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The Landau theory of second-order magnetic phase transitions is applied to uniaxial
ferromagnets with anisotropy of arbitrary origin (shape, exchange or crystal-field anisotropy)
and in the presence of an external magnetic field. When the field is parallel to the easy axis,
the state with magnetization antiparalle]l to the field direction can be realized as a metastable

t—t—k\"%
state within the field range 0 < h, << 2k —CT . When the field is perpendicular to the

easy axis, a phase transition takes place at a temperature depending on the value of the applied
field [21-[8]. Moreover, the dependence of the fluctuations correlation function on temperature
and external field in the neighbourhood of the transition point is established. The correlation
radius &2 of the parallel to the easy axis component of the magnetization tends to infinity as

vtk ).

1. Introduction

Recently, a number of papers both theoretical [1]-[8] and experimental [9]-[10]
appeared dealing with the phase transition of a ferromagnet in an external magnetic field,
and two different opinions about the nature of these transitions are represented by the
authors. Arrott [1] and Wojtowicz and Rayl [2], e.g., employ an unpublished theorem due
to Griffiths, according to which the ground state of an (apparently finite) isotropic ferro-
magnet in the absence of an external field is a state of non-uniform magnetization. Relying
upon this theorem the authors suggest that the influence of a uniform external field on such
a ferromagnet may (at a certain temperature) cause it to pass from the state of non-uniform
to the state of uniform magnetization. Using the molecular-field theory Wojtowicz and Rayl [2]
calculated, for a torroidal model, the dependence of the transition temperature on the
external field.
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Another interpretation was given by Klamut and Durczewski [3]. They showed that,
in order to explain the phase transition of a ferromagnet in an external field one does not
have to invoke the assumption of the ground state to be a state of non-uniform magnetization,
as such a transition takes place in a uniaxial ferromagnet regardless of the origin of the
anisotropy (whether shape or exchange or crystal-field anisotropy) if the field is perpendicular
to the easy axis (H ). Calculations [4], [5] for a ferromagnet of this type, using MFA, lead
fo results analogous to those derived in [2] and t6 the following relation betweén the fransition
temperature T(H ) and the external field 7 :

: 2
T.(H)) = T. [1 —4( gg;?) ] M
where T, is the zero-field Curie temperature, g the Landé factor, pz — Bohr’s magneton,
z — coordination number, s-—maximum spin eigenvalue, K — anisotropy constant,
and As—a constant depending only on s.
The results given by Durczewski [4], [5] have also been obtained in [6]-[8] where by
means of different methods the same relation (1) has been derived.
*In this paper, Landau’s theory of phase iransitions is applied to a uniaxial ferromagnet

in an external field parallel or perpendicular to the easy axis. The behaviour of the fluctuations
of the magnetization components as functions of the field and temperature is also investigated.

2. The Zi%zndau theory |

According to Landau’s [11] assumption, the free energy of a uniaxial ferromagnet with
the easy axis along the Oz axis and in the presence of a small magnetic field can be written
in the following form:

F = Fy+AM?+BM*—KM?—(M, H) 2
if the temperature T is close to T,. Upon. introducing the reduced quantities
__F _ K _ 4 __ BMj}
F=apm =y ‘T4, T4
m_ M ,_K M, H_
N My’ B Ay’ ' My’ _ AoMy
P .
0 = AOM", Ay=A(T=0), My,= M(T =0, H=0). ®3)
kgT
Eq. (2) can be rewritten as
f=fo+am?+bmt—km?—(m, h). 4)

Here, Landau’s expression for the free energy has been supplemented by an anisotropy term
(of arbitrary origin) with the effective anisotropy constant K.

The magnetization components m, and m | (projection of the vector 1 on the easy
axis and on the plane perpendicular to it, respectively) are determined by minimiziny the
free energy with respect to these quantities.
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..+ ‘The hecessary conditions’ for ‘the ‘existence of ‘a minimum are

. Y

Hence, we get from (4) _ ) PR
1 L b, = my [2(a—k) +4bm?] (62)
ok =m [20-+4bm?. (6b)

These equations we shall solve for the field-free case, and for the cases when the field is.
parallel or perpendicular to the easy axis.

a) h, = h; = 0— field-free case, which differs from the one considered by Landau [11]
only by taklng into account the anisotropy, i.e., by passing in the free energy from a to
(6 —k). Therefore, we get in analogy to Landau the second-order phase transition at the
point (¢ —%)= 0, where (a—F) can be, after Landau, expanded in a power series with
respect to (T'—T,):

a—k=d(T—T)4... = (t—t. 4., ' >0. )

Below the transition point, i.e., for (a—Fk)< 0 the followmg solution correspond to the
minimum of the free energy:

t—t \ "
my=0, me=zx | )

whereas for temperatures higher than 7T, i.e., (a—k) >0 the solutions are
my =0, m,=0. 9

In the following, we assume after Landau the coefficient B in (2) to be independent of the
temperature. o

b) hy =0, h, > 0—field parallel to the easy axis. In this case, Eqs (6a) and (6b)
have several solutlons, of which the stable ones belong to the.set

m, =0, h, = m[2(a—Fk)+4bm?] (10)

as can be easily verified by examining the sufficient conditions for the existence of a minimum
of the free energy, i.e.,

A = 4a—k+2bm?+4bm?)(a+2bm? +4bm? ) —646%m 2 m? > 0 (11)
F,, = 2(a —k+2bm?+4bm?) > 0.

The set (10) contains a cubic equation for m,. One can therefore expect one, two or three
real solutions.

276

If (e—Fk)2® > — ——8——h2 we have one real solution,

C fh T (a—R)3 \ A {kz [1-» B2 (a—k)3 ]//
m""{sbJ“[sz(“Jr 27 )]} Tl | EE\s T |

(12)
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which (together with m, = 0) satisfies the conditions (11). In this case the magnetization
is directed along the field.

For (a—Fk)p = — e hZEq. (9) has two real solutions:
o hz 1/8 h ’/s )
ooa(s) (A "

One easily,proves that only the solution m{ satisfies the minimum conditions (11),
whereas for m® we get 4 =0.

27b
For (a—k)3 < —

P h2 there are three real solutions,

L\ %
m$) =2 ( |06bk| ) cos (3a)

i\ %
m® = 2 ( la—F| ) cos (60°+5a)

6b
L\%
m® = —2 ( la6bkl ) cos (60° —ja) (14)

where cosa = h 63/2171/*‘/8[0, E|s.
The solution m{!) satisfies the conditions (11). For the solutions m® and m® the

magnetization is dlrected opposite to the field, with m{® never satisfying the COIldlthIlS (11),
and m® fulfilling them if

%
a>0 or a< 0 and &, <2k( 2‘2) : * (15)

From the expansion (4) it follows that the solution m{ always corresponds to a lower free
energy than the solution m!®. This means that in the temperature range here considered the

M2 (t-t)<-k
k<1 <0

he

4
2

3
5,2
ng' = (te-0? (35)

-t-ky1
h§’=2k(%——)z

Fig. 1. Schematic dependencé of the parallel component of the magnetization m, on the field parallel to the easy
axis, for three values of the temperature. (Solid, broken and dotted lines represent respectively the stable,
metastable, and unstable state)
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state m(l) is the stable one, while the solution m(3) can be realized as a metastable state for

=~ ’“) (Fi. 1)
¢) h, =0, h; >0 — field perpendicular to the easy axis. In this case Eqs (6a) and (6b)

yield the solutions
_hy _ a—k hJ.)
ML= ”‘Z“i[_ o5 <2k (%)

hy = mJ_(Za—l—Ll«bmi_), m, =0 (17)

fields from the interval 0 << h, < 2k (

and

2
‘of which the solution (16) meets the conditions (11) for (a —~kE+2b (_2%) ) < 0. Ia contrast
to Eq. (10) the cubic equation in (16) has only one stable real solution which satisfies the

2
conditions (11) if (a —k-+-2b (2_}2) ) > 0. This solution has the form:

h_l_ 1 h_zl_ ad :|1/2 iy . E_L_ B [ 1 hi o® A 1%YYs
Sibs {8b+[§5§<'8“+?7€ Ve “|wE\s T am )

if a® > — -2% hJ_,
oL : (17b)
R -2
if a3 = — —2?8—1’ A3,
and
my =2 (||> cos(oc) (17¢)
27b 6'b's

3 207 pe =
if a3 < 3 h% , where cos o = h'l'gl e
It is readily seen that for
2
a—k+2b (2k) =0 (18)
the solution (16) coincides with the respective form (depending on the field strength and
temperature) of the solution (17a)-(17¢c). By utilizing the Landau expansion (7), condition (18)

leads to a relationship between the temperature and the external field strength for which (18)
holds:

hy\?
te(hy) = te— {5 19)
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Itis readily seen that the solution (16) for which m, # 0 ‘corresponds: to a ferrorhagnetic
state (F), whereas (17a)~(17c) represents; a paramagnetic state (&) )

Upon inserting the solutions (16) and (17) for the magnetization into the expansmn (4«)
and calculating from the resulting free ener,gy the specific heat-at constant field, we-obtain
for the difference of the respective specific heats when approaching the temperature ¢ (R

1
the result

1 i
AC"L ~ ol = % [t (zi” (20)

Thus, the specific heat has a jump at the temperature (19), and the magnitude of this jump
a¢, b, decreases with increasing field A . One easily. proves that the entro py (at constant
field) is continuous at ¢(h,). Therefore we obtained, in accordance with [1]-[8], that in
a uniaxial ferromagnet placed in an external field perpendicular to the easy axis a phase
iransition of second order takes place. The temperature of this transition, t,(k); is lower
than the ordlnary (field-free) Curie temperature £, as is seen from Eq. (19)

3. Susceptibility.

Dlﬂ“’erentlatmg both suies of Eqs (6a) and (6b) with respect to h and h L we get a set
of four equations for the components of the susceptlblhty tensor as functlons of the tempera-
ture and magnetization. The solutions are -

ve  Om, 1 - WH4bm? +k

1)

X = Dby T 2 AWbmd + (W + k) (W 4bm)
e omy __i 1 —2bm.m | -
L= 38 T3 awem 2+ (W+k) (W'—l—4.-bm§.) (22)
AL =0 T2 AWbmd, (W—l—k) (W'—I—4bm§)
d o T "Qm J__ :

where W =a— k+2bm2 Henceforth we shall conﬁne ourselyes. o the case of the field
perpendicular to the easy:, axis,

The insertion of the solutions (16) and (17) into Eqs (22) and(23)-gives us the compo-
nents of the susceptibility tensor for a, uniaxjal ferromagnet in a field perpendicular to the
casy axis, and on both sides of the transition: curve. (19). In the low-temperature (F)

h to(f )t \ %
phase, W= 0, m, = 2—2‘ s my, = ((‘21‘7;) ’ ; hence, we have from (22) and (23)

iEP

YA hy - i (25a)

1 %
48 | o (k) -t)]

l—“""l

o1
gh=gpiit (25b)
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In the high-temperature (P). phase,, m, = 03 thus, 2 o :
#1=0 ' (26a)

x-’- Z(a—I-Gbm N (26b)

The change of the magnetization vector length m due to a change of the external ﬁeld strength
Im m
is given by. the susceptlblhty b E v _J' % 44 —i— ___ %7+ In the ferromagnetic phase we
[ -
have y = 0; thus, m is field- lndependent In the paramagnetlc phase y, =y _L; in this
case m increases with increasing field and, the larger the value of the applied field the slower
the increment of m. The initial susceptibility y, increases with increasing temperature,
reaching a maxunum at t =t,+6bm? "L —kwhich decreases and moves to higher temperatures

with increasing field.

4. Fluctuations

All the above results have been derived under the assumption that no fluctuations of
the magnetization .components: occur. In other words, we have -assumed that m, (r)
= {my1)> (=2, L), i. e., the local magnetization is equal to its ‘spatial average.

Kadanoff ez al. [12] showed liow, within the Landau theory, the influence of the fluctu-
ations of m; at the point °; on the neighbouring sites can be taken into account. The quantity
deseribing thls ﬁuctuatlons correlation has the form

2 m) = 1) —<m 03] b — Cmy 31> @

In the classical statistical mechanicvs'there exists a general method permitting to connect
the functions (27) with the change of the averages of , (1‘) and m (r). If the quantities
m,(r) and m (r) enter the Hamiltonian in the form .

=y~ [ ()b @) +m | )k (1) dr (28)

then the variation £, () — h (¥) 40k, (¥) 1nduees the following ehangé of the compéiients
of the average magnetlzauon oy

é (m _|_("1)> = 6 f drzg i 7’17 ""2) 6}‘ (’"2) (29)

8 <m )y =0 [ digg (v, ) O st L)
whereas the vatiation (r) = hz(r)—l—éh (r) glves o g
Jutly o<m J_("h)} = 61 f ‘d’"zg (115 73) 0h (1) (31)

O m1)> = 0 [ drygtry, )00 () ()

Irithe Landau theory, to take account of the ﬂuctuatlons we have to augment the free

energy 4) by the terms ¢(Vm (1”))2-|—c(l7 m _L(’r))2 descrlblng the 1nhomogene1ty of the magne-
tization” dlstrlhuuon We get therefore,

S fo+(a /ﬂ) [m, ('”)]2+a[m J_(")]2+b[ A+ 25 m, (]2 J_(W')]2
bl @] —(m), h(’“))+c{[élm ()12 +[dm] ()] (33)
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Varying the free energy (33) according to A (*) — A (r)+ 6k () and minimizing it with
respect to m (1) and m (1) we get
{2(a —F) +4b[m  (r)]2+12b[m (1)]* —2cV?} dm (1) +8bm | (¥)m (r)om (¥) =0 (34)
{2a+4b[m,(r)]? +12b[m | (r)]2—2cV2} om | (r) +-8bm | (¥)m(r) ém (r) = ok, (r). (35)
Similarly, the variation A, (1) —h (1) + 6k, (7) leads to
{2(a —k) +4b[m | (1)]*+12b[m,(1)]? —~2cV?} 6m (1) +-8bm | () m,(r) Om | (r) = Ok (1) (36)
{2a-+4b[m (1r)]2+-12b [m | (r)]2 —2cV2} dm | (¥) +-8bm | (F) m(r) dm (r) = 0. (37)

Following Kadanoff [12] we make now a somewhat inconsistent step, by inserting into
Eqs (34) —(37) instead of m (1) and m | () their spatial averages (m (1)) = m,,, {m ; (¥)> =m |
determined with the aid of Eqs (6a) and (6b). Taking into account in Eqs (34) —(37) the
relations (29) —(32) and h;(ry) = [ dv, 8h,(ry) (r,—1y) we have

(@ —k+2bm? +6bm2—cl'?) g% (ry,7y) +4bm | m gt (ry, ;) = 0 (38)
(@-+2bmZ+6bm’ —cV?) g1(ry, 1) +4bm  m g7 (ry, 1) = $06(r,—my) . (39)
(@ —F+2bm’ +6bm2—cV?) g(ry, 15) +4bm | mb g (1, , 1) = $06(r; —1,) (40)
(a+2bm2+6bm* —cV?) gy, ) +4bm  m g%y, 15) = 0. (41)

We shall solve these equations for the field perpendicular to the easy axis, i. e., using the
solutions (16) and (17). In the paramagnetic phase ¢ >(h ), where the solutions (17)
are valid, Eqs (38)—(41) reduce to

(a—k-+2bm? —cV?) g% (ry, 7)) =0
(a +6bm§_ —clV?) gt(ry, 1) = $00(r; —1y)
(@ —k+2bm? —cV?) g3y, y) = $00(r, —7y)
(-6 —cI72) g1y, ) — 0. 2)

Solving these equations we get

) =gored, r=ln—r)
g =0 i#j (43)
where 5:: is called the correlation radius which in our case has the form
¢ %
&= ( m) (44)
%
= ( H—gbm{) : 45)

The expressions (26b) and (45) give us a simple relation between the correlation radius
and the susceptibility in the paramagnetic phase, namely, Ei = (2cx,)%.

It follows from Eqs (43) and (18) that the correlation radius &% in the vicinity of the
transition curve {a—k +2bmi= 0) tends to infinity; hence, in this region the correlation
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function g1y, 1) decreases very slowly with increasing distance (like 1/r). The correlation
radius E-L at the transition curve (19) has a finite value depending on the field strength £
and the anisotropy k. The correlation radius increases with increasing temperature, has

58 &

I
I
i
|
|
i
!
I
0
i
|
I
|
|
t

(h(J)) f{h“’) 411“
rc(ni") te

L) wln?) L")t t

Fig 2. Schematic temperature dependence of the correlation radius &> and Ei in the paramagnetic region
t(h ), for three strengths h(s) > h(z) > h(Jl_) of the magnetic field perpendicular to the easy axis

a maximum at the point ¢ = tc—[—6bm2J_ —Fk, and decreases above it. The maximum itself
decreases and moves to higher temperatures with increasing external field (Fig. 2). A similar
temperature dependence of the maximum value of the longitudinal correlation radius for
T> T, and a magnetic field parallel to the easy axis was obtained in [13].
In the ferromagnetic phase, taking into account (16), we get the following form of Eqs
(38) —(41)
(4bm} —cV'?) g7 (1) +4bm m J_g:'L-(r) =0

(k —I—4bmi —cl?) gi(r) +4bm,m g7 (r) = $06(r)
(4.«bm2 —cV'?) gi(r)+4bmm _Lgél-(r) = 364(r)

(& +4bm —clV?) gt(r) +4bmm | g5(r) = 0. (46)
Solving this set we get
g2() = N{Dy —Dyerim=s2) < @)
0 1
for t —>t,(hy), gi(r)— o
gh() = N(Byortm—s —By < (49)
k
. Va0 (@)
for t >t.(hy), gL()—> B 7 € c
£L0) = gk () = N+ L {L—e=rtm) & (49)

for ¢t —1(h;), 85 =0
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where

0

~ 16mc? (A —23) °

o= 20t [ Abr) 64 kb
C

D, = 8bm® —2cxj+2k, Dy = 8bm* —2ca2+2k

L= 4«bmzm L

B, = 8bm? —2cx?; B, = 8bm?®—2cx3. (50)

Like in the paramagnetic phase, it follows from Eqs (47) and (50) that in the ferromagnetic
phase the correlation function gZ(r) decreases very slowly with increasing distance. From
the results derived above one can conclude that in the case considered here, i. e., for the
phase transition of a uniaxial ferromagnet in a field perpendicular to the easy axis, the com-
ponent of the magnetization parallel to the easy axis fulfils all the conditions required of
an order parameter, namely:

(?) it vanishes on one side of the transition- point, ep. Eq. (17);

© (1) it approaches zero continuously from the other side of the transition ‘point and

is not uniquely determined, cp. Eq. (16).

Moreover, the correlation radius of the parallel to the easy axis component of the magnet-
ization tends to infinity in the vicinity of the transition point.

5. Conclusions

The Landau theory of second-order phase transitions is applied to a uniaxial ferromagnet
in an external magnetic field.

The following results are obtained:

1. In the case of the field parallel to the easy axis, the magnetization components as
functions of the field strength and temperature are determined.

2. When the field is parallel to the easy axis, it turns out that for temperatures ¢ < ¢,
there exists a field range 0 <C h, << 2k(t,—t —k)}2b where the state with magnetization
antiparallel to the field direction can be realized as a metastable state.

3. The results for the field perpendicular to the easy axis are in complete agreement
with the results obtained in [2] —[8], i. e., there is a magnetic ferro-para phase transition
when the field is perpendicular to the easy axis, and the temperature of this transition de-
pends on the field strength, cp. Eq. (19).

4. It is shown that this transition is of the second order, as the magnetic specific heat
has a jump at the transition point. The amount of this jump is calculated, Eq. (20).

5. The dependence of the transversal susceptibility , on the temperature above the
transition point is also investigated. It turns out that it has a maximum at a certain tempera-
ture, and that the increase of the field smears out this maximum and shifts it toward higher
temperatures.

6. In the last part of this paper the influence of the temperature and field on the correla-
tion radius of the fluctuations of the components m, and m, in the neighbourhood of the
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transition point is determined and discussed. The correlation radius & of the component
parallel to the easy axis m,, tends to infinity when approaching the transition temperature
t,(h)) from the paramagnetic phase. . .

T wish to thank Dr J. Klamut for many helpful discussions and suggestions and Dr W. J.
Zietek for reading and correcting the manuscript.
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