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MAGNETIC THIN FILM OF ARBITRARY MAGNETIC
AND CRYSTALLOGRAPHIC STRUCTURE
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Spih wave theory is applied to a magnetic thin fiilm with non-translational crystallo-
graphic structure and arbitrary magnetic configuration. Equal amplitudes of the spin waves
at equivalent lattice points belonging to different translational sublattices with a similar configu-
rational envirpnment are assumed.

1. Introduction

Whereas theoretical papers are mostly concerned with cubic magnetic thin films witl
simple surface orientation, experimental studies deal also with thin films of complicated
crystallographical and magnetic structure. ‘

" In the present paper, we consideér a thin magnetic film with non-translational crystallo-
graphic structure consisting of » =1, 2, ..., p translational sublattices.

The position vector of a magnetic ion is given by the formula

R (n) R +Q,,, (1)

where g, denotes a vector distinguishing the »-th sublattice the components of which are
not entire multiples of the basic vectors a;, and

&) -
= Z T2 %;s : o 2
i=1
where n; are integers, iie. n;=1,2, ..., Ni.
Our considerations are for the general case, i.e. we do not restricl ourselves to an ortho-
gonal base of elementary vectors a; as done e.g. by Jelitto [1, 2].
The Valenta model [3, 4] is applied throughout. We regard the specimen as a set of
N; parallel unlimited lattice planes denoted by indices [ =0,1, ..., N;—1. Each’ plane
contains NN, lattice sites, the sites from one layer [ belonging either to the same translational
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sublattice » or to different sublattices vy, vy, ..., 7,. The layers are labelled according to the
formula

L, = (ng+og)m, ®3)

where m denotes the number of distinet types of layers in the considered film and pj is
a component of the distinctive vector of the »-th sublattice in the 7, direction.

For specimens with translational symmetry, the latter has also to be preserved in the
lattice plane, represented here by two translations % and 7, not paraﬂel to one another. The
set {t,}, where i = 1, 2, forms one of five planar Bravais lattices; the set of lattice planes
forms a spatial Bravais lattice. The translation 7, should be chosen in such a way that the
set {3} with i == 1, 2, 3 shall be a base of the spatial Bravais lattice. It is convenient to go
over from the set of basic vectors {&i} connected with the crystallographical structure of
the specimen to the base {#;} privileged in considerations regarding thin films, i.e.

L= Az'k“k? 4)

where ¢, is a transformation matrix.

In many papers, the vector 7, is assumed as perpendicular to the layer, that is, to the
surface of the ﬁlm, even though the set {;} does not on the above assumption form a Bravais
lattice.

For non-iranslational structures the position vector of a magnetic ion resolves into
the following components: :

R = 3] e = 3 oy ®
where n’;’-"caﬁ be 'iniegelis or fractions, ‘
R =0h) =T+, ©)

Above: '

7, = n{i,+nyt, is the plane posmonal ‘vectors of a magnetic ion from he v -th sublattice
in the layer I, and T, = n3,; the projection of 7, on the direction perpendicular to the film
surface is the number /(I =0, 1, ..., N3—1) labelling the layer and given by formula (3).

2. The Hamiltonian

In accordance with Heisenberg’s theory, the Hamiltonian of the system is of the form:

~

B Z Jov (z,, NS+ 8 Sviigrt ZWHM -5, (7)
%’I],V'l::f o vij
where
J,,,, (l 7 l’ ’) denotes the exchange integral,
Svl] i the spin operator (in %A units) of an ion in the l-th layer and belonging. to

the »-th sublattlce the position of the ion in the lattice plane being given by
the vector' J,, and
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F]f,gf is the vector of the effective magnetic field acting on the spins of the v-th sublattice
situated in the [-th layer.

The effective ﬁeld’[?lf;gf acting on an individual spin in the bulk of the specimen differs from

the field acting on a spin at the surface of the film. In the surface inhomogeneity approxi-

mation [5, 6] one has:

H 1 He = + H:lf f\s.urf 615’ (8)

vint

where H:xit is thee flective magnetic field acting on internal spins belonging to the v-th

sublattice and HE H «f is an additional field which acts in a2 manner to pin the surface spins
of the »-th sublattice, i.e. the spins belonging to the layers s == 0 (substrate surface) and
N;—1 (free surface layer).

We assume here the additional field Heff to act on the spins of the »-th sublattice belonging
to the layerss =0, 1, ... r—L and Ny—r, ..., N3—1, where r denotes the number of boundary

layers in the system, i.e.

B = AL+ 5o, )

v lnt

In order to diagonalize the Hamiltonian (7), we first transform 1t to bilinear form (16)
by means of the Tyablikov transformation [7, 8]:

Vl F S’Vl] (1 =2 g:: ) + Tvl]a - . (10)

where

vI] - Qvl]f(nvlj)avl] +‘Qvl] vl]f(nvl])

~ "

+
n’vl ] awl i vI 7"

The annihilation and creation operators of spin deviation, localized in the lattice point (v[}),
satisfy the Bose commutation relations

[aAvlj’ ’l’]’] - 6111) 6ll' if BRI
{“mv V1] 7l = [ Wl i a '1,] 0. (11

In the approximation of magnetic quasi-saturation

%
f(n,,lj)—{l— Z'Z} ~ 1. (12)

By putting various values of S l;v Sk and Spz into the formulae for the vectors Q,7 given
in [8], we can consider arbitrary magnetic configurations.
By the transformation (10), the Hamiltonian takes the form;

%:E0+jl+%2+%3+e#\4+’ . (13)
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where
Ey=— 5 Z VRS RS W R (134)
vl],v (i vl]
2 1 T omrd L 3 R S Dol 4
%1 = ‘é‘ Z Jw’(lja l] ) [51)17 '_ Tvly +Sw’l’7’ . Tvl?] - Z ,uvlﬂief' Toi}» (13}3)
vl;",w’l'_f' vl;"
ﬁu_" Av’ z
v Jvu(l]pl])Svl] VI] [ li "I‘nli]“‘
Syi? N
vl],'u l]
1 ol N Sl 5 L Twif
— 5 O TG 1R R 2 Y w37 G (13c)
Qi [P IR 23 vij /
. N Y
9?3 = w’(l_]7 Z] ) [Svlj Epi‘]: ‘ Tv’l’j’+Sv’l’j’ * Toly S,,r;'{?r], (lgd)'
VT 4 R
. i ” N T/ivl] nvl]
Ri==2 Y TS5 Sy G (13¢)
vl]a”l]
With respect to the condition of quasi-sa’:curation,
#Hs~0 and #,~0, (14)
and from the condition for minimum energy E,
gyf?l = 0. (15}
 We thus obtain the bilinear form of the Hamiltonian:
# = Ey+o#s, (16}
that is:
9% = E0+ Z [Avv'(l—.;’ l’;’) aA:i?&v’l7'+
W15
+%va’(l?7 )avl] vl] 1B* (l]’l])avlj ul]] (17)
where
T e O I/ r/ Vl] : S l" "’
AW'(Z]? l] ) :‘_va'(ljol )QVIJ : ‘l’l] { ]W (l]a ) l: S +
vl f <
-’v?' »v i e S .
g ST ST o T D 60077, (173)
SV i 7 Sv;
va’(l77 l,j’) == ] (l]’ v ’) vl] :/kl] it (17b)
By (G, 1Ty = =T, 05, V7") Q3+ Lo (17c)
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3. Diagonalization of the bilinear Hamiltonian
In order to diagonalize the bilinear Hamiltonian (17), i. e. to obtain it in the form:
# = const+ 3 E(#A) bibo, (18)
A .

where ZA);—; and bz, are respectively creation and annihilation operators of a spin wave of
energy FE(%2) and the wave vector

F=") w3 403 =% A3, (19)

i

z

with values x; calculated from the Born-Karmén periodic boundary conditions (provided
the thin film is unlimited in directions parallel to the film surface) and values A from the
boundary conditions for thin films, we use the Tyablikov method [7] and resort to the
results of Kowalewski’s papers [9, 10] concerning bulk materials of arbitrary structure as
well as those of Puszkarski’s paper [11] on ferromagnetic films of translational structure

(p=1).
Let us now transform the Hamiltonian (17) to the reciprocal lattice space by means
of the modified Tyablikov-Bogolyubov transformation:

&’vlj? - Z {uvlr(;;]') B;}-F’U:};(—??A) gi;Z}’
2

~ - e : - oA

@iy = 235 (8) b o,(—d) b_g), (20)
7

which has to fulfil:
Z {uvzj‘(_;z) ujl?(;j') “”w'}"'(;}-) ”;?(;Z)} = 5,,,,,6”,577,
E73

DO w530 —03.G0) w55} = 0, (21a)
A
and
2 (g7 (2 gz (1) 0,3 A ()} = 8326,
vlj
25 (g (0) 0,7 (2 XY —v, 7 (R, (2 A')} = 0. (21b)
vlj

The transformation (20) with the normalization conditions (21) reduces the bilinear Hamil-
toniELn (17) to the diagonal form (18) provided the transformation functions u,,,;.'(;]u) and
0,;7(%2) satisfy the following set of 2V equations (a set of two equations for each magnetic
ion, denoted here by (vl})):

B(e) w7 (32) = 2 (AT U Vty70) + B0, V) 0,76i00}
LM M

—E(ed) v,7(<2) = 3 (Bl U] Yty (i) + A% 0, VT Y0,0000)}. 22)

oy
i
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By translational symmetry in each layer and for each sublattice individually we can
write the transformation functions as follows:

w7 (7A) = (N34 e~ 7v ul(2) (23)

vij
03) = (V)™ ™7 (),
where N is the number of sites from the v-th sublattice in the [-th layer. The total number
of sites in the film is equal to N== ">, N3N;. In the nearest-neighbours approximation, each
magnetic jon (v lf) iteracts with i:)ns (v'l';') situated in layers
U =1+g,
where g = —r, —r+1,.., =1, 0, 1,2 ..,r
We denote by
e Gy = 3 &G o

-

»’

the structural factor, where X’ is the sum over nearest neighbours of the ion (v 1j) lying in

the layers ({+g).

With respect to asymmetry of environment, the equations for boundary spins differ
from those for internal spins.
For internal spin, they are:

2 Z (AL L8 (R) — B3I 8, Oya sl (2) + BLES ()AL o ey ¥(2)) = 0

v g=—r

2 Z (B () s Gayul# (1) + [ALS" (G 60) + B (i) 8, S g 0500} = 0, (25)

v g=—v

and for boundary spins:

S SV (A i) — i) O, o))+ By (R e Ay = O

v g

SV B () s () + A5 () yAsH8() + E(A) 8, 0 i 5} =0,  (26)
v g

with summation in Egs (26) extending over

g=0,1,....,r for s=0,1,..,r=-1
and
g= —r, —r+1,...,0 for s=N3—r, ..., Ny—1.
Because of the additional field pinning the spins situated in boundary layers, we have:
A7) = AL I]) =25 @7y

In order to reduce the set of difference equations (27) for boundary spins to the form
of the set of equations for internal spins (26), Jelitto [1, 2] proposed to introduce 2r ficti-
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tious layers with /= —r, —r+1,..., —1 and N,, N,+1, wey Ng—14rina manner to
obtain

2 3 ATy s () + Bt (st (R () = DL s s (Rt ()

v g v’

2 2 BT ]y (Dus B () + A () i G )y = X Ay (). (28)
v g v’
where summation over g proceeds as follows:
g=—r1,—r+1, ..., -1 for s=0,1,...,r—1,
and g =1, 2, e T for  s=N;—r, Ny9—r+1, ..., Ny—1.

Eqgs (30) form a set of 4r boundary equations. Accordingly, the problem resides in solving
the set of homogeneous equations for the bulk material (25) with the boundary conditions (28).
Owing to the introduction of fictitious layers, translational symmetry for each sublattice
is achieved in the 7, direction also, and one can assume particular solutions in the form

) = a0
o) = o~ 29)

The general solutions can be expressed as linear combinations of particular solutions:

2r
uh(2) = a, Z ay exp [i).f (N 32— L —z)]

i=1

2
d®) =6 Y b exp {izf (N — —z) ] (30)
sy ‘ : ‘ f

In order to calculate the energy spectrum, we insert particular solutions (29) into the
set of bulk material equations (25), obtaining Njp similar sets of 2p equations each, in un-
known amplitudes &, and 8,. In many structures one can assume equal spin wave amplitudes
in equivalent sites belonging to different iranslational sublattices if their configurational

environments are similar, 7. e.
ul(A) = uh(2) = ... uj,l(}u); ujl,lﬂ(}.) = h uzl,z(ﬂ); -5 u’m_1+1(ﬂ.) =... uf,m(l)
Vi(A) = 4(A) = ... vél(l); v 1) = ... vf,z(l); s U1 = .. o, ()
Oy =2 0y 7=y 30, g = By 5 3 @, g ey %y
Br=1fs=".. ﬂpll; Bour1 == oo Boys vovs Bppyoyr = - B

We thus obtain the following sets of homogeneous equations in the unknown amplitudes o,
and B, (o, = a,, and £, =B, ):

-

{[An(#) —E(%3) 0] 2+ By(22) By =0

INE

1

{BRGiu+[AZ(70) + E(22) 8,163 = 0, GHY)

M= §

a3
Il
=
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where

bi Px 4

Ag2d) = (pi—pi=d) Pe—pa-D1 % 2 >y Ay I, (%) -
y=pi—1+1 v'=pr-1+1 g=—r
bi b »

By (#4) = [(p;—pi-1) (Pa—pPe-DV* 2 x Pid B 8(17) I'%, (7). (32)

y=pi~1+1 ¥=pr_ 1+l g=—r

Above, the notation used for the ‘‘spatial” structural factor is:
2oy Jldg (7 p—ik
Ffv’(%}’) i yw’+g (%) e, (33)

From the set of homogeneous equations (31) which has non-trivial solutions when its deter-
Iminant vanishes, we can find the energy eigenvalues of the system. Quantization of 2 is
obtained by substituting the general solutions (30) into the boundary conditions (28) and
taking account of the normalization conditions (21) imposed on the functions of the Tya-
blikov-Bogolyubov transformation (20).

The simplest example of a film with non-translational symmetry is the ferromagnetic
film with structure consisting of two translational sublattices (p = 2) which we can consider
on the assumption of equal amplitudes of spin waves at equivalent sites belonging to the
two translational sublattices, since in this case equations (31) reduce to a form similar to the
form they have in the case of a single translational lattice (p = 1) discussed by Puszkarski
[12]; e. g h.c.p. (Co [13]) or spinel structure with magnetic lons at tetrahedral
A —sites (CoRh,0,, NiRh,0,, Cos0,). A case of non-translational structure consisting of
several translational sublattices with different amplitudes o; and §; will be discussed in
detail in a subsequent paper.

The author is much indebted to Doc. Dr Leon Kowalewski of the A. Mickiewicz Uni-
versity, Poznan, for suggesting the subject of this paper as well as for his stimulating and
helpful discussions as well as for critically reading the manuscript.
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