Vol. A40 (]971) ACTA PHYSICA POLONICA Fasc. 6

ANISOTROPIC SPIN-ORBIT COUPLING FOR N CONFIGURATION
IN A CRYSTAL FIELD

By T. LuLEx

Institute of Physics, A. Mickiewicz University, Poznan*

(Received May 6, 1971)

Anisotropic spin-orbit coupling in a crystal field for N electron systems is treated within
the framework of quasirelativistic quantum mechanics. The Hamiltonian of this interaction is
expressed by certain irreducible tensor operators, and its matrix elements are calculated as
known functions of independent radial parameters. Numerical values of appropriate coefficients
for p, d, f and g shells are given. Formulas for radial parameters are derived in terms of multipole
charge distribution producing the crystal field. Evaluation of these parameters in the point
charge model leads to the conclusion that the effect is 10 times less than the electrostatic effect
of the crystal field. Hence, in general, the effect of anisotropic spin-orbit coupling in a crystal
field can be neglected. An important exception is that of orbitally nondegenerate terms, where
the considered effect could cause appreciable splitting.

1.. Introduction

In an earlier paper [1], we considered in a quasirvelativistic approximation the spin-
-orbit interaction for a single electron moving in an electric field having symmetry of any
point group, and derived general formulas for the Hamiltonian of this interaction and its
matrix elements in a basis of atomic states. We pointed out that such an interaction gives
a contribution to the splitting of energy levels of an ion placed in the crystal field. We more-
over derived independent radial parameters describing this contribution. In the present
paper, we generalize these results for the N-electron case and evaluate the range of magnitude
of the radial parameters.

2. Hamiltonian, and its matrixz elements

a) General form of the one-particle spin-orbit coupling Hamiltonian for
an N-electron system

The Hamiltonian of one-particle spin-orbit interaction for an N-electron system in
a quasirelativistic approximation, i.e. with accuracy up to v%/c?, can be written as
N

h
Hso = 555 Z s; + [grad; V(r;) Apjl @

i=1
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with i — Planck’s constant, m — eleciron mass, ¢ — velocity of light in vacuum, S, ¥; and
P; — spin, position and momentum operators for the j-th electron, respectively, V(r ) — the
potential energy for a single electron. In the case of an ion in a crystal field

Ze? ‘
Vi) = s +Va()+Vry), = r) @)

where the first, second and third term describes respectively the Coulomb attraction energy
of the nucleus of the central ion, the self-consistent energy which replaces the influence of
the other electrons of the central ion, and the crystal field. The first two terms have spherical
symmetry, so that they contribute to isotropic spin-orbit coupling only [2]. The third term
has only symmetry of a point group and leads to anisotropic spin-orbit interaction.

As it is known from quantum electrodynamics, the Hamiltonian (1) for N =1 is, in
the quasirelativistic approximation, the most general form of the spin-dependent part of
the energy of a single electron interacting with the external electrostatic field produced by
an arbitrary distribution of charges [3]. In the case N > 1, one has moreover to take into
account relativistic two-body effects, namely spin-spin and spin-other orbit coupling [4],
which, as was shown by Blume and Watson [2], contribute to the isotropic spin-orbit
coupling parameter. The role of two-body effects in determining the anisotropic spin-orbit
parameters will be briefly discussed in Chapter 4.

In considering the role of spin-orbit coupling in determining the energy level structure
of paramagnetic ions in diamagnetic host crystals, it is convenient to express the Hamilto-
nian (1) as a series of irreducible spherical tensor operators. Let us rewrite Eq. (2)in the form

~

o0

k
V(rj) :k=Zo =Z_k qu(ri) Y«sk)(ﬁi(pf)’ (3)

where the V,, (r;) describe the radial distribution of potential energy for the j-th electron;
Yék) = ikqu, where Y, are spherical harmonics defined by Condon and Shortley {5].
According to Ref. [1], the Hamiltonian (1) can be written in the form

k
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2%+ 1 dr o5 5 =ay
- ()} (L2500 _, )
OBt =a (g ) (P 2y gy Vi) 2 )
020 — ( 2sz1) (}] Wide) | .11 qu(r,)) )
_ih?

(6)

T 2me2’



799

whereas
g ) = [Y#() x [w(j) xs P D)®, ()
where
w, ()= " i o o=t ®
V; =8[9y, +(1sin 9)t,9/9p;, for a=2
and

__|JE+1  for A;: I
by = {k—l for A=1II ©)

The radial operators Qg and angular operators I'%) ; satisfy the hermitian adjoint relations
derived in Chapter 4 of [1].

It is convenient to separate the orbital and spin variables in the operators (7) in order
to carry out calculations in the LS basis of states. To this aim, we perform a recoupling
according to the formula

ka+1
F‘gka)q = Z [kA]‘a (k’)lsklkA,lals(l)k] X
K =kq—1
X[[Y* xw{]*) x W)@ = kz [O(4, a, )®) x s®]®), (10)
where
O, a, %) — (—1y+4a 3@r 1) %] T L yen qpne
s @y 7 = ) + )) k kAk’ [ ><,"va ]q’ (]‘]')

the tensor operators and their products satisfy the conventions stated in Appendix A of [1].
The appropriate Yutsis-Bandsaitis diagram [6], corresponding to Eq. (10), is shown in Fig. 1.

Fig. 1. Diagram of Eq. (10). @ — diagram of I', a(f), b — diagram of transformation matrix [k 1,(k)1 sklkq,
1,1(1)k], ¢ — diagram of the tensor product [[Y(kA)Xw‘(:)](kl) X s(l)’]gk)
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From (11), we easily obtain (see Fig. 2)
U104, a, BNl = (= 1)/ RTRaTR (9F L 1){8(2k 4+ 1) [Am} s X
111 S 1k, ¥
i b e ] b 12)
where

C*8) — {gr[(2k ,-+-1)} 2 Y *4),

Fig. 2. Subsidiary diagram to evaluate (1| [¥*9xw{)] |{1)

The matrix elements of the Hamiltonian (4) can be calculated as well-defined functions
of the radial parameters <nlIQ‘,fq"|n’l’> for any N electron state in a central field. We now
consider in detail the N configuration case. The anisotropic spin-orbit coupling is described,
here, by a relatively small number of parameters. Notably, the energy level structure of N
configurations is perhaps the most important in explaining experimental EPR and optical
data.

b) Effective ‘Hamiltonian within the framework of IN configuration states

Restricting our considerations to I configuration states, we can average the Hamiltonian
(4) over radial wave functions, the same for all electrons. An effective Hamiltonian for N
configurations can be constructed in terms of unit tensor operators U g’) and V(g)g), introduced
by Racah (see e.g. Karasiya et al. [7] and references therein) and given by

N
U= 2 ()
P

N N
ye — 51 w9596 = X 2990) (13)
j=1 j=1

where u(’;’)( i) and S®(j) are unit one-electron tensor operators acting on the orbital and spin
variables, respectively, and determined by their reduced matrix elements as

(W@l =#6,8(L k, V) for k=1,2,...,2]
Uy = @L+1) %5y,
GHUSONID) = 2%, (ISP = i(3/2)%, (14)
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where
where |[{—1I']| <k <I+7

ol k1) = {0 in other cases. 9

According to (10), the one-electron operator 1, (qk) can be replaced within the framework
of IN states by

Iy B (Peg = D (—D)* (U10(A, a, B®)|[D) [w®)()) X SO(j)j® (16)
g
where

R Y W TP N

¢ +o=¢q 704

We can now replace (4) by the equivalent Hamiltonian

Hgo = 33 23 0k 23 (i) (U164, a, H® iy @) (18)
kq Asa
where
Qi = <nliQginly = f R, (1) Qe R, (1) dr, (19)
being the radial part of the one-electron wave function, and
e = 3 (a1 (q, - q) ) (20)
g'-to=gq ~

The matrix elements of the equivalent Hamiltonian (18) in the basis of IV states are the same
as those of “‘true” Hamiltonian (4).

Eq. (19) defines the radial parameters descrlbmg the magnitude of anisotropic spin-
-orbit coupling. According to the results of Ref. [1], only two of the four parameters corre-
sponding to averaging of the operators (5) over radial wave functions are independent (in
the IN configuration case). As independent parameters, we choose

h? 1 4

Ok = St <nl =~ drkq nl) (21)
h? |

Ok = OmicE <nl —V;’;“— nl> : (22)

(these parameters are real for even g). According to (5) and Eqs (42) and (51) of [1], we
can write the equivalent Hamiltonian in the form

Hgo =313 (Qi,Cull, K, D+ Q2,6 ks, ¥, i)} [ #)< ) (23)
where G, and G, are coz,fgﬁcfents invariant with respect to rotations, and given by
Gylles B> 1) = (=i [(h+1) 225+ D] 4{A(IO, 1, B0 +-2(UIO, 2, HE)] +
’+(—i)’°'“[k/2(2k+l)]%[-(kJrl) e, 1, H®|n+2(16(L, 2, H®N)]  (24)
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Gk, ¥, 1) = (—)¥ PR{(k+1)[2@k-+DI*[(IO(, 1, B®|1D)—2(110(, 2, B®| 1]+
+(—)¥ B+ R[22+ D] UIOAL, L, H®ND)-+2U16L 2, HEN)]. (25)

From the triangle rule A(1, £, &) resulting from the Wigner 6 symbol occurring in (11),
it is obvious that &' = k—1, k, k+1. We show in Appendix A that

Gk e, 1) = G (b, k, 1) =0 (26)

G (k, k+1, 1) = (—1)"*¥[(k-+2)[(2k-+1)) AU [ Y *+D x p*@]C+D) 1) @27
Gk, k—1, 1) = (=1 (=D @A+ DA [Y ¢ IP) x * =) )) (28)
Gk, k+1, 1) = —KG,(k, k+1,1) (29)

G (k, k—1, 1) = (k+1)G,(k, k—1, ). (30)

In Appendix B we derive some relations between the coefficients G, , G, and one-electron
coefficients defined in Ref. [1]. In Table I we give numerical values of G, (k, &', [) for p, d, f
and g configurations (for I = 0, we have G, = G, = 0). The G,(k, k', I) can now easily be
obtained from (29) and (30).

sl
Fig. 3. Matrix elements of the double tensor operator: ¢ — diagram of (INaLST|| [V ®) > (]R)|| INa’L/S"J'); the
bridge connecting the spin and orbital parts of operator V indicates that for N > 2 the operator (*)(1) cannot
be separated into a product of two operators, one of which acts on the orbital variables only and the

other on spins, b — diagram proportional to the 9j Wigner coefficient occuring in (31), ¢ — diagram of
(INaLS || V&)Q) || INa’L'S")
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The evaluation of matrix elements of the Hamiltonian (23) reduces to computing the
matrix elements of the unit Racah operator (20). Using the graphical methods of the angular
momentum theory [6], we find

(NaLSJ| [V @) Ne 151 )
LSsSJ
= [@J+1) @J+1) @k+D12 L S '} (NaLS|V®I0 | Ny L'S"). (31)
E 1k
The reduced matrix elements (NaLS||V®)D)| [Ny’ L'S") are tabulated in Ref. {7] or elsewhere
(see references given in [7]). The graphical representation of Eq. (31) is given in Fig. 3.

Thus, by means of Eqs (26)—~(31), we can derive the matrix elements of the equivalent
Hamiltonian HES (23) for arbitrary /N configuration states as functions of the independent
radial parameters —@Zq and @;’q given by (21} and (22), respectively.

TABLE I

Numerical values of coefficients 7 %G, (k, k', l) for p, d, f and g shells (all non-zero values are adduced)

=1
o | —3)/2 b —3)/51)/2 | —3)/7 —3)/35
2 1 —3j2}/5 32 3)/7)/25 | 3)/3/)/2

3 — /23 V205 ‘ 3%/23/)/T1

k

T m S |
[ I=1 l =2 \ 1—3

4 3 — ~Vsl)/2 ~7)23 —37)/5])/211

5 | — = —VsTy3 | —35))/1B
6 5 — | — 5)/7/)/2.13 32.5)/3/13)/2

7 — ' — - 2.3.5)/2.3.7/13)/11
8 7 — — = —3.5.7)/3/)/11.13.17

3. Evaluation of radial parameters

The radial parameters, @fq“, determining the anisotropic spin-orbit energy, depend
according to (19) and (5) on the shape of the radial wave function of electrons of the central
ion and on the electric field distribution (3). The radial wave function for an ion placed
in a crystal is different from that of a free ion (the former is more extended than the latter)
for reason of the nephelauxetic effect resulting from ligand charge penetration into the
region occupied by electrons of the central ion (see e.g. [8] p. 192 and references therein).
This effect is obviously dependent on the host crystal. Similarly, the electric field distribution
also depends on the crystal.

The electric charge density producing the field (3) can be written in the form

[e} k
o) = 27 2} e Y0, ¢), (32)
k=0 g=—Fk
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where the g,,(r") describe the distribution of multipole charges. On inserting (32) into the
expression:

V(’l") = € I,’,.Q(i,il o’ (33)

well-known from electrostatic theory, and using the expression:

[ - k
1 4 P’k

= Y e | 0+ 06— | Y (1 v B, ) Y@, ¢)

|r'—7r| = 2k+1 | r =
(34)

where
1 for x>0

4 _{0 for %<0 (35)

is the Heaveside function, and on performing integrations over 4, ¢’ we obtain, by confron-
tation with (3):

—Aage N Eatan pa—

Vk‘I(r) 2k+1 f QkQ(r) [rk.:,_l ( T)+ 'k 1 (r —r)J dr . (36)
Introducing two. radial functions
Apg(r) = — _dme ()’ —k+ 1y 37
RU) =051 ) QR d (37)
B()—— 4te _/‘ (,),k+2d/ 33
qu - 2k+1 . qu]‘ r r ( )
0

we can rewrite (36) in the form

Vi) = Akq(r)rk—i—qu(r)r—k*l. (39)
This formula relates the radial distribution of potential with the distribution of appropriate
multipole charge g,,().
Anisotropic spin-orbit coupling in a crystalline field for the case of N configuration
is described by independent parameters (—_)Zq and Z);;’q, given by (21) and (22), respectively.
These parameters are associated with functions

S Gha) =) i ) e+ DB ) (40)
2 0 = T2 o) 40, ) W

By insertion of (40) and (41) into (21) and (22), respectively, we can in principle compute
the independent parameters —Q_,';q and Qf,, provided we know the multipole charge distribution
0z,(r") and the radial wave function R,;(r). According to (37), we can interpret the terms
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containing A, (r) as an effect arising from charges beyond electrons of the unfilled IV shell
of the central ion, i.e. charges of surrounding ligands and, possibly, external closed shells
of the central ion (e.g. 5s25p® shells in the case of rare earth ions). Similarly, the terms
containing By, (r) can be interpreted as an effect of internal charges, i.e. of that part of the
ligand charge which penetrates into the region occupied by the N electrons as well as of
the charge of the nucleus and internal closed shells (these shells contribute to By (r)
for k> 0 also, by way of the polarization induced by ligands).

Tt is well known that, in crystal field theory, one cannot use the purely electrostatic
model based on formula (33) (see e.g. [8], p. 213), because the interaction of central ion
electrons with ligands cannot be fully replaced by an electric field as given by (3). It is
necessary to account for electrostatic exchange interactions between the electrons of the
central ion and those of the ligands. Hence, the crystal field parameters I_/z:pt, computed
from experimentally known optical spectra, cannot be identified with the quantities

Vig = <[V (n)Ind> (42)

but should be considered as effective parameters which describe not only purely electrostatic
effects but also covalency and overlapping effects (e.g. in the rare earth salts VZ** can
differ from 7, even by one order of magnitude). It is noteworthy that these limitations
connected with crystal field theory do not concern the spin-orbit coupling considered in
the present paper. This follows from the obvious statement that, by Eq. (1), the spin-orbit
interaction depends only on the electrostatic influence of neighbourhood on a moving
electron, but does not depend — as a one-parlicle interaction — on any exchange effects.
Relativistic exchange effects could be related with magnetic two-particle interactions, which
we shall discuss briefly in the fellowing Section.

Let us now consider the simplest, though often used model of a crystal field, namely
the point charge model. For this case we can obtain the parameters @Zq and @‘,;’q as simple
functions of quantities whose numerical values are well known.

The point charge model assumes that the crystal field is produced by point charges
placed at the centres of ligand ions, cutside the region occupied by N electrons. Hence
the charge density can be wrilten as

o) = eo')+ 3] 4,007 ), (43)

where go(r’) is the density of the central ion charge (having spherical symmetry), ¢, — an
effective charge cf the i-th ligand at 7. Moreover, it assumes that, for every i,
I Ty (44)

where r,; denotes the radius of the region at /N electrons. The multipole charges correspond-
ing to the distribution (43) are given by

27z I
0rg(r) = (= 1Y~ [dp [o() Y*, (&', ¢') sin & 9’
(] 0

2q;
= 2mhgy(r) ot (140 ) | B (=) Y201, ). ()

13
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Substituting (45) into (37) and (38), we obtain (for r < r,)

—8n’le ~ o ., 8me
Arglr) = Wéko / 0o (r )’ dr' - (—1)k~e+1 Gy k+1 Y(kzr(ﬁza%) (46)

r

and

r

8'le _ :
Byy(r) = - ALG Sk f 0o(r) r'dr. A7)
E

Hence, for k& > 0, the coefficients 4, do not depend on r, and the B, , vanish. Inserting (46)
and (47) into (39) and then (39) into (42), we obtain the well-known relation
Vg = Apinlitfinl: (48)

Similarly, inserting (40) and (41) into (21) and (22). respectively, we obtain

0%, = 7 o kg <nl %72 nl) (49)

0y, = 7 s e nllr*2 nl. (50)

Thus, we can evaluate the parameters Q" and @‘” which determine the anisotropic spin-
-orbit couphng in a crystal field, provided we know the coefficients 4, and the quantum-
-mechanical averages (%> ..

By (48). (49) and (50), we obtain

Qkg Ok h* (nlih2nly
Vig . kfkq— 2m2c®  <(nl |k nly

GY8)

Since, according to Ref. [9], the (nljr*|nl> expressed in units of a% (az — the Bohr radius)
are of the order of unity, the ratio (51) can be evaluated as

AL 2
Grg A 9661 - 102, (52)
Vig 8n2a%

Hence one can anticipate the effect of anisotropic spin-orbit coupling in a crystal field to be
about 104 times smaller than the electrostatic effect of this crystal field. The influence of
this interaction on the observed splitting of free ion energy levels in a crystal field is very
small compared with the electrostatic interaction, and is thus very difficult to detect experi-
mentally. Nevertheless, there is one interesting exception, namely the S terms, which are
not split by (3) in the first order of perturbation theory. We shall discuss this case in detail
in a subsequent paper [10].
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4. Two-body spin-dependent interactions

In the quasirelativistic description of a system of N electrons, it is necessary to take
into account, in addition to one-body spin-orbit coupling, the so-called magnetic two-body
interactions [2,4]. Among these, spin-dependent are only the spin-spin and spin-other
orbit interactions, the energies of which are given by:

N
e2h2 _ .
Hss =553 Z ri {8 8i—3r) (s: - vy) (8 i)} (53)
iz
2h? - -
Hsoo = 35— Z rg g A pi) - (Si+2s;)) (54)
=

where #; = ¥;,—*, is the vector operator of mutual positioh of the i-th and j-th electrons.
Blume and Watson [2] have shown that these interactions contribute strongly to the isotropic
spin-orbit coupling constant (this constant corresponds to Qs in our notation). Simple
symmetry considerations indicate, however, that neither Hgg nor Hgpo can contribute
to @:q, _Q—;‘;q for k > 0. Namely, it is easily checked that both Hamiltonians commute with
the total angular momentum operator J for the considered system of N electrons:

[Hgs, J*] = [Hsop, J?] = 0 (55)
[Hss» J] = [Hgo0, J1 =0 (56)

though they do not commute with L and 8 separately; hence, they exhibit spherical
symmetry, whereas the one-particle operator g, given by (4) has a symmetry lower than
spherical when any % > 0 term is non-zero. Consequently, two-body interaction does not
alone split the free ion energy levels in crystals and does not lead to the above-mentioned
contribution. These interaction can, however, lead to a contribution to general splitting
by interfering with the crystal field in the second and higher orders of perturbation theory.

A stricter theory of interaction of the I™ central ion electrons with ligands should
take into account two-body relativistic effects, such as interaction of the spin a central
ion electron with the orbit of a ligand electron, etc. Such interactions, after appropriate
averaging over states of ligands, can also lead to contributions to the parameters of anisotropic
spin-orbit coupling for £ > 0. Such contributions are a counterpart of those to ¥ mentioned
‘in the preceding Section, which are related with electrostatic exchange effects with ligand
electrons. In the present paper, we neglect such effects and restrict ourselves to crystal field
theory, where interaction with ligands is replaced by a purely electrostatic field.

5. Final remarks and conclusions

In the present paper, we derived the one-particle anisotropic spin-orbit interaction
Hamiltonian for an N-electron system in a crystal field having any point group symmetry.
We moreover expressed the matrix elements of this Hamiltonian in the basis of arbitrary I
configuration states as known functions of independent radial parameters. As shown here,
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such an interaction leads to a splitting of free ion energy levels, similar to splitting by the
crystal field. Evaluation of the radial parameters in the point charge model of the crystal
field leads to the conclusion that the contribution of these interaction to the total splitting
is, in general, negligibly small. One can, however, expect the role of this interaction to in-
crease considerably in the case of orbitally non-degenerate levels, since such levels are not
split by the crystal field in the first order of perturbation theory.

According to the general formulas of Section 3, it can be concluded that the radial
parameters describing the anisotropic spin-orbit coupling depend in a complicated way
on the distribution of multipole charges and that this dependence is other than that of the
usual crystal field parameters.

We use the concept of spin-orbit coupling in the so-called quasirelativistic approximation,
where the states of an individual electron, as well as those of a system of N electrons are
obtained by non-relativistic quantum-mechanical methods, replacing relativistic effects
by additional terms in the Schrédinger Hamiltonian, such as spin-orbit, spin-spin coupling
etc. According to Refs [2; 3, 4], such an approximation differs from a strictly relativistic
description by quantities of order (v/c)?, where v is the mean velocity of an electron. A different
approach is due to Wybourne [11], who considered a relativistic electron i.e. one whose
wave function obeys Dirac’s rather than Schrédinger’s equation in a central field perturbed
by a crystal field, and showed that the crystal field leads to spin-dependent effects. Wybourne
formally generalized the results for one electron by using the concept of the so-called “‘relati-
vistic LS states” introduced by Sandars and Beck [12]. In this formalism, the matrix elements
of spin-dependent interactions are functions of relativistic radial parameters. In our opinion,
both Wybourne’s and our approach describe the same physical phenomenon. A detailed
comparison of the assumptions and results of two approaches will be the subject of a separate

paper.
APPENDIX A

Dertvation of formulas for the invariants G,(k, k', 1), G (k, ', 1)

In order to derive Eqs (26)—(30) from (24) and (25), it is convenient to compute the
matrix elements (I||@(4, a, )*®)|jl) given by (12), as well-defined functions of I and #.
Using the well-known formulas for the matrix elements of w( (see Eqs (31) and (32) of
Ref. [1]), the formulas appropriate for the 6j Wigner symbols [13], and the relation

() cea | 1—1) ((21—1) (2l—kq+1) 21+ka+2) >/
(| CED 141y — \  (21+3) @l+ka+1)(2l—ka)

which can be easily obtained from the formula for a reduced matrix element of spherical
harmonics (see e.g. [6]), we can perform analytically the summation in (12) and express
(1110(A4, a, B)®¥)||)) by (1]|C*||14-1) (I in (12) runs over [—1, [+1 only). The results are
assembled in Table II. For the case & = k, on substitution of the appropriate quantities
from this Table into (24) and (25) and using the relation

(@ o+ I4]) ( (k—1) (k+1) 21—k+2) QI+k+2) )/ w
(] CEDI+]) k(k+2) QI—k+1) (21+k—+3)

(A1)
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which can be derived similarly to (Al), we immediately obtain (26). Similarly, for " = £+-1,

we obtain

2-3(+1) k+3) V%1 1 1 } I A
Gn(k,k+1,l)=—(— oFr1 ) b1 g fCHIYE X P*O]&+D]| 1)
(A3)

and for ¥ =k—1

2 -3(21;—1))%{1 1 1

21 ) \k k-1 k—l}(l” [YEDxPOE-Dl]). (Ad)

Golle, k—1, 1) = — (

The expressions for G, for these two cases are given by (29) and (30), respectively. Introducing
the appropriate formulas for the 6; Wigner symbols from [13] into (A3) and (A4), we obtain
(27) and (28), respectively.

TABLE IT
Expressions for (I}|[YRax w1 |1)/(I||Y*4]|l--1) as functions of [,k

k ‘ E { w,=n l w, = 7
i - (24 3)(2k+3) 21+ k-+2) 2\ QIL3)@2h+3) @I+ k12)
Bl 0 1 [ erryer-merkry |
2 21+3) ’
- %
kol b1 0 L (_<21+1><21 fw)
2 21+3

| QY E-1)@—k+2) \ % | k1 [ @E)E—1)@I—k+2) \ %
| | \@I+3)@E—1) @I—Fk-+1) 2\ Q+3)@k—1)@2I—k+1)

APPENDIX B

Relations between the invariants G,, G, and the one-electron coefficients of Ref. [1]

In order to check the numerical computations related to the evaluation of matrix
elements of Hg, (4), it is convenient to derive certain relations between the coefficients
of this paper and those of the preceding one [1]. In particular, these relations enable us to
verify anew the Tables of both papers. Since the coefficients G (k, k', 1) and G_(k, ¥', [)
are, according to (27)—(30), proportional to (I]|@(4, a, B)*)||]), and the coefficients
GG 75 )y 0o J's k) of [1] are expressed® by S(j,j’, k, 4, @) see (53) and (54) of [1],

* In the right-hand term of formula (50) of Ref. [1] (which provides the definition of S(j,j’, k, 4, a)} an
additional factor 2-17~1/% should appear. Moreover, in Tables IT and III of [1], the constant 7~1/2 is omitted
everywhere.
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The reduced matrix element of I’ Aa(’;) in the basis of one-electron Im;> states is,
according to (10), equal to

(G BN = [+ +1)(2k+1)] % x

L3
x 2 UOA, a, ®NGEIsDVIR) | 1§ ) (B1)
Bk
Comparing (B1) with (49) of [1], we obtain for [ =1'=3 (the f* case)
3% - :
2 BlOU, a, B®NI3) | 3§ ' = (=123 - ) ES(j, 1, k. 4, a). (B2)
= E 1k

By means of this formula, the Tables of {1] and the column I = 3 of Table I of the present
paper have been checked.

The author wishes to thank Docent Dr L. Kowalewski for his helpful discussions as
well as for the critical reading of the manuscript.
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