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EFFECT OF A CONDUCTING SCREEN ON THE STATE OF
POLARIZATION OF THE WAVE DIFFRACTED ON A SEMI-PLANE

By A. Domarski
Institute of Physics, Technical University, Warsaw™

(Received Apil 1, 1971)

States of polarization of the wave diffracted on a semi-plane of finite conductance are
analyzed resorting to Wolf’s coherence matrix. A discussion is given of the influence of the
material constituting the screen, for various polarizations of the incident wave.

1. Introduction -

The aim of this paper is to give an analysis of the states of polarization of the wave
diffracted on a semi-plane of finite conductivity, in the zone of shadow and at a large distance
from the diffracting edge, resorting to Wolf’s coherence matrix. We start from the modified
Sommerfeld solution due to Raman and Krishnan [1]. It will be remembered [2] that it was
Sommerfeld who solved the diffraction problem for a perfectly conducting semi-plane.
His solutions of the wave equation in cylindrical coordinates (Fig. 1) were:

u= Flo, @, By)—Flo, D, —Dy) (L1a)
= F(Qv Qa‘(po) ‘l“F(Qa ¢7 _@0) . (1.1b)

respectively for the electric component (1.1a), for parallel planes of polarization and incidénce,
for the magnetic component (1.1b) at perpendicular configuration of the planes. The functions
Flo, @, D) and Flo, D, —Dy) are defined as follows:
1 ~
F(Q, @ @0) — ( - ) elwtpike cos (B—3,) j e~ i¥d) (1_23)
—
where 7 = (2m0) % cos H(D —D,),

and
T

-\ %
Flo, @, —®y) = (%) i gike cos (0+) f e=i7d), (1.2b)

where 7 = (270) % cos (D + D).
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Finally, Sommerfeld’s solutions for the diffracted wave, in the shadow zone at large
p-values, are of the form:

P e—ilke—at+nj4) [ 1 1
T 2@nk)% | cosk (P—By)  cosk: (P+D,) |’

" e—ilke—ot+aft) [ 1 1 13D
"= T T @ake)% | cos3 (O—By) T wosd (BB | (1.8b)

(1.32)
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Fig. 1. Definition of: angle on incidence @, angle of diffraction @, plane of incidence Oxy, and diffracting
edge. 0z

Raman and Krishnan [1] introduced coefficients C,+iD, and C, +1D,, . adjusted  to
represent the amplitude of the wave reflected at the illuminated side of the screen, for some
well-defined angle. They postulate solutions of the form:

u=Flo. ®, B)—(C,+iD)F(o, B, —By) (1.4a)
u = Flo, D, Do) +(C,+iD,)F(o, D, —Dy) (1.4b)
where the functions F(g, @, @y) and F(o, D, —D,) are similar to those of Sommerfeld (1.2).

In the zone of shadow and at large values of g, the functions for the wave diffracted at
the edge of a screen of the above-defined kind are:

o—ilko—wt+it) i Cs+iD, ] :
e =s. 3 . — L.
E, 2(2mko)% [cos%(@—@o) cos % (D+Dy) (15a)
. B e—ilke—wr+ /) 1 CP + iDP :'
H,= - - 22mko)% [cos%(@—@o) t ost (D4 Dy) (1.5b)

The analysis of the states of polarization of the diffracted wave in the zone of shadow
was performed for large values of g, since Wolf’s coherence matrix [3] is applicable to plane
or locally plane waves only, and this condition is fulfilled by diffracted waves only in the
far zone. Since the problem is symmetric with respect to the edge of the screen insofar
as regards the solutions of Raman and Krishnan, the present considerations are restricted
to the case when the wave vector is perpendicular to the edge. The considerations are for
a monochromatic wave, but can be extended to that of a quasi-monochromatic one [4].
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An analysis'of the states of polarizafion of the diffracted wave, using Wolf’s coherence
matrix, is due to Karczewski and Wolf [5] for screens fulfilling conditions of the ‘‘Kirchhoff
type” of approximate eleciric theory and approximate magnetic theory with arbitrarily
shaped aperture, and to Jannson [4] forthe perfectly conducting semi-plane.

2. Coherence matrix for ‘the incident and diffracted wave

The polarization of a plane eleetromagnetlc wave is fully defined by its propagation
direction, as represented by the versor 7 of its wave vector %, and the components of its
electric vector I or magnetic vector H. This is so because, for a plane wave, we have the
relations:

H=nxE n-E=0. 2.1)
We shall thus consider henceforth the components of E only.

We construct the coherence matrix for the components of E parallel and perpendicular
to the edge of the screen, since the conditions of diffraction are known for these components.
We accordingly introduce a supplementary coordinate system with axes L, M, K such

®z—uxis*_\r-z. ?y
M
/_(’ A

~ "-ﬁ,'.,¢0 screen

- |

O
Fig. 2. Orientation of versors K, L, M

that the component E, shall represent the electric vector of a plane wave with polarization
perpendicular to the edge of the screen, whereas the cemponent F; shall represent parallel
polarization (Fig. 2).

' With regard to Fig. 2, we have the relations:-

IxM=K, L -K=o. 2.2)
Assume
Ep(ty = Epoe ™0, Ey(t) = Epppebe=o0), (2.3)
with E;y and E, given by:
Epg= ape™r, Eyp = ay,e" ™" (2.4)

With the preceding notations, the coherence matrix of the incident wave is of the form:

I <ELEZ>a <ELE;V1> a,i, @ LaMei(Y’L—!PM) :
o = . . 2.5)
<E2EM>= <EME;\,I> (ZLG,Me_’(WL"lFM), a’i/f
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The diffracted wave component parallel to the edge is given by (1.5a),

‘perpendicular component is to be had from the relation
E .L b H z
with H, given by Eq. (L.5b).

Introducing now coordinates I, m, p as shown in Fig. 3, we obtain:

Al screen X

-

- -
Fig. 3. Orientation of versors I, m, p

whereas the

(2.6)

2.7)

In coordinates [, m, p, taking into consideration phase, and assuming the incident amplitudes

in the form E,4 and E,4,, we obtain:

El A ELoe—z(ke wt+n/4) E __A E o—ilke—wr+ajt)

where _
. nnlalh 1 GtiD, ]__ i
A= = )k [cos%(@—@o)l/ﬂ T st (@B | T
1 i C,+iD, .
Ao= — 5057 cos L(B—B)  cos i | = e
2(2mko)% | cos 3 (P—Dy) cos 3 (D+ D)

The coherence matrix for the diffracted wave takes the form:

[<E,E;“>, B> ] . [AlAi“<ELE}§>, A ACELEy
(E'E,>, {E,E,

B [{4114;‘[1,1,» A A3l ] [111’ L, ]
AT AL ) T LT,

ml>

A AKEL By, A A3<Ey 1

2.8)

(2.9a)

(2.9b)

(2.10)

with Iy 7, Ippp Iys Iy — the coherence mairix elements for the incident and diffracted

waves, respectively.
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3. Analysis of the states of polarizasion of the diffracted wave

By Eq. (2.10) it results that if the incident wave is totally polarized (det [y = 0), the
diffracted wave is totally polarized, too (det J= 0). As a matter of fact, we have:

det T = |42/ 4,]? det I, (3.1)

By (2.5), the coherence matrix for the case when the incident wave is linearly polarized
can be written in the form:
2

inmx
, as , BrOa€
Io = inm 2 (3.2)
@ 08", ay,

where n =0, £+1, £2, ...
By (2.10), the coherence matrix for the diffracted wave is:
|44/%a], Ay “L“Meinn]

* —inm 2
A1~42“LGM3 > |A2]2aM~

[rfa,i, s Q Me’(‘p‘_"’%“' ”")]

) —i(g1—@a+nm) 2 2
7 TGy Gy L s Tolas

(3.3)

The diffracted wave is now elliptically polarized, and caﬁ be described by the ratio of axes
and the angle of inclination of the larger axis with respect to the coordinate axes I, m, p.
Denoting the angle between the larger axis of the ellipse and the l-axis by 2, we have by
Ref. [6]:

Im+1
fg 20 = s Im Tdiml
In—"Tom
_ MZELEM[ei(%—wﬁnn)+eii(¢1‘_apz+nn)] _ 2ry7r201.00 €08 (1 —@p+n7) (34)
ria} —rfals ria} —r3ajy ’ '
whereas the ratio of axes of the ellipse is. now:
. i(Lom —Lomt) . 2r1ra 1.0 sin (@1 — @y +no) (3.5)
I+ Lo rio} +rda%s ) '
If the incident wave is circularly polarized, its coherence matrix is of the form:
Ic . a’i, aLaMeinn/Z B G’Z, 0,2 eim‘z/Z (3 6)
L R | 2,—inaz 2 -7
1 G , Gy a%e , @

with ¢ = a; = a,; and n = 41, 43, ...
In this case, the coherence matrix of the diffracted wave is:

e [| A1]2a2, A1 A:azeinnﬂ ] _ [@Zz, o 2a28£(¢1—¢n+m/2)] 5.7

#* — 4 —i(p,—
A3 Aya?e wmE A,|%a? ryraae HPr—9utnnl2) r§a2
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The diffracted wave is elliptically polarized; the inclination of the large axis with respect
to the l-axis is now:

It L 2ryr; cos (91— @a+n/2)

tg 20 = = i 2 Vb <) :
= Ill_Imm B 51 ——]‘% (3.8)
and the ratio of axes takes the form:
_ m—Lw) _ _ 2ryry 5in (¢; — @y +n7/2) (3.9)
Ill_"lmm T %+r % ’ )
If the incident wave is elliptically polarized, its coherence matrix is of the form:
It ot ' s Qe 510
0 Gy e =) a ’
LOME > M
That of the diffracted wave is now:
- ; AlAzaLaMem—Wm]
| A Aya,ape™FL7F0, | 4,2%03%,
[ r% ai . , rlrzaLaMei(%—wﬁY’L—WM) (3 1)
Y 17" 2“L“M8”i(%~,%+‘h._¥’ma r3ah J

The diffracted wave, too, is elliptically polarized. However, ‘the angle (denoted by £2;)
between the large axis. of the ellipse of the incident wave and the plane of incidence
can vary; this variability is characterized by means of the factor g of Ref. [6]:

g _ tg 2.9 : I]m"]—,[ml . ILL ._IMM
1929y Irm+lur  Tu—Lm
T [ei(¢1—¢a+wz.—WM)+e—i(¢1—¢afWLj<vM)] (ai_aﬁ/[)

[eivz—va) e~ vz=00)] (130} —r3uy)

__cos (¢ — @p+ Pr — W) * riry(al — o)
cos (YL — V) (ria? —r3a3s)

(312
The variability of the ratio of axes can be expressed by way of the factor d of Ref. [6]:

de Ipn—Iwut I+ Tnm _sin (@ — @+ ¥ — Pu)  rirslal +ad) (3.13)
Itsa—mr Lntlom sin ¥, — ¥y) (rfa? +1r3a3y) ’

The polarization properties of a partially polarized wave are defined by the polarization
ratio P [3] which, for the incident wave, is of the form:

- 4detl, 1% ‘
P=0pat=[1~ il ] 3.14
®= Tocouar. Tzt Iotsn)® (3-14)

For the diffracted wave, one has:

Lootar [ 4 det I ]y . [ 4737 det I, ]V
P — polats e ]_ = e = 1 — e . 3.15
5 T 7 (Rl ria)? (8.1
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4. Influence of the material of a conducting screen on the state of polarization of the
diffracted wave

The influence exerted by the properties of the material of which the screen is made
resides in its reflection coefficient. which, for a given wavelength, takes various values
from one metal to another. Assuming for simplicity that the incident wave is perpendicular
to the screen (D, = m/2), this coefficient becomes:

R = C,+iD, = C,+iD, = C+iD, (4.1)

For a perfect conductor R = 1, whereas for gold and steel at 4 = 0.58 x 10~®m the reflection
coefficient amounts to R, = 0.71 —i0.57 and Rg = 0.69 — i0.29 [1] respectively.

In order to simplify our further considerations, we introduce coefficients h; and Ag,
defined as follows:

: 2 2) 14

1 z o= e =
. 14, " [0052 (@—I— 2)-[—00052 (@ 2)] + [D0052 ((P 2)] '
;= 1 _ .

Bz . 7 . =\ [, ANE
cos % Q5+§)—Ccos—2~ @—E + | Dcos % @——2—

(4.2)
Ap = arg 4; —arg A, = ¢~y
DCOS%(@—%) : Dcos%(@—-;—)
= arc tg —aretg ———————— .
Ccos%(@—-g) +cos%<¢+’%) ccos%(gp—g) —cos%—(@—l—%)
4.3)

The dependence of %; and Ag in function of the angle @ is plotted in Fig. 4 for the perfect
conductor as well as for gold and steel.
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Fig. 4. Graphs of the coefficients sy and A vs. the diffraction angle @, for the perfect conductor (continuous
line), steel (dashed line), and gold (dotted line)
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- ‘In the case of a linearly polarized incident wave the diffracted wave is, as stated in the
previous Section, ellip ically polarized ; the deviation of the large axis of the ellipse from the
l-axis is, expressed in terms of h; and Ag, '

Z}LIZ—L cos (dg+nm)
tg 202 = A =— (4.4)

2
B3 (—‘35) —1
am

i

whereas the ratio of axes amounts to:

: ‘2h1—a£¥ sin (Agp+ nw)
am

§ = — 3
h% (—a—l-‘> +1

am

(4.5)

Graphs of 2 = f(®) and s = f(®) for the perfect conductor, gold and steel, are to be found
in Fig. 5. ' '

As results from the shape of s = f(®), the diffracted wave is always linearly polarized
(this is a degenerate form of elliptical pola,rization):’in the case of the perfect conductor

£2 S

T
0.4 ¢0=L2"
30° di . a
01 G - r
20°
0.2 - o
/”
0 0.7 "‘, /,/
,"/’
o
|F i L
24 3 5n i
2 3 8 T ¢

Fig. 5. Graphs of the inclination angle 2 between the large axis of the polarization ellipse and the l-axis, as well
as of the ratio of axes s vs. the angle of diffraction @, for the perfect conductor (continuous line), steel (dashed
line) and gold (dotted line) for the case of a linearly polarized incident wave

whereas, for real conductors, the ratio of axes of the polarization ellipse grows in function
of the angle @. Moreover, in the zone of shadow, the inclination of the large axis with respect
to the l-axis decreases in function of the angle @ in all cases, though somewhat less steeply
in those of gold and steel. At the surface of the screen (@ = 2m), the angle of inclination
differs from zero for real conductors only, and depends on the material of the screen.

With the incident wave polarized circularly, the diffracted wave is polarized elliptically.
The inclination now is:

2h; cos (A +nm[2)

B =——mpyy : ~(4.6)
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From the way this function depends on the angle @ it results that for the perfect conductor
the large axis of the polarization ellipse coincides with the l-axis throughout the entire zone
of shadow but exhibits a constant inclination in the case of real conductors amounting to
0,,=11°20" for gold and to Qg = 19°25' for steel (tg 22 = —D/C). The ratio of axes is

given here as follows:

2hy sin (Ag+nm/2)
o h3+1 '
From the graph of s = f(®) (Fig. 6), the ratio of axes varies more slowly in the case of a real
conductor than in that of the perfect conductor. Sigaificantly, however, the differences
S

S =

(4.7)

0.5

31 5k nr
2 3 6 a ¢

Fig. 6. Ratio s of axes vs. the diffraction angle @, for the perfect conductor (continuous line), steel (dashed line),
and gold (dotted line), for the case of a circularly polarized incident wave

in this respect are but slight — an essentially important result from the experimental point
of view.

With the incident wave elliptically. polarized, the diffracted wave is elliptically polarized
too. The variation.in inclination of the large axis is-given by the factor g: '

g Cos (dg+A¥) h’ [(«%)2;1] 3 (4.9)

cos AY h%(ﬂ)z N
ap

where AY =¥, —¥,,. The behaviour of this inclination is shown in Fig. 7 in function
of the angle @. For the perfect conductor, the angle subtended by the large axis and the
l-axis decreases to zero in function of the diffraction angle whereas for real conductors this
tendency is weaker so that even at @ = 2z the large axis fails to coincide with the [-axis.
It is significant that the factor g, for real conductors, depends not only on the parameter
ay @y of the incident wave but, moreover, on the difference in phase A of its components.
The factor d describing the variation of the ratio of axes depends, too, on the same para-
meters of the incident wave:

sin (g +4¥) %):ﬂ _

d= sin AY .

A

>
o
——
|@
h
S
"N
+
fa
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Fig. 7. Inclination of the large axis of the polarization ellipse with respect to the l-axis vs. the diffraction angle @,
for the perfect conductor (continuous line), steel (dashed line), and gold (dotted line), for the case of an elliptically
polarized incident wave
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Fig. 8. Polarization ratio P of the diffracted wave vs. polarization ratio Py of the incident wave, for the perfect
conductor (continuous line), steel (dashed line), and gold (dotted line)

Y w m
2 3 3 ;

Fig. 9. Polariration ratio P vs. the diffraction angle, for the perfect conductor (continuous line), steel (dashed
‘line), and gold (dotted line)
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The presence of the factor sin (Ap+-AY¥) in Eq. (4.9) suggests that for certain angles @,
for which Ap = —AY, the diffracted wave will exhibit linear polarization (d = 0).
Egs (3.14) and (3.15) enable us to express the polarization ratio P of the diffracted

wave in terms of the ratio Py of the incident wave:

{ Iz \ 2%
7 +1
P= [1 — (P3| MM || . (4.10)

3 o J
e
From the shape of P == f(Py) as plotted in Fig. 8 for I} [I};4,>>1, the polarizing properties
of the real conductor are seen to be worse than those of the perfect one.

The same conclusion can be drawn from the graph of P = f(®) (Fig. 9). The diffracted
wave is more strongly polarized than the incident wave and tends to total polarization (P = 1)
for the case of the real conductor, whereas in that of gold or steel the polarization remains
partial even at the surface of the screen. The situation is somewhat different for .[ il <1,
when P = f(h;) exhibits a minimum for &, . = (Iyy/I;,)% amounting to P_,,
= (Uradlaae/ i taand) % ' o

The formalism of the coherence matrix [3] permits a representation of the matrix of
a partially polarized wave as the sum of mairices of the totally polarized and totally unpola-
rized waves. We thus have:

L=, +1% I =B, @.11)
Ly =B, Iy = By +17

where 12, % .., ... are elements-of the coherence matrix of the totally polarized part of the
incident wave and I" is the element of that of the totally unpolarized part.With regard to
this, and on inserting the polariation ratio P, of the incident wave into the formulas for A
and P,.., we obtain:

I'min

ITr 4 1+P, h

1-P,
ht min = IMM T-;) e (4.12a)
1)
IMM (1 PO)
4P2 =2 iz i
P = | — i st —7 | - (4.12b)
(1—P2) (1 = ) +4p2 E
IMM MM

If I /By = 0, the diffracted wave can be totally unpolarized; this will occur for various
angles @ according to the kind of screen, since for I£,/I%,. =0 one has 7y min
=[14+Py)/1 —Py]*. A similar effect is obtained in approximate electric and magnetic
theory [7] as well as in Sommerfeld’s exact theory for the perfect conductor [4].
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5. Conclusions

The introduction by Raman and Krishnan of a reflection coefficient into the Sommey-
feld solutions permitted to relate diffraction with the parameters characterizing the material
of the diffracting screen. Coherence matrix formalism, applied to these solutions, has paved
the way for a study of the states of polarization of the diffracted wave leading essentially to
the following conclusions:

a) A screen consisting of a real conductor affects not only the amplitudes but moreover
the phases of the components perpendicular and parallel to the diffracting edge; this is not
the case for the perfectly conducting screen;

b) With incident wave linearly polarized, the diffracted wave is elliptically polarized,
whereas in the case of the perfect conductor it remains linearly polarized always;

¢) With the incident wave circularly polarized, the diffracted wave is elliptically polarized,
the large axis of the polarization ellipse subtending a constant angle with the [-axis even
for the smallest diffraction angles; in the case of the perfect conductor, however, the large
axis remains perpendicular to the screen always; ‘

'd) With the incident wave elliptically polarized, the diffracted wave ‘can be linearly
polarized for some angles. '

Conclusions ¢ and d appear to be the easiest for experimental checking.

All the functions describing the states of polarization of the diffracted wave depend
in a highly involved manner on the angle of diffraction @ makmg it necessary to introduce
the coefficients %; and Ag; in order to proceed to'plotting these functions, the two para-
meters had first to be determined and assumptlons made concermng the parameters of the
incident wave. -

“The author wishes to thank Professor Dr habil. B. Karczewski for his valuable hints
and advice. Thanks are also due to i Jannson, M. Sei., for his numerous discussions relatmg
to some problems of the present paper. :
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