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WITH EXTERNAL MAGNETIC FIELD AND PSEUDO-DIPOLAR SPIN
COUPLING. 1. FREE-PARTICLE APPROXIMATION

By J. Urner

Institute foi Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw*

(Received February 17, 1971)

The spin-wave theory in the non-interacting-spin-waves approximation is applied to
uniaxial ferromagnets with simple and body-centred tetragonal crystal lattices and pseudo-dipolar
spin coupling. The influence of a homogeneous external magnetic field on the spin-wave energy
spectrum and thermodynamic quantities (magnetization, magnetic susceptibility, specific heat)
is studied. For the perpendicular-field case, the validity of the Tayblikov-Siklés (1959) long-
wavelength approximation is reexamined and compared with a new approximation procedure
which is shown to widen the restriction interval for the external-field-strength in the ferro- and
paramagnetic phases. In Part II, the theory is extended to include spin-wave interactions in the
lowest approximation, which leads to a temperature-dependent quantization direction and
energy specirum.

1. Introduction

The influence of the homogeneous external magnetic field on the thermodynamic
behaviour of ferromagnets with uniaxial anisotropy was studied in several papers [1-18],
using molecular field [1-7] and spin-wave theories [8-11], as well as Green’s functions methods
[12-17]. With a few exceptions, it was mainly the case of the longitudinal ﬁeld @. e, parallel
to the anisotropy axis) which was considered in those papers. Except for the papers [13-14,
18], only very recently became the case of the transversal field (i. e., perpendicular to the
anisotropy axis) again subject of extensive theoretical investigations [3~7, 17, 19], owing
to the field-induced second-order phase transition that can occur in this case.

The apparent deficiency of the paper [18] where a microscopic approach (spin Hamil-
tonian) has been used, is the inconsistency between the uniaxial anisotropy and the- cubic
lattice symmetry for which the numerical results aré présented. The aim of our paper is;
therefore, to apply the spin-wave theory to a comsistenily uniaxial ferromagnet, and to
examine the influence of an external field on its thermodynamical properties. Anisotropic
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interactions are purposely taken into account in the form of pseudo-dipolar coupling, as
this form of anisotropy enables one automatically to distinguish uniaxial ferromagnets
according to the crystal lattice and the degree of its deformation, and permits one to consider
the anisotropic interactions in the approximation of successive coordination spheres [20].
In the first part of this papel" the role of different approximations in the non-interacting-
spin-waves energy spectrum, as well as their influence on thermodynamlcal quantities, are
examined. In Part IT we shall investigate the influence of the spin-wave interactions in the
lowest approximation of the Holstein-Primakoff mapping showing, among others, that
they lead to a temperature-dependent magnetization direction.

2. The spin-deviation reference state

The system of spins in consideration is described by the Hamiltonian
H = Hgy +H,+H, 2.1)

The exchange -energy is given by,
Hpy= —>14 5157, (2.2)

A, = A(r—r')[1-6,] =0

where the lowerindices r = #, ' =7’ are lattice vectors, A,,,—1the exchange integral between
atoms at the sites  and 7', and S} denotes the components (5 = , y, z) of the spin vector
assigned to the site 7. (To the vector indices 7, », ... Einistein’s swihmation rule is applied.)
The energy of the system in a uniform external magnetic field s perpendicular to the
0Oy-axis has the form

Hy =B > (S} sin 0+57 cos 6) 2.3)

B= —u# >0

where 6 is the angle between the 0z-axis and the direction of the external field. The anisotropy
energy is taken in the form proposed by “Van Vleck [21]

Hp = Z D, [S"S" MS ) ] (2.4)

er

where @], are the components of the lattice vector between the sites # and #', and
D(lr —']) >0 is the pseudo-dipolar coupling function which at small distances can be
approximated by the exchange integral as follows [22]:

D] ~ [A(D)I(g—2)* @25

Here, [ is the nearest-neighbour distance and g is Lande’s factor.
Let ea and @ denote the lattice constants in the tetragonal direction (coinciding with the
0z-axis) and tetragonal plane 20y, respectively. As was shown in [20] for the field-free case, by
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minimizing the energy of the spin system Hpy+Hj, in the “saturation state and in' the
nearest-neighbour approximation, we get for tetragonal crystals the magnetically preferred
directions presented in Table 1.

TABLE I
Type of tetragonal Conditions for & Magnetically
lattice preferred directions
. P<e<l tetragonal axis
simple
(s.t.) B
B tetragonal plane
—_— L<e<)fd .
body centred . tetragonal axis
(b.c.t.) = — -
]/% <e<l1 tetragonal plane

Let us denote by | —S) the ground ‘state of the Hamiltonian H, mx in which the spins at
all lattice sites have the lowest eigenvalue -5 in the same (but otherwise arbitrary) direction.
In the representation where the components S? are diagonal this state corresponds to total
magnetic saturation and represents the spin deviation vacuum state [0 defined for all #
in the following way:

S70y = —SI0, S0y =0 (2.6)

where SE = S¥4iS).
Applying the operators S} to the vacuum state we get the complete and orthonormal
set of eigenslates |u) of the operators SZ,

—u)! |”
) = |..cltperny == {H [((2i§)—'(u:)) '!:I (S,'")ur} 10> (2.7a)

r

Syluy = (u,—S)|u) | (2.7b)

u,=90,1,2,...,28S.

In the case of the isotropic ferromagnet, the choice of | —S) as the reference state
(in the sense of [23]) is completely justified. However, the proper choice of the spin-wave
reference state (approximate ground state) for a uniaxial ferromagnet in an external
magnetic field is quite another problem if the spin-wave interactions are to remain suffi-
ciently small to justify the standard long-wavelength low-temperature approximation.
Different methods of determining the optimum quantization axis in the class of the so-called
homogeneous reference states for a general ferromagnetic Hamiltonian have been analyzed
in [24]. To find the homogeneous reference state for the Hamiltonian (2.1), the variational
method (method A in [24]) will be employed. The method resides in minimizing the mean
value of the Hamiltonian in the class of states |0(8)), generated from |0> by means of
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the imitary transformation U(¥), with respect to the uniform spin orientation given by the
angle 9. (Due to the neglection of higher than dipolar interactions we have in the field-
free case cylindrical symmetry with respect to the tetragonal axis. This permits us o re-
strict in our case the number of minimization parameters to a single one, &, which is the
angle between the quantization direction and the tetragonal axis.) This method is equivalent
{in a limited semse) to eliminating from the spin Hamiltonian the terms which are linear
with respect to the spin-deviation creation and destruction operators [24-26]. The transfor-
mation U = U(9) converts the set of vectors [u) into the orthonormal set

(@) = Utlu). (2-8)

It is, however, convenient to use the representation (2.7a). Therefore, we transform the
Hamiltonian (2.1) of our system as follows:

H= UHU* (2.9)
where [27]
US}U* = R,S] = S, 2.10)
In our case
cos® 0 sind
R,,= 0 1 o0 . (2.11)
—sin® 0 cos |

The quantity to be minimized with respect to ¢ is then
E, = (0|H|a). (2.12)
Introducing the direction cosines &, 8, y of the lattice vector between the sites ¥ and 7'

err'er_r’l = (“rr” ﬂrr" yrr’)
we get the following expression for Ey:

EO = —S52 Z Aw’+SZ Z 'Dr’r’(]' _—3731-') +

1352 Z D,.. [(y2.—a2) sin? & —a,,. 7,,. sin 20] —INSB cos (9 —0) 2.13)
Lo
where N is the number of lattice sites in the crystal.
The minimum conditions for Ey read

=0

0 _ 2.14
a0 > 0. (2.14)

In the following, three cases will be considered, namely, when the external magnetic field
forms the angles 0 = 0, 7/2, w/4 with the Oz (tetragonal) axis of the coordinate system.
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The solutions corresponding in these cases to a minimum of E, are presented in Table II.
In thermodynamical calculations we shall restrict ourselves to the case when the tetragonal

axis (0z-axis) is magnetically preferred.

TABLE II
External ‘ Minimum conditions for s.t. Minimum conditions for b.c.t.
field Solution — |
direction Yy<e<l \ 1<a<]/2 1/2/3<s<1 l 1<a<]/2_
sind =0 B-arbitrary ‘ B> —B; ‘ B> —B; l%’fzi_B-arbitrary
0=0 |- —— = — I e —
! cos®=—BJB] | Not fulfilled B< —B! B< —By | Not fulfilled
" sin = B/B} B< B! | Not fulfilled B< By
6= — — _ S - )=
2
cos¥=0 B> BY B-arbitrary B> By
! | | ; |
& = m/d+-arc sin @~ ‘ B-arbitrary Not fulfilled ‘ B-arbitrary
| = 5u/d—arcsing” ‘ Not fullfiled
6= Z - B
‘ # = mf4+tarc sin ¢t | Not fulfilled B-arbitrary \ Not fulfilled
| & =5n/4— arc sing* Not fulfilled
D
BY—=125Ds(A—1)  forst. D, =Dya) _ Diea)
Dy(a)

' -1 PR — 1B B\2
a — = —
Bb = 4851)1, FENY for b.c.t. Db = Db (? VEz—I—Z ) tpj: = ? [E;l— iV(E) +2:|

3. The spin wave energy spectrum

Let us pass in the Hamiltonian (2.9) to Bose operators, using the Holstein-Primakoff
mapping [28] in the lowest approximation:

SF=(S7)" > V2Sa}

4 + .
S = atfa,—0

\a,, af] =90, [a,aq]=0 3.1
Then we get
H=E,+H+H+... (3.2)

o, = Y (F.a,+Fha)) (3.3a)

T
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F,. = —35(5/2)%D,,[(y. —a2) sin 20 —
—2if, (@, sin &+, cos 9) —2a,y._, cos 20] +
+(S/2)%B3,, sin (0 —9)
B, = Z ar a, +3% Z K, aa,.+Karal)
Ny = 35D, [ 0ty — By +(@h, —y3)-sin? 9+
+ &, Y, 8i0 281 4-28(D, . —A,,.) +6,,. [B cos (¢ —) —
~2S 3 M,
M, = =4, +D,1-3y.)+3D,,[(y3 —a2.) sin® 9 —
OV S0 200]
K., = 38D, B2 —ak. +(a% —y2) sin® D+
+2iB,,B(a,, cos & —y,, sin ) +a,,p,. sin 20).

(3.3b)
(3.4a)

(3.4b)

(3.4¢)

(3.4d)

It is easy to verify that the solutions of the equation D1 F,,, =0 (which ensures the vanishing

r
of the linear part of the Hamiltonian (3.2), i. e., H; = 0) satisfy the necessary condition for

the minimum of E.
Taking the Fourier transforms of the operators ¢ oo in H,,

a, = V% Z bre'®, g — VN L bie—ikr
k

(3.5)

(where k =k are reciprocal lattice vectors and kr =k scalar products) we get

Hy = 3 [Nyt b+ 3(Kybyb_ o+ Kibi bt,)]
k

where
Nk = Z Nrr’ elr=rk ? Kk = Z Krr’ ei(r—r’)k.

Using the Bogolyubov transformation [12]

by = ue,+ope,

b = uped +ope_,
we obtain f, in diagonal form,

Hy = AEy+ 3] Eyci e,
%

where

= (V;—|Kl®)*%

(3.6)

(3.7)

(3.8)

(3.9)

(3.9a)
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is the energy a magnon with the wave vector K, and

AEy = —3 3} (N, —Ey). (3.10)
k

The coefficients u,, v, of the transformation (3.8) have the form [10]

.Nk—i-Ek K; N, —E,
= = . 3.11
“ ]/ 25 TR ok G1h

For weakly excited states (low -temperature approximation) the terms of higher than second
order in the operators a,, a; (interactions) can be neglected in the Hamiltonian (3.2). When
applying the above approximate second-quantization method, the following inequality must
hold [12]:

; |2 <€ 1. (3.12)

In the low-temperature region the major contribution to thermodynamical quantities
comes from the spin waves with small wave vectors. Therefore, V, and K, can be approxi-
mated as follows:

(?) for the simple tetragonal lattice:

~ B cos (#—0) +3B%2 —3 sin® ) + Sa?(24,+ D)) (k2-+
+ K2+ £2Ak%) —3Se2a?AD, [ ( ——) sin® ’ﬁ] (3.13)
K ~ 65D, { (k2 —K2) + [1 iy (Zszkz k,%)] sin? ﬁ}; (3.14)

(77} for the body centred tetragonal lattice:

Ny, ~ B cos (8 —0) +1Bp(2 —3 sin? 9) + Sa2x
2

_ 3D, 5 s 21222 6a%SD;
X {Z(Ab Dy) — ) {(1 —&2) sin2 9 2]} (B2 +E2+e%k3) 219 kyk, sin 20
. (3.15)
248D, a? .
K, ~ 82+26 {(1 —&?) [1 =g (E2+ kﬁ—l—e%ﬁ)] sin? & —
- %aza k. sin 219—!—1— (&%, sin O ~k,, cos 0)} (3.16)

where B?, B¢ and A are given in the explanations to Table II,

In deriving the above formulae we utilized the fact that the 0Oz-axis of the coordinate
system is magnetically preferred. Unfortunately, despite the simplifications (3.13)-(3.16)
the spin wave energy specirum in the form (3.9a) cannot be used for thermodynamical cal-
culations and, therefore, we are forced to make further approximations.

Let us expand F, in a power series with respect to the ratio |K|/N,

= N1} (Kyl/N)* .3 (3.17)
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TABLE III
Solution ’ Xos X5 Kos Ky
6=10 ‘ B4-B® Sa*(24,+D,) | 2Ss%a®A(4,—D,)
6= a2 1 B, 25a%(4,— D)) | Sa*(24,+D,) Sa*s*h(24,+D,)
B> B . o | | 1
Bg; Sa¥(4,~D,)g " g» Sa¥(4,8,+D,85)e] Sa®e*Mgad s+ g4D;)8]
6= af2 | 3 BoG, Sa*24,+D,G,) Sa*(24,+D,) 2502624, ~ % D,G,)
B<B* | S i ————
| BIG, Sa¥(4,G,+D,G,)Gy* Sa?e*i(4,G,—2D,G)Gy*
Go= [1— (B/Bg)1'/® Gy;=36,—5 gs= 2—BYB
G, =2—(B/B})? Gy= Gy+1 83 = 2&—3
Gy=2G,—3 81 [1“‘3,?/3]1/2 &=3—g
TABLE IV
. Solution ‘ KXo ‘ Xip ' KXo ’ D6 ’ KXy
6D, -
0="0 BB ‘ Sa? [2(A,,— D)+ £2+2] i
BT, Sa?T,
O0=mn/2 | o
B> B? .
: B 2X,
B, | [Sa2P0F4+ agz (Bg/B)Z] o S
ea®B
BTy Sel'y . 41—e?)  *
0= a2 B ‘ ‘ -
B < B ]
BeT, . @B pipmel _eaB teml ppeay
| [Sa Tyl —-* (BIBY* | T G| 2 (B/Bg)*+
-og2-1
Iy=1—BY2B Iy= [1— (B/BY?}2 To= 24y = Dy)+3Dy - 51

= (1— BBy

Iy=1-1, (B/BZ)?

Ty = 2(d,— D)+

3D,
2 __ Bll 2
ﬂa@ nwa+4
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The confinement to the first term of the above series is justified for appropriate field strengths
depending on the field direction. A careful analysis shows that in the case § = 0 the approxi-
mation E, = N, is valid for arbitrary B. In the case of a transversal field, § = /2, this
approximation requires for the solution cos # = 0 the condition B > B} to be satisfied,
and for the solution sin & = B/B? the field must be small as compared with the critical
field, i. e., B < Bf. In the case 6 = m/4 there is no restriction whatever on the strength of
the external magnetic field. For fields B~ BY, the -approximation E, = N, is inadmis-
sible in the case 8 = /2 and the condition (3.12) is violated.

Anothes way of approximating the energy Ej = E(k,, k,, k) is the expansion of the
square root in the formula (3.9a) in a power series with respect to small wave vectors [18].
From examining the energy spectrum we get field restrictions similar to those stemming
from the approximation (3.17). In Tables III and IV the results of both approximations
are presented respectively for the simple tetragonal and body-centred tetragonal lattice.
The first row for each solution corresponds to the expansion (3.17) and the approximation
E, = Nj. In cach case, the resulting (approximate) spin wave energy spectrum has the form

By = Xo 4 X, 120X o2+ Xo 2+ Xy o (3.18)

Lj"x 2,5y 3,7z 4,57z
where j = s, b for the simple and body-centred tetragonal lattice, respectively. Because of the

complicated form of Ej, for 6 = m/4 we do not present in Tables ITI and IV the respective
formulae for this case (which was not considered in [18]).

4. Magnetization, susceptibility and specific heat

Let us examine, first of all, the magnetization and susceptibility at zero temperature as
functions of the sitength of the transversal magnetic field. The saturation magnetization
for the simple tetragonal and body-centred tetragonal lattice, respectively, is equal to

.S 25
M=, Mg-_—s’;s.

ead’

(4.1)

Considering the case B < Bf, we get for the transversal (i. e., perpendicular to the anisotropy
axis) component of the magnetization, in the approximation (3.12), the formula (¢f. [24])

M, = Mj Ba j=sb (4.2)
B
and for the susceptibility components
. 7 . ] 21-%
L= Mg{o: const >0, g = — ij—w‘éﬁ[lf (—%) :l . 4.3)
7 . B)L \B

The dependence of X{I on B/B is shown in Fig. 1. On the other hand, one easily verifies
that M’} = Mij and g _L = 0 for B > B% Hence, when extrapolating our results to the critical
field region we find that the transversal component of the magnetization is a continuous
function of the field strength, whereas XJL has a jump for B = B} and %{l has a singularity at
this point. This indicates a second-order phase transition.
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' For the case 0 = 0 (field parallel to the anisoiropy axis), one easily proves that
M| = %{I =0 and ]W“ = Mj, as defined by (4.1).
If the field forms the angle 6 = 7/4 with the easy axis, the parallel to the field compo-

nent of the magnetization has the form

Mya = ML —g?)%

05 10 8/87

[G) 2]}

Mg
X
U Bf
05+
ol 07
70/
20
|
20
4.0
Fig. 1
where
1{ B
=V
2 B

(4.4)

(4.5)

Let us calculate now the magnetization for T' > 0. By virtue of (2.13), (3.2) and (39}

we have for the free energy

= E0+AE0+]L'BTZ In (1 —B_Ek/kBT),
k

The parallel to the field component of the magnetization is defined as

M[T,B = -+ >
MI[0, B] = —

AMIT, B] =

= M[O, B]~AMI|T, B],

(Eo+AE,),

OF; .
2B {ngp,

<= <=
£y § gé,@_)

(4.6)

(4.7)

(4.8)

(4.9)
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where
gy = (eBkaT 1)1 (4.10)

and V is the volume of the crystal. Restricting ourselves to low temperatures and to E,
in the form (3.18), we get for AM][T, B] the expression (A.1) of Appendix A. Slmllarly,

dUu
the spin specific heat ' = —— can be calculated from the internal energy
U= 3 E<{n> (4.11)
%

which leads in the case of the energy spectrum (3.18) to the formula (A.2) of Appendix A.
~ For the final thermodynamical calculations we shall use our approximation E, = N,

based on the expansion (3.17). As the structure of the formulae for MY[T, B], the magnetic

dMi (T, B
susceptibility g/ = u —— d[B J

and 6 = n/2 for B > B}, both cases can be described by the same formulae

- 1 [ ksT\ h; ]1
M-’[T, B] = M{) {]. = ﬁ ( 40”} ) Za/2 [—kB—T ’ . (4'.12)
g kB:r)% [ by ]
©IT, Bl = 8xSr; ( darr; 2% kpT |’ (4.13)
1 ﬁ)” { oy [ B
€= eade; (4:75. ks T2y kaT +
+3h,THZ [ Yo+ 2 kT, | 414
7 3a kBT B 5/s kBT ( * )
where
nhjlkET,
[kBT] ;n ~pg—nhilks (4.15)
In the case of the longitudinal field (§ = 0) we have in the formulae (4.12)-(4.14)
h; = BBz, 4.16)
) ¥
=1l = S(24,+D)" [2 (AS—DS)] ; (4.17a)
s (4y— Dy 572
n=rj =2 b= Do 5o (4.17b)
e =rl. (4.18)

From (4.12) and (4.16) it follows that the decrease of the spontaneous magnetization with
increasing temperature is slower in anisotropic than in isotropic (B;z = 0) ferromagnets.
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For the transversal field 6 = #/2 (and B > B%) we have in the formulae (4.12)-(4.14)
h, = B—}B? (4.19)

rn=rt=7, n=n= (2/11, +D o) -l ) ¢ =1r,". (4.20)
+2
Taking h; ~ B (i. e., B> Bj) we get from (4.12) a formula for the magnetization similar to
that obtained in [18].
When 0 = /2 and B < BY, the temperature-dependent part of the magnetization (4.7)
has the following form

. _# —y kgT : hj
AMAT, B] g Z; ( 7 ) 7/ [ T (4.21)
. where
. B2 B
=B P=—
s 2B j B 4.22)

and the coefficients &; are given in Appendix B. The temperature-independent part
M0, B] = M{L in this case is given by Eq. (4.2). Eq. (4.21) leads, for the approximation
B < B}, to the following formulae for the component of the magnetization (4.7) for
both crystal lattices:

. B 1 [T \%, [ B
VLT, B] = M {1+ = (mﬂ) z,,[k T]} (4.23)

Thus, for B < B} the transversal component of the magnetization decreases with
increasing temperature (at constant field), quite like in the'case B > B} (¢f. Eqs (4.12),
{4.19) and (4.20)).

The formulae (4.23) differ essentially from those obtained in [18] by the minus
sign of the temperature term.

The dependence of the susceptibility on temperature is in the case 6 = =/2, B < B}
given by the formula

| | . J %, [ by
Ay/1T, B) = 4710, Bl — [T, B] = L (42) {Wl’f‘z{Z% [TJH*

h;
+ Wo, T2y, [ T T]} (4.24)

where #7[0, B] = )1» as defined in Eq. (4. 3).
The coefficients ¥ depend only on the external field and on material constants and are
given in Appendix C for the simple and body-cenired tetragonal latiices. The spin specific

heat is still given by the formula (4.14), where &; is defined by Eq. (4.22) and
e? = Z.

J

(4.25)
(¢f* Appendix B).
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For the case § = /4 and T >0, the magnetization along the field and the specific
heat are given again by Eqs (4.7), (4.21), (4.14) and (4.25), except that M[0, B] = M,’;M:
as defined by Eq. (4.4), and the coefficients &; and &; as well as A; are (for the simple
tetragonal lattice only) given in Appendix D. The corresponding susceptibility can easily be
calculated according to Eq. (4.13).

5. Concluding remarks

In approximating the spin-wave energy spectrum (3.9a) according to (3.17) and (3.18),
we restricted ourselves to small spin-wave vectors and utilized formulae (3.13) and (3.15).
For the case 6 = 7/2 this leads to restrictions for the field strength (cf. text following Eq.
(3.17) and Tables III, IV) which automatically ensure the condition (3.12) to be satisfied.
It is instructive to examine the accuracy of this approximation, which we shall demon-
strate briefly.

One easily proves from Table II and Eqs (3.13)~(3.16) that in either case, B > Bf and
B > Bf, the approximation E, ~ N, appears to be least accurate for k¥ = 0, and that for
the transversal-field case (0 = #/2) one has from Eqs (3.13)-(3.17) .

s )M e

for the paramagnetic solution cos & =0 (B > By), and

(3 YL (BT e

for the ferromagnetic solution sin # = B/B} (B < Bf). Now, one easily verifies that the second
term of the series in the square brackets (which corresponds to | K,|?/2N} in Eq. (3.17)) amounts
to 0.1 and 0.01 respectively for Bf/B = 0.6 and 0.25 in (5.1), and for B|B = 0.7 and 0.5
in (5.2). This shows that our approximation based on the expansion (3.17) is actually quite
reasonable. Unfortunately, although there apparently do exist uniaxial ferromagnets with
tetragonal symmetry (cf., e. g., [29-31]), no reliable experimental measurements of the
magnetization or susceptibility on single-crystalline samples are so far available.

The main theoretical results of the present paper reside in showing that (i) pseudo-
dipolar spin coupling can effectively be used in describing uniaxial magnetic anisotropy
in ferromagnetic materials with tetragonal symmetry-including (77) field-induced magnetic

phase transitions; and that (7iz) the mathematically inconvenient spin-wave energy spectrum
(3.9a) can be satisfactorily approximated by using the power-series expansion (3.17) combi-
ned with the long-wavelength approximation (3.13)—(3.16). In contrast, the corresponding
approximations applied in [18] are not only more laborious but also more restrictive and
less accurate for small wave-vectors to which, in fact, the thermodynamical calculations
are usually confined (low-temperature approximation). On the other hand, in comparison
with the Green’s-function approach given in [17] our method has clear advantage that it
permits one to obtain effective formulae for the magnetization, susceptibility and specific
heat.
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In Part II, we shall show that our approach permits us to take-into account spin-wave
interactions of lowest order and leads in the transversal-field case to a temperature-dependent
magnetization direction in the ferromagnetic phase (i. e., ¢ depends-on temperature).

I would like to thank Dr W. J. Zietek for help in preparing the manuscript.

APPENDIX A
By utilizing Eqs (4.9), (4.10) and the standard approximation [9]

;f(k) *”@Z—)?f f U)ok

we get for the approximate energy spectrum (3.18)

k T a/s
AMIT, Bl = p ( fn ) [ X1, X2,i(Xs,; —5XE; X15)] %X
X ksT
{YOSIZS/B [ i 0;] =+ ; [Y1,1X1,J + Y2,1X2,J
Ys,; =X, ;1 Xi5(YVa,; —3X4,;X1571,5) Xo,; }
+ ‘X3’] _%X4:]X13] Zﬁ/z kBT (A.l)
where
0 .
Yo, = 2B Kmyis m=0,1,2,3,4; j=s,b.

Analogously, we calculate the specific heat C from the internal energy (4.11)
ks N 172 . Y1y]—%
C= 7] XuiXei(Xs; =1 X8 X557 %X

X {X%,jk51T~’/zzl/z [ 2‘;’7{] +3Xo,; THZ, [f"T’] + —5 kg T2, [ l)f 7’,]} (A2)

APPENDIX B

The coefficients &; appearing in Eq. (4.21) are as follows for the simple tetragonal

lattice
B \?] , B \?
gs = 53}. (2143 +.D5) {2.145 +D3 I:]. -3 (_E‘;) }{214.5 "'DS [2 -3 ( Ba ) :l} M (B.].)

for the body-centred tetragonal lattice

sl ][] e

2 2
Z) + 82—_1—] (B.3)

where

T = 25(ds D)+ 3¢ Bi [(




739

APPENDIX C
The coefficients W appearing in Eq. (4.24) are as follows

4 [ B\?
Wi = 2% (E?) (C.1)
- ,

-l gu. 3 A o “/ﬂBz_ﬁz
Wrom - &% = F g2y S QA+DIDE, ( 2 -2 (€2)

B

a
b

1, B o[ B\
w25 ] e

where the coefficients &, 7 are given in Appendix B.

Wop

==EZ[

N 2

APPENDIX D
The field-variable &, and the coefficients &, Z_for the case 0 = n/4 are as follows

hy = %Bf [2 —3 sin? (

7T

4 T sin (p)] +B(l—g?¥*% (D.1)

P, = S3)(24,+D,) [2AS+DS [1 —3 sin? (% +are sin (p):l] X

X [2As — Dy [2 —3 sin2 (% -+ arc sin (p)]:l (D.2)

Ps= (11— % (D.3)
where ¢ is given in (4.5).
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