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ELECTROMAGNETIC WAVE DIFFRACTED AT SINGLE AND DOUBLE
CRITICAL POINTS

By T. Nieroxojczycki®
(Received March 5, 1971; Revised paper received May 13, 1971)

Formulae for waves diffracted at double and single critical points are obtained by the sta-
tionary phase method on the basis of the electromagnetic Helmholtz-Huygens principle. The case
of a spherical diverging wave and observation points far from the shadow boundary is considered..

Introduction

The electromagnetic theory of diffraction given by Kottler (1923) provides and approx-
mate solution to the diffraction problem for the Kirchhoff screen. Kottler, following the
liines set by Larmor, properly interpreted the electromagnetic Helmholtz-Huygens principle
and built a theory analogical to the Kirchhoff theory of diffraction for the scalar case, espe-
cially emphasizing the point of view of Young’s type of interpretation. The application of
the stationary phase method to Kottler’s formulae makes it possible to present the electric
and magnetic field strengths, E®) and H®), of the diffracted wave in a way which is simple
and easy to interpret from the physical point of view.

Karczewski and Petykiewicz (1967) used the method of stationary phase in the Kottler
theory for obtaining a formula for the diffracted wave originating at smgle critical points,
valid for any region of observation.

In this work the stationary phase method is- applled to Kotiler formulae obtained in the
approximate form for large wave numbers % and observation regions far from the shadow
boundary. Approximate expressions for the wave diffracted at single and double critical
points, valid for points of observation distant from the shadow boundary, are obtained.
These formula, in the case of single critical points, are identical within the range of appli-
cability with the formulae of the above-cited authors. Also, the polarization state of the
smgle contrlbutlons to the diffracted wave is discussed.

1. Kottler’s theory

The Kirchhoff theory of diffraction in the scalar case makes use of Huygens’ prin-
ciple and certain assumptions, the so-called Kirchhoff condltlons, as to the state of the
field on the screen and diffracting “aperture.
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Kirchhoff definés the state of the field at any point of observation P within a region R
by means of a certain function satisfying the vibrational equation. This function depends
on the point Q lying on the surface F bounding the region R. Kottler extends this procedure
to the vector functions of a electromagnetic field, viz. E(Q) and H(Q).

Assuming that Sommerfeld’s conditions are fulfilled at infinity, Kottler gets the fol-

lowing expression for the electric field E(P) and magnetic field H(P) at the observation point
P (Kottler 1923):

E(P) = Byt o f (X By Qo+ o grad f ds-HQ) (Ll

H(P) = Byt o f (A8 X H,(Q))o— - grads f (ds- By(Q)o.  (L1b)
B B

The vector components

E, = E(L, P)+ —4-1; f df {EO(Q) b%w—w —9?; Eo(Q)}- (1.2a)
J

H, = Hy(L, P+ o f df {HO<Q> - -%Ho(@} (1.2b)
S

are an analogue of Kirchhoff’s solutions for the scalar case. The surface integrals extend
over the illuminated part of the screen S, and n denotes the normal to S directed towards
the shadow half-space, Ey(L, P) and Hy(L, P) represent the field of the incident geometrical
wave from the source L at point P. The function @ = ¢*"/r is the spherical-symmetrical
solution of the vibrational equation, r standing for the distance between the observation point
P and point of integration Q. Ey(Q) and H(Q) are the respective values of incident electric
and magnetic fields at point Q. The edge integrals are found from the jump values of the
tangential components of the electromagnetic field at the edge B of aperture f in the screen.
These discontinuities of the electromagnetic field’s tangential components at the screen
edge are equal to the values Ey(Q) and Hy(Q) of the incident wave’s field at the given point
Q of the edge B. The subscript P at the operation of differentiation means differentiation
is done with respect to the coordinates of the observation point P.

The addition of the edge integrals has the purpose of correcting the surface integrals
so that the whole would satisfy Maxwell’s equations. When the surface F is closed and the
values of electromagnetic field at F are continuous, the integrals vanish and the Kottler
representation of Huygens’ principle transforms into the scalar Huygens principle for the
various components of the electromagnetic field vectors. '

As the source of the field undergoing diffraction Kottler takes a vibrating linear electric
dipole, whose moment is parallel to an arbitrarily oriented constant unit vector. The field
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of the spherical wave emitted by the dipole has at point Q the form

P ezke k2 eikq
O(Q) 4 gradL 9 0 E 0 . (1.33)
7 ik
H(Q) = — ik; (thradL GQQ )!. (1.3b)

The subscript L at the gradient operation denotes differentiation with respect to the coor-
dinates of the source L; p = |LQ) is the distance between source L and point of integra-
tion Q.

The solutions E, and H), are solutions of the jump problem, analogous to Kirchhoff’s
solution in the scalar case.

The subsequent procedure with the E, and H, vector components is identical with
that in the scalar theory. In the case of an incident spherical wave ((1.3a) and (1.3b)) we get
the following expressions for the state of the field in the shadow half-space

E,= 77E0+ (gradL —+ tkz) u®XL, P) (1.4a)

H, = nH, —I— (t>< grady u®®)(L, P)). (1.4b)

7 denotes the Heaveside function. In the light cone 5 =1, whereas beyond it n=0.

The characteristic function
714
um — f X0 g (L5)
Am ro ro-+re

appearing in Eqs (1.4a) and (1.4b) is the well-known diffracted wave for the scalar case.
By ¢ the phase function { =r+-¢ is denoted.

Finally, after replacing the terms E in (1.1a) and H in (1.1b) by Egs (1.4a) and (1.4b),
respectively, the solution to the diffraction problem for a spherical incident wave takes the
form (Kottler 1923)

1 d 1
E(P) = nEy+ . (gradL T —I—tk2) u®)L, P)+ - f(dsXEo(Q))w+
5

4+ — py L A gradp j (ds - Hy(Q))w (1.6a)

B

H(P) = nH0+ (t>< grady uP (L, P))—|— -_— f(dsto(Q))w—l—

- ! ik gradp f(ds - Ey(Q))w. (1.6b)

B
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The electromagnetic field represented by the edge integrals depends, in the case of a spher-
ical incident wave, only on the state of the field at the points Q of the edge. Thus, Eqs (1.6a)
and (1.6b) are a mathematical formulation of Young’s ideas. According to them, the state
of the electromagnetic field at the observation point P is the result of interference between
the directly incident wave and the wave reflected by the aperture edge. According with
this approach, the expressions .

E® — 41 (gradL ° +tk2)u(D>+— f o(ds < EqQ))+
B
1
+ g gradp [ w(ds - Hy(Q)) (1.72)
B

ik 1
HD) — — o (grady, u®@ xt)+ - fw(dSXHo(Q)+

B

%;; gradp j w(ds - Ey(Q)) (1.7b)

B

are defined as the diffracted electromagnetic wave.

2. Approximate form of Kottler’s formulae for observation regions distant from the shadow
boundary

Before applying the stationary phase method to Kottler’s formulae, we shall approximate
them as follows. We consider an electromagnetic field of such a high frequency that all
terms proportional to the wave number k at a power lower than that of the % in the leading
term may be neglected in Eqs (1.6a) and (1.6b).

In observation regions placed far from the shadow boundary all terms in Kottler’s
formulae behave regularly. Bearlng this in mind, we make the following assumptions
(Appendix 1):

gradLi uD) ~ — L ff(s)e”’CVLg = ods 2.1)
oty i3 =ty
) B
ikr k2 1.1 )
gradp [ (ds- H, er : o er@ [(Ex Vo) - So|Vprds 2.2)
B

grady, u® ~ % f 1()e* P Lods 2.3)

B

oikr k2 etk
gradp | (Sg By — ds~ — — ik f S, t—l— — (VLQ) J Verds  (2.4)
r 4o o
B B



789

9 eike B . 90
~ — V 2.5}
gradp = QtL o 5 e 9t Lo (2.5)
iko Coike
grady "’Q ~ ik Vo @2.6)
where
1 1 (rxe)-s,
= : 2.7
O @7)

8, denotes the versor of the tangent to the element ds.
We now introduce a set of three vectors e,k and g, respectively defining the direction
of the electric and magnetic field and the direction of the incident wave’s propagation.

do
e=1— ~—~—I7L@'— 2o X (EX gy) (2.8)
h=txg, (2.9)
2 = Voo (2.10)

After putting (2.5) into (1.3a) and (2.6) into (1.3b) we get with the help of vectors € and
h the formulae for the field of the incident wave at point Q,

k< eikg

EyQ)~ 4~ . ° (2.11a)
k2 etke

H(Q)~ 5= I (2.11b)

When Eq. (2.11a) is substituted into (1.7a) and correspondingly (2.11b) into (1.7b)
the diffracted wave, owing to (2.1), (2:2) and (2.4), is described in terms of the set of vectors
e, h and g as follows:

k2 eikC (”'XQ) s
(D) o — )" S
B 167 f e [ ro+re e+ (8030 So)r | ds (2.12a)
k2 eikC ("’XQ) .'s
D) ~ AT XE) "% .
" 1672 f ro [ ro-+re Rt (soxh)+(e 50)’"0_ ds. (2.12b)
B

We denote by

rX S
9e= ( rei)ra ® e+(5x€)+ (b - Sy (2.13a)
and
= _(in.x_g):i)_h_f_(soxh)_l_(e N 80)"’0 (2.13}))

ro--r¢
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the direction of the electric and magnetic fields, respectively, for an elementary diffracted
wave originating at element ds.

Owing to the approximations (2.11a), (2.11b), (2.12a) and (2.12b), and with the aid of
Eqs (2.13a) and (2.13b), Kottler’s formulae (1.6a) and (1.6b) take on the simple form for
observation regions placed far from the shadow boundary:

k2 esz etké
E(P) ~ — ep—{— — gEds:l (2.14a)
L2 ikR 1 ik
H(P) ~ 54— [n %hp K f er ngs] (2.14b)
B

where

ep =Ry xX(txR)

hp, =txR,
Lrp R
ROZ Tm: F.

The form of Eqs (2.14a) and (2.14b) is convenient in the application of the stationary
phase method for finding asymptotic expressions describing the diffracted wave.

3. Calculation of the diffracted wave by the stationary phase method

If we assume a finite number v of single critical points Q; and a finite number u of

double critical points (., the field of the diffracted wave at the point of observation is

given by
v ©
E® =3 EP+ 3 EP) (3.1a)
= =
HD — Z HP) Zv b/ (3.1b)
j¥=1

where E](D) and H(D) are contributions from ¢, and
E(D) and H(D) are contributions from Q..
We obtaln the expression for the contribution E](D) and II}D) to the diffracted wave
coming from a single critical point (by applying the stationary phase method directly to
the formulae (2.14a) and (2.14b)) in the form

- g ij:El)
2 Kl e ( .
EP ~ l/ e gE{ (3-2a)

12| ro 5]

Bhoo (rer+7) ]
D) _, i
H ]/ S et 9 (3.2b)
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Expressions in the same form as above can be obtained for the diffracted wave in ob-
servation regions far from the shadow boundary from the general formulae of Karczewski
and Petykiewicz (1967) if we make use of the approximations given by these authors and
utilize the approximation given in Section 2 of this work.

Tt follows from the shape of the functions gz (2.13a) and @ (2.13b) that the applica-
bility of Eqs (3.2a) and (3.2b) is limited. At the shadow boundary these expressions become
infinite, whereas the diffracted wave actually only undergoes a jump by a value equal to the
incident wave, as was shown in the electromagnetic case by Karczewski (1961).

A further restriction on the applicability of the formulae written above stems from
the assumption that in the expansion of the phase function {(s) into a series the first two
non-vanishing terms are sufficient to represent the function ¢'*¢ in the vicinity of the critical
point with adequate accuracy. This assumption requires the {; to be adequately large;
for small C;' formulae (3.2a) and (3.2b) cannot be applied. In such a case subsequent terms
of the expansion of the function {(s) must be taken into consideration. In particular,
when the active regions of two critical points overlap account must be taken of the
existence of two extreme values of the function ({(s). In mathematical terms this

corresponds to the expansion
]' rr ]' 11
L) =&+ 5 =) "+ = ()" ©-3)

Using this expansién we find the contribution to the diffracted wave (2.13a) and (2.13b)
originaiing at a double critical point, viz.,

si+dsj

2 ikl e[ L ospyeeyr o X s g
o K e [ 5 =+ g sy i
Ey == 167!??_(]51. e [ 2 6 ds (3.4a)
sj—dsj
sj+dsj
) k2 okl ik [% (s—sj)zcj"Jr%(Hj)m'"]
H]‘* == —]Et?r—g gHj € . dS. (344]3)
sj—dsj

With the use of a new variable w defined by the equation

3
3 i
S—8; = 7 W — Q7
J 1t 1
ki &

the integral ¢ver s may be written in the form (Rubinowicz 1924a)

Sj;i—ASj 1 1
i [5 (=sapty + g sty ]
RiE 5 ds

sj—dsj

Ty v
Vo (i)
3 N4 4 E
27 [ s R— i — (w®—~mw)
= W € 3¢ e 2 dw. (3.5)
&i

, .
kcjlll . cjfl
‘/ 37 (‘A”+ c,-”')
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rr

7

e
. . jb

extend the limits of integration from — oo to + oo and resolve the integral (3.4b) into

a double Airy integral. After applying the above transformation to the integrals in Eqs
(3.4a) and (3.4b) we get the contribution of the double critical point to the diffracted wave,

The condition Asj > on the active element of the arc enables us at & — oo to

e e H
B _% 3a e'.k(c” 3)

(Pl ol e = qp.Ai(m ‘
EJ 87'[2 ké—]{ 7. I’Q . gE,Al(m) (3.6&)
: &y
3 /5 Ik (51'"' 35—,2)
)y _ 3m e i :
" ~ o B P Gr,Ai(m) (3.6b)

where

+00

T ,
Ai(m) — f cos (2 W mw) duw
0
/3 5
- 7'62 C;,“/’ .

The diffracted wave (3.1a) and (3.1b) calculated by means of (3.2), (3.2b) and (3.6a),
(3.6b) has the form ’

s 14
E® ~ Zl A+ Zl AuAi(m) gz (3.7a)
j= =
id “
HD ~ 3 Agy—+ Y AjAilm) gy (3.7b)
j=1 7¥=1

where

),
el G e
y B 2/ 3 eik(cﬁ_ 3C:'"'2)
A kT ro )

4. Structure and polarization of contributions to the diffracted wave coming
from an active element ds of the edge

When the formulae (3.4a) and (3.4b) for the contribution of an element ds of the
diffracting edge to the diffracted wave are derived it is assumed that the element ds contains
an active point Q; at which the phase function takes on extreme values. This condition
leads to the equality (Rubinowicz 1924a, 1966)

cos (g, ds) = —cos (7, ds).

The senses of the vectors g and r are towards the element ds.
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This result means in the first approximation that the element ds reflects the incident
wave (2.11a) and (2.11b) over the surface of a cone with the point (; as its veriex, an angle
of the axial section equal to 2X <X (g, ds) and axis determined by the vector dS.

The contribution to the diffracted wave is linearly polarized. The plane of vibrations
is determined by the vectors -~ and gy, where —# denotes the direction of wave propaga-
tion. By gg, we denote the vector of electric field vibrations for the diffracted wave contribu-

tion coming from the active point ¢,

g = q(r)+w;+r, cos (h, ds) (4.1)
where
~cos(n, 1) .
q(r) = 1Tcos " o) sin (g, ds)e (4.1a)
and

w;, =s,xe

n denotes the external normal to the shadow boundary at the active point of the element ds.
Vectors w; and e define the plane 7z, on which the vector %; = w;-+q;(r) lies. The vector
g5 lies in the plane m, determined by the vectors #; and u; (Fig. 1).

The plane 7, is a plane intersecting the cone Q; along a pair of generating lines of the
cone, of which one is the direction of the incident ray, —7. At fixed parameters Sg, € and ¢
the direction of the vector gy depends only on the direction of observation PQ;. The po-

\M

Fig. 1. Graphical presentation of the plane of vibrations 7, of the vector g ;. @ — trace of element ds on plane 7y,
bb' — line of intersection of planes ; and 7,, P — point of observation, < KQ;P — the angle arising due to the
intersection of the cone Q; by the plane 7,
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sition of the plane 7, is fixed; the plane 7, intersects the cone variously, depending on the
position of the observation point.

In a peculiar case, when the cone is degenerated into a plane (9.Lds and e || So);
Eq. (4.1) becomes

cos (n,7)
1+-cos (r, 0)

The directions of the vibrations of vectors of the incident wave and the contribution to the
diffracted wave become parallel. In general, the directions of the vibrations of the vector e
and vector g make a certain angle ¢ defined by

gE, . (4!.2)

€ gxg;
le| |gEl
g0+ s(r- 0

qu(r) +(2w- h)2+(w 20)%+-(h- so)2+2h so[q(r) cos (r, e)+w -h cos (r, h)—l—’w QO cos (r, 0]
4.3)

08 @ =

where g(r) is given by Eq. (4.1a).

In the case when the vector e lies in the plane determined by the vectors ¢ and ds,
we have the relations h.18y, w:9=0 and k|| w, thereby considerably simplifying
Eq. (4.3). We then have

!

sin (g, ds) cos (, -
]/ sin? (0, ds) cos? (n, r)+sin? (ds, €) cos? (w, h)(l—i— cos (r, Q))

cos @l ; =

(4.4)

The formulae given here are unsuitable for calculating ¢ near the shadow boundary.
The approximations (2.1) and (2.3) are invalid in this region.

The polarization of the coniribution to the diffracted wave near the shadow boundary
can be determined according to approximate formulae derived by Karczewski and Pety-
kiewicz (1967).

We give here the simpler formulation of the approximate expression for the vector E}D )
near the shadow boundary, namely,
2R
8nR 9z,

EP ~ —
where

.7

] 1 e
gz, = e cosac—zR'l/%klg,l o (Sq - R)r.

The value of cos & tends to 41, the sign depending on whether we approach the boundary
of shadow from the side of the light cone or from the side of the geometrical shadow. The
parallelism of the vectors € and gy, and the large value of the diffracted wave’s amplitude
give rise to very distinct interference fringes. When the point of observation on the cone
surface at (); withdraws from the shadow boundary, the direction of the vector = deviates
from the direction g, and this causes a rotation of the plane 7, and increase in < (gg,, €)-
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As a consequence, only the parallel components of the vectors E(P) and E}D)(P) interact,
what must bear some effect on the weakening of the distinctness of the Fresnel fringes.!

When the element ds contains a double critical point, the Eqs (3.6a) and (3.6b) apply.
In them, the Airy integral appears as the interference term. Interference is caused by the
interaction between the diffracted waves originating at two closely lying extrema, Q7 and
Q;« (Rubinowicz 1924a). The interaction takes place along the image curve Z;, that is,
the parabola which arises due to the intersection of the cones with vertices (; and Q..
The curve Z; is placed symmetrically on both sides of the element ds, in the plane perpen-
dicular to the strictly tangential plane.

When the point of observation moves along a fixed cone having its vertex at point @,
the direction of g, is always the same function of r, regardless of whether the point P lies
in the range of applicability of Eqs (3.4a) and (3.4b) or Eqs (3.6a) and (3.6b). The presence
of the other extremum does not affect the position of the polarization plane.

The state of polarization of the diffracted wave (3.7a) and (3.7b) is determined by the
superposition of the polarization states coming from the various active elements of the
edge B.

The polarization of the diffracted wave in the Fraunhofer region has been examined
by Karczewski and Wolf (1966) by means o coherence matrices. As a result they found
that if the incident wave is linearly polarized, then the diffracted wave is also polarized
linearly.

I wish to express my appreciation to Professor W. Rubinowicz for having proposed
the topic of this work.

APPENDIX A

We give here the calculations which lead to the approximations accepted in Section 2.

)
a) Accomplishment of the operation grad Bt on the function u(® (1.5) leads to the equality

o 1 o .

= D)y — - ‘714 3

grady, o ut) =+~ fgradL i e*¢f(s)ds
B

Afier operations under the integration sign are carried out, we have

gradLai D) = — fgradL ekt (ka(s) — ——f(s) )ds

- Bf [ 49 38+ g0 oo S+

d
*ou fs))]ds

1 A distinct drop in the contrast of fringes when withdrawing from the shadow boundary may be observed
in the experiment devised by Nienhuis (1948) (see Rubinowicz 1966, Abb. 26).
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Once the factor ™ is taken out before the bracket, we get inside the bracket a series which .
is asymptotic with respect to powers of £, namely,

grady o ul®) = — f [()gt—vm ( Lea )+

9 1 ) -
+ grady, f{(s) 9—2:) — 7 grad Ef(s)] e*tds.

Bearing in mind the assumptions made in Section 2, we limit ourselves to the first term and
get (2.1).

thr
b) Calculation of gradp f (8o Ey) ¢

ds, where E, is given by (1.3a)

We find that
9 eikQ e1k(@) 99
grady —— i TN —k? o P Vio. (Al)
Putting (Al) into (1.3a) we have
k2 etke [ 9o
‘EON — E Q (é)t VLQ i t) . (AZ)

By virtue of (A2) we get

etkr £ ik do |
. I ~— otkt L g - . :
gradp f (So+ Bg) -— ds o { . [( 31 Vio-+ t) so] Vot
B B
1 {99 '
—'— gradp [—]‘—Q— ('—97 VLQ+ t) SO:I} ds.

Proceeding in the same manner as in a), we restrict ourselves to the first term and
thus get (2.4)
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