h,+ 2> @J,,—Ku)+
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h, J; and Ki are the kinetic encrgy and nuclear attraction potential, Coulomb, and exchange
operators, respectively. The subscripts a, b denote the one-electron orbitals @ of closed
shells; k, L are the subscripts for partially occupied orbitals constituting open shells, 0 <f <1



83

represents the fractional oc¢cupancy of these shells; & and f are constants. One of the cases
is the single-determinantal ¥, subjected to the spin equivalence restrictions, when the open
shells contain nondegenerate orbitals with parallel spins only (the half-closed shell configura-
tion, for which f =123, & = 1, 8 = 2). Setting /= 0 we obtain the well known closed-shell
case [25]. The variational method, applied to (1) under the requirements of normalization
and orthogonality of the orbitals, (¢,|p;) = d;;, leads to the following equations for the
optimal orbitals [26]:
Froeng, = [h+ M—N+ } (PN+1P)) g, = e

To obtain a more compact form we have introduced the operators:

=3 @l,—K)+/ X @I—k,
a &k

s bl []e)

and the one-electron spinless density operator for the wave function ¥':

P=P(WPIEE) =2 3 98 (pu &) +f kz |4 (a1, 2)

normalized to the number of electrons (in the meaning of tr P).
For molecular problems, molecular orbitals (MO) ¢; are expanded on the (real) atomic
orbitals (AO) y, (LCAO approximation):

¢ =2 0l o) =10C, ®3)
u
[%) is the row matrix. Thus it leads to the algebraic problem of finding the eigenvectors
of the matrix FoPe?
ForenC, = ,8C;; )]
Fore? = h+-M—N+} (SPN-+NPS). 5)

Here, b = (y]hly) represents the h operator in the z basis; S = {#12) is the non-orthogon-
ality matrix for this basis, with overlap integrals as the elements. If we introduce the super-
matrix X of two-electron integrals between the y functions,

1
Xow,or = <%n(5)%1f(77) T xg(S)xr(n)> = (Aol 2x=)s

we obtain the following expressions for the elements of M and N matrices:

My = Z Z ( Bewt ue,rv) Pw
Ny == ; Z, ([‘11‘:;;] Xu@,vr—“;:‘ [11:;6] ﬂem) Qze-



84

The matrices P and Q represent the one-electron spinless (2) and spin density operators,
respectively, in the basis used:

P —2[ 3 €.Cl+f 2 6 | ©

Q=22 GG

Diagonal elements of the super-matrix X can be grouped into the matrix of atomic Coulomb
integrals y:

Yur = Ul 1) = Koy (7)

If we expand MO’s on some orthogonal orbital basis, a more simple form of the F°P®
can be reached, because the non-orthogonality matrix 8§ will not be present in (5). Lowdin-
orthogonalized atomic orbitals (LOAO) [27], 14 = |x) 8%, are very interesting here,
because they are the closest to the original atomic orbitals y (in the meaning of the last

squares method) [28]: A
Tr {—Ax—A) = minimum.

Now, the expansion (3) can be written as

Z D,.;» I‘Pi> =4y D,,

and the eigenvalue problem (4). takes the form
FémoenD, = D, ®)
where
FMopen — (N lsf‘fper_’]?\} ::‘S_jl/zFopenS—l/Z

and the same relation holds for the matrix representations of any one-electron operator.
On the other hand, regardmg the fact that D = S%C,, we obtain for the density matrices (6):

| P“)—2[ZD +fZDDT | — $%Ps¥,
QW = 2fZ D, D! = S% Qs*. ©)

The super-matrix A of two-electron integrals in the LOAO basis

A, = 00,4,

mn,re
can easily be related to the super-matrix X:
= (STEXSTHX(STEXSTH), (10)

where (S%xS™%) means the direct product of the S™7% matrix by itself.
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Modified semiempirical method

If the conjugated molecules are being investigated and we accept the pi-electronic appro-
ximation, e.g. [29], the F°Pe® matrix can be considerably simplified. Instead of the operator
% we have an effective core Hamiltonian £, and only the orbitals for pi-electrons are
explicitly taken into account. On the other hand, the application of LOAO basis in the in-
vestigations based on the pi-electronic approximation has been extensively studied, cf.
e. g [29-32], and the most important conclusion is, that in the super-matrix A only the
diagonal elements have significant values, while the off-diagonal elements can be neglected:

A=A 0,,0,=1_90_ 0 : (11)y

mn,rt = L imumnmr - nt mn " mr - nt?

“Coulomb integrals” (2,,4,2,4,) =T, have been collected in the matrix T'; however,
they are still of multicentral character, because the A basis is essentially of multicentre
type. When the approximation (11) is included, F®Pe2 has the form, identical with the
one used in the open-shell analogue of the PPP method, but with all the matrices defined
in the LOAO basis. For the above mentioned half-closed shell configurations it reduces to,

cf. [16]:
Foeen = h0= T, (4 P+ QW) +8,, X T, PP+
2 .

+4 2 (0, PRO0+QRPAT,).
11

In fact, it is generally accepted at present, e. g. [22], that the equations of the PPP method
should be understood as written in the A basis, and therefore the relation (11) represents
the well-known ZDO approximation [13, 29]. However, quantities defined in terms of ’s
cannot be referred to the atoms or atom pairs, and consequently — they cannot be treated
as empirical parameters in any semiempirical method. Only the integrals determined in
the basis of “‘true” atomic orbitals y, can be used as the parameters, transferable from one
system to the another; an extensive discussion of this point has been done in [21]. Thus,
if we have the atomic Coulomb integrals Yur (7), a relation between the matrices yand I’
(11) is needed. It can be reached when the Mulliken approximation [33] is applied to (10);

we obtain, cf. e. g. [18]:
I'=TyT, T,,=("%),, %,

The atomic Coulomb integrals Y 4 for selected internuclear distances R,w, are further treat-
ed as the empirical parameters.

To evaluate the elements h{)%°™ the matrix he (in x basis) can be devided intc
the diagonal part, h§®", and the off-diagonal one, h{”™®. Defining the new matrix

B =h{" 1 [h$ (5—1)+(S—1) b=, (12
we can easily show the’folloWir‘)g:

heore — 1 (§% hEores % | §% heore §—%) L §—% B §— K,
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We assume [21], that the atomic orbital y, is formally the solution of the eigenvalue problem:
]’ieﬂ‘ L= _Ieﬁ" Yo

where hEH is the kinetic energy operator plus some effective potential, derived from the
con]ugated atom u and its nearest environment in the molecule; this atom gives n(”) pi-
-electrons to the conjugated system of the neutral molecule. The eigenvalue Ie should be
interpreted as the ionization potential of the atom g in its molecular surroundmg, the value
of IEff is treated as the empirical parameter and it should not be identified with the valence-
state ionization potential. In view of the Goeppert-Mayer and Sklar approximation [34]
we obtain

(hcore) = IEﬁ + Y — V' (”)Y/W

’V

For the elements of matrix B (12), Woznicki [21] justified the relation
Buv = % (I;H+I:ﬁ) S;w(s,uv—]')'

To complete this modified semiempirical method, a formula for the evaluation of the
overlap integrals S, is necessary. Here, the theoretical values for the Slater-type 2p, orbi-
tals have been used, and then the effective nuclear charge £, for the atom u, appearing in the
Slater orbitals, is also treated as the empirical parameter.

Calculations and discussion

According to the semiempirical method presented above the calculations have been
carried out for the anions and cations of naphthalene and anthracene. Hexagonal geometries
with the standard bond length 1.4 A have been asumed and the set of parameters, originally
found in [21] has been used:

o = 1.405, Ieff = 10.02 eV,
Yeo(R = 0) = 9.3051 eV, Yec(R = 1) = 6.1925 €V,
Yoc(R=]B3) =47137eV,  yec(R =2) = 3.8118¢V,
Yoo(R = /) =35520eV,  yec(R = }/13) = 3.2020 €V,

2
Yeo(R > 5) = -
(R — the internuclear distance, in the standard bond length units; for the intermediate
distances the values have been linearly interpolated). All the carbon atoms have been treat-
ed equally, although the parameter I for the joint positions (carbon atoms 9,10 in naphtha-
lene, 11-14 in anthracene) can essentially be different than those for the other ones.
The SCF equations (8) have been solved for the ground states of the ions and starting
from the orbitals obtained, the configuration interaction (CI) procedure including all the
singly excited, doublet configurations has been applied, as described in [16]. All the calcula-
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tions needed have been -done on the GIER computer, at the Department of Numerical
Calculations, Warsaw University.

It should be noted, that when the SCF equauons (8) are solved, we have the D, vectors
and the density matrices P, ¢ (9). Although they are well normalized (Tr P(’I) =: the
number of pi-electrons, Tr Q) = the number of unpaired spins), the elements of PX
cannot be used for evaluations of the dipole moments or interpreted as the bond orders,
because this matrix is defined in the multicentre LOAQO basis; the subscripts m, n are not,
in fact, connected with any conjugated atom. For the same reasons the quantity Q) cannot
be interpreted as the spin density on any atom. On the other hand, iransformations of the
type S”#PWS=% =P do not preserve the normalization of density matrices and do not
enable one to interpret their diagonal elements as the charge (for P), or spin (for Q)
densities on the conjugated atoms, despite of the fact that the matrices P and Q are defined
in the basis of “‘true” atomic orbitals . It was shown [2]], using the Mulliken approxima-
tion [33], that if the pi-electronic part of dipole moment is expressed as a sum of contribu-
tions connected only with the conjugated atoms, the diagonal elements of the mairix

p = XS~ #PWS% . §%PpAIg—%) (13)

represent the charge densities on these atoms. This matrix is also well normalized and will
be treated as the charge and bond-order matrix. In view of such a definition of the charge
densities, the diagonal elements of the matrix

q = % (S™HQUSY% 1 § %G~y (14)

should be interpreted as the spin densities on the conjugated atoms. Numerical results
indicate, that the definition (13) is especially effective in predicting the bond distances from
the bond orders; also, the corresponding elements of p and P, and respectively q and QW

TABLE 1

Calculated spin densities d,u and experimental nyperfine splitting am, (in gaus), for the anions and cations of
naphthalene (N) and anthracene (A)

anion cation
position | = — —
I3 - ag, ratio aHu/qWI . ag,, ratio OH,Qup
[ By (zaus) (gaus) e (gaus) (gaus)
{81 [10]
N 1 0.178 —4.%0 —27.53 0.182 —5.53 —30.38
2 ] 0.072 d —1.83 —25.42 0.068 —2.06 —30.29
[9] 9
1 0.098 —2.74 —27.96 0.090 —3.06 —34.00
A 2 0.051 | —1.51 —29.61 0.043 [ —1.38 —32.09
9 0.182 | —5.34 —29.34 0.216 —6.53 —30.23

average ratio —-27.82 | —31.53
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are very similar, whereas they differ significantly from the elements of P and Q, respec-
tively.

The results of the calculations for naphthalene and anthracene ions, together with the
corresponding experimental data, are presented in the Tables I and II. In the standard
PPP method, the spin.densities and transition energies calculated for both the ions of the
same alternant system are identical; here these pairing properties are explicitly broken.
As it can be seen from Table I, the direction of this breakdown is especially favourable for
the ESR specira, what is evident from an inspection of the values of the ratio ay,/dq,,. This
ratio is simply the constant, appearing in the well known relation on McConnell [17], between
the experimental hyperfine splitting produced by the proton adjacent to the conjugated
atom u, ay , and the spin density calculated for this.atom, q,:

- ‘ aHﬂ = constant X D upe

As a matter of fact, the average values of these ratios (the last row of Table I) are still different
for the anions and cations, but for the largest splittings: positions 1for naphthalene and 9
for anthracene, these two values are considerably closer to each other. It is worth to note,
that just for these splittings the differences between the anion and cation ESR spectra are
clearly observed experimentally. The numerical results obtained for the spin densities in-
dicate, that these experimental differences of the ESR spectra can be explained on the basis
of topological properties of alternant systems, because the one-electron density matrices

TABLE IT

Calculated and experimental transition energies (¢V) in the absorption spectra of anions and cations of naphthalene
(N) and anthracene (A) (x is the longer symmetry axis of the molecules, polarization: of the transitions are
expenmentally known only for the anions, [3])

| anion cation
olarlza- S . - .
‘ tion calculated I experimental calculated experimental
| @ | ) — oV
i [4] [5] [7]
% I 2.43 1.52-1.69  1.57 1.73 ~1.7 1.75
¥ 3.16 2.667 2.66 ~2.5
N ¥y 3.86 3.38 3.42 >3.0? 3.14
| x 4.11 3.83 3.84 4.24 |
| x 5.17 4.25 4.82
[ % 6.37 5.45, [3] 5.92 [
a [0 [4] 2] 6]
% 2.16 1.73 1.73 1.56 1.73 1.74
¥ 2.18 ? 1.98
¥ 3.67 3.09 3.10 2.82 2.85 3.04
A % 3.47 3.36 3.35 3.39 3.47 3.29
x 4.74 3.80 3.80 4.05 3.80 3.63
% 5.66 4.83 5.02 4.60
x 6.20 . ~5.2,[3] 5.77 5.20
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depend strongly on these properties and rather weakly on the empirical parametrization..
It should be noted, that the differences of calculated q,, values for anions and cations are
not the result of the definition (14), accepted here; the same effect is observed for corresponding;

elements of Q™ matrix.

The breaking of pairing symmetry for the transition energies is evident from Table II.
The energies for the cations are lower than those for the anions. The strongest effect can be
observed for the first x transition, the weakesl (or even a reversed one) for the second x
band. Consequently, optical spectra of the cations are considerably better interpreted here,
than in the standard semiempirical methods, whereas the interpretation of absorption
spectra of the anions is comparable with the one, obtained previously, ¢f. [16]. The observed
behaviour of the calculated transition energies indicate, that if we accept a possibility of
some modifications of the parameters values, the direction of these modifications can de-
pend on the sign of excess electronic charge of the ion.

The author is indebted to Doc. dr W. Woznicki for many discussions concerning the
modified semiempirical method and for the critical reading of the manuscript.
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