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FERROMAGNETS '

By W. S_CHMIDT AND 'J. MORKOWSKI

Ferromagnetics Laboratory, Institute of Physics of the. Polish Academy of Sciences, Poznan*®
(Received January 22, 1971)

The relaxation time of uniform magnons in ferromagnets having uniaxial type of aniso-
tropy is calculated. The relaxation mechanism consists in two-magnon scattering processes on:
the deformation field of dislocations.- The coupling between magnons and dislocation strains
results from the magnetoelastic energy.

1. I ntroductwn

Experimental facts suggest that the ferromagnetlc resonance line-width depends to
alarge extent on the crystallographlc perfectness of the material investigated. The presence
of any defects results in an increase of the line-width. Of many kinds of defects, dislocations
seem to be partlcularly effectlve in damping the uniform precession mode excﬂ:ed in ferro-
magrietic resonance.

In previous papers [1, 2] relaxation of magnons by the two -magnon scattering ‘mechanism
on dislocations i in cubic ferromagnets was discussed. Here we present similar calculations
of the relaxation time of uniform magnons for ferromagnets having uniaxial type anisotropy.
Some results are given for hexagonal ferromagnetics with full account for anisotropy of the
magnetic and elastic ‘properties. An estimate of the coniribution to the relaxation time
from the dislocation core is also presented.

‘ 2. Hamiltonian ™ .

Similarly as in [1] we use the phenomenological theory of magnons (see e.g. [3]). The
interaction of magnons with dislocations is due to the magnetoelastic energy. Let e;
denote the strains of the deformation field induced by the dislocation and M; the
components of the ‘local magnetization. The  general expression for the magretoelastic
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energy density, linear with respect to sirains e is of the form

i

. . oM M
Fope = . Z VaniMaMiei; + N Z Viitm 5" i €l (1)
nyisfal=%,3,% B fslm=x,3,2

For crystals of uniaxial symmetry the explicit expression for the first term in (1) is (see
e.g. [4])
(UMM Le,,+Loey, + Mie )+ MilLye, .+ Lie,, + Mie, ] +
(MM, + M MLy —Lo)ey, + (MM, + M M)Nee,, + @
+(M,M,~+MM,)Nge

Here the new parameters Ly, Ly, M;, N, denote the usual magnetoelastic constants. Symmetry
considerations allow one to reduce the matrix of coefficients y, in (1) to several independent
phenomenological parameters. It will appear, however, that the terms in (1) proportional
to the gradients of the local magnetization will not contribute to relaxation of uniform
magnons considered here so it is of no use to specify the coefficients Viitm:

~ The components of the local magnetization M(r)-at the point 7" are expanded into plane
waves, whose amplitudes are determined by the magnon operators. In the lowest order
approximation, correct up to the terms quadratic in the magnon operators, the components
of the local magnetization are (see e.g. [5] for details)

M(r) = M(r) +iM,(r) = (dupMy/V)* Zk ae™ T+,
M () = My—Q2pg/V) Z CAT I ®3)

M, is the saturation magnetization, ¥ is the volume of the sample and up denotes the Bohr
magneton. a; (a,) denote the creation (annihilationi) operator for magnon of the wave vector k.
(As discussed in [1] the above simple interpretation is exact only for applied magnetic
field strength Hy much larger than 27M,.)

Now we insert (3) into the expressmn (1) for the nmiagnetoelastic energy den51ty and
retain only terms proportlonal to ak gy 1€ terms describing the lowest order (two-magnon)
scattering processes on strains e of dislocation. After integration over the volume of the
crystal we obtain the leading term in the magnon interaction energy due to strains e

o e exp [i’ =F) -
g = MOV; fd’rexp [((l’ —F) 7] x
Sk

X{(Ly +Lo)(exx+ eyy) +-2Me,, —2M¢ Z Vimnkik) emn}ax ap +h.c. )
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3. Relaxation time

The relaxation time 7 of the uniform magnons k& = 0 determined by the two-magnon
processes is given by the formula (¢f. [1])

ljz = (2xfh) % IWk|25(3k~_30)’ ®)
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where
Wk = (2luB/M0 V) f d/r G‘Xp ( —_Zk : ’l") {(Ll +L2) (exx + eyy) +2Mlezz}"‘ (6)

&, and g, denote the energy of the magnon k and the uniform magnon (k = 0), respectivély.
For a uniaxial ferromagnetic crystal we have (see e.g. [5])

g0 = 2up{lHo+ 2K /M) +4n(N, —N )Mo [H,y+ (2K, /M) +
+4m(N, —N )Mol *, @
and
&y = 2pp{[Ho+ 2Ky /M) —4aN Mo+ C,Mo(k3+ k) + CoMok2] x
X [Ho+(2K, [/ My) —4aN Mo+ Cy Mok} +E2) + CoMok? +4wM, sin 9]} %. (8)

H, denotes the external magnetic field, applied along the z-axis of the coordinate system
taken parallel to the anisotropy direction. IV,, IV,, N, are the demagnetizing factors (we
assume that the crystal is of ellipsoidal shape and that the principal directions coincide
with the coordinate axes). Kj is the anisotropy constant defined by the following expression
for the density of magnetocrystalline free energy of uniaxial crystals

Iy = (K M) (M-+143). ©)

We assume Ky > 0 i.e. easy axis in the z-direction. C; and C, denote the exchange constants
for the direction of ke perpendicular and parallel to the anisotropy axis, respectively. The
angle between the magnon wave vector k and the easy axis is denoted by 9. -

For calculation of the matrix element W, in the formula for the relaxation time 7
due to a dislocation it is convenient to introduce a new coordinate system (%, %y, %) defined
by the dislocation. Let x; be directed along the dislocation line and let & and # denote the
Euler angles for the transformation from the (#,y, z) coordinate system to the new one,
(%1, %, %) (& is the angle between the z nad x; axes, and # is the angle between x and #,).
The transformation from (x,y, 2) to (%, %,, %5) is provided by

% cos 7 .‘ S —sin g - 0 %y
y|=|cos?sing cosPcosy —sind || ] (10)
z \sind?siny sindcosy cosd [ \ng

The components of the strain tensor appearing in W}, Eq. (6) can be expressed in terms
of the strains ey, ey etc. calculated in the new coordinate system (x, %y, %) as follows

€yt €y = (L —sin? & sin? pey; + (1 —sin? & cos? g)eyy-+sin? & egy —
—sin% & sin 27 e}, —sin 29 sin 7 e;3—sin 28 cos 1] g5, (11)
e,, = sin% @ sin® 1) e;; +sin? ¢ cos? 7 €99+ cos? ) egs+

+sin? & sin 249 ey sin 29 sin 7 ey5+sin 28 cos 7 ey, (12)
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4. Elastically isotropic medium

*In the present Section ‘we assume that, as far as elastic propertiés are-concerned, the
ferromagnet can be considered isotropic. We take the strains of a dislocation calculated for
an isotropic elastic continuum [6]. Some special results for the case of elastlcally amsotroplc
medium will be discussed in the next Section.

a) Screw dislocation -
The only non-vanishing components e;; of the strain tensor for a screw dislocation
parallel to the x, axis are [6]
. b sing
BT Ag 0 ?

e DS (13)

o and @ are the polar coordinates on. the (xl, Xg) — plane, %y = @ C0S P, Xy = 0 Sin @. The
length of the Burgers vector is derioted ‘by"b.
The matrix element (6) is. glven by

Wi — — bt Ly —2M,) sin 26 f dr exp (=il ) 2@ (Z“L”)--. (14)

27zM V

The integration domain in Eq. (14~) is restricted to a hollow cylinder coaxial with the dislo-
cation line, whose lenght is L (the length of the dislocation line) anid the internal and external
radii are ry and ry, respectively, i.e., we assume that the deformation field of the dislocation
vanishes for ¢ exceeding r, and we ignore the contribution'to W, from the core of dislo-
cation g < rg. It is justified to put:rg = 0 in final results with negligible error (cf. [1])- The
contribuiion to the inverse relaxation time from the dislocation core is discussed in the
Appendix A: for a special model. The result of integration is-

. 2upb(Ly+ Ly —2My) sin (ksL/2)

J0(’0 0) Jo(r1ko) (15)
ko

Here kg, kg, @ denote the cylindrical coordinates of the wave vector & (they are defined by
the components ky, ks, ks of & in the (x;; %y, 43) coordinate system: k; = ko cos @, k,

== ko sin D). J; is the Bessel function.
- In order to calculate the relaxation time from Eq (5) we replace the sum Xy(...) by
the integral V/(27t)3 fdk (...) and we approximate the factor [sin (k3L/2)/k3]2 appearing in
" W, by (m/2)Lo(ks) (see [1]). Therefore only magnons scattered perpendicularly to the
dlslocatlon line (k3 = 0) contribute to the inverse relaxation time 7,. For k3 = 0 we have

S(ep—eo) = [416‘3”(@ + ) 2 Moa( D + )% x (16)
x{1 —|—x2[1 —sin? 9 sin?(® + 77)]2}'% X
X O{uX(D+ )0k —u( @+ 1) V2 Myl (P+n) } -

Wi=1i sm20cos(@+ )
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where
a(D+n) = CMy+(Cy—C) M, sin® & sin2 (B + 1), a7
w(P+ ) = {sin? & sin® (P+n) +[1/y2+ (L —sin? & sin? (P+7))?]% —
—N, —[(N,—N,)*+ 1/ "%, (18)
% = 2mM,[(2o/215), (19)

and 0(x) is defined as equal 1 for x >0 and 0 for x < 0.
Finally, introducing a new integration variable ¢ = @9 we arrive at the formula
for the relaxation time 7, of uniform magnons scattered on a screw dislocation

1z =

2
pBb L(L, +Ly —2M,)? sin® 29 fd 0(u?) [1—To(Au)]? cos® y 20)

An?h VME u2V1 —}-;gﬂlfmzﬁsm2 1/)]2

where u = u(y), A=rn VZnMO/oc(zp) i
b) Edge dislocation

The non-vanishing components of the strain tensor for an edge dislocation parallel
to the x;-axis, whose the Burgers vector b is parallel to the x;-axis are [6]

b

_ g _.ay O 1.
M= T 0=y o — sin @ (cos? @ —sin? @) sin g,

27 o

b 1 b 1

2 2 e
€ = 3 1= o — sin @ (3 cos? p+sin? @) % sin @,
b

1
o, Mk
e1e = 4~ = (1= o cosq)(cos sin? @) (21)

(v is the Poisson constant).

Calculations of the relaxation time from Eqs (5), (6) and (21) proceed in the same way
as for the case of a screw dislocation discussed above. The relaxation time 7,-due to the
edge dislocation is finally given by

2n
b2L L O(u?)
e, = s B
f= 16220 (1 =22 MGV d u? Vl + 2?1 —sin? & sin® p}?
0

X {(1 —29) [2L, +2L, —(L, + Ly —2M,) sin? 9] [1 ~Jo(Au)] sin (v — ) + LLE—E% X

2

X [1 —Jo(Aw)] sin? & sin (p+ ) — L1+L22 2M1 [1—Jo(Au) —2]5(Au)] sin® @ sin (3yp — 'r])}
(22)

Jo» Jos... denote the Bessel functions.
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5. Hexagonal ferromagnet

For real ferromagnetic crystals the anisotropy of elastic properties may have significant
influence on the relaxation time. Now we present an estimate of the role of elastic anisotropy.

We shall apply our results to hexagonal cobalt. We shall i ignore the secondary effects
of magnetic state of the crystal on its elastic properties i.e. we shall neglect stresses induced
by magnetization and the dependence of elastic moduli on the magnetization.
" Because of the complexity of calculations we consider a special case of an edge dislo-
cation lying in the hexagonal plane and having the Burgers vector in the same plane. Let
us take the x-axis of the coordinate system as parallel to the dislocation line, the y-axis
parallel to the Burgers vector, b, and the z- axis, as previously, as the hexagonal axis. Now
it is convenient to express the scattering matrix element W, Eq. (6), in terms of components
of the stress temsor

, 2‘“3
Wy = Ly+L,) Cy3 —2M,C dr k- r) -+
k MOV( 3) {[( 1+ Lo) Cag 18 f Oyy CXP @ )

H—(Ly+ L) Ci5+2M,Cyy] f dro,, exp (ik - 1)} (23)

where C; are the elastic stiffness constants.
The stress tensor for the above specified dislocation is (see [7])

Cﬁg:as o 0%3 + C11 013 12013

xx T T = Oyy EZD)

C3:—Chs Ch—C3s
2 3
s G
® T m (P —y)R oyt
Kb yd—yys®
B " 2m (yz—yz2)2+ 5yy2z2
The follg;ﬁ.ﬁg hotation is used:
(Cw + 013)[044(C13 C;3)/ Cs( C13 + 013 +2C4)%,
013‘— (Cy 33) ”
PR € 11/ C33, s v
0= (C13 13)(013+C'13+2C'44)/(613 () (25)

Now S e e departures e £ i 1sotropy Weo expand the Fictor
{(y —yz%)2+ 0yy%2y~t in Eqs (24) into powers of the anisotropy parameters (y2—1) and
(yd —2y —2), retaining only the lowest order terms. |



The matrix element W, calculated from Eq. (23) in. the same way as.that described
in the precedlng Section, takes the followmg forrn

—21.Kb‘u3 sm (k L/2)
T MG —Ch) R
% {dy sin 30 J-+ (A, sin 30+ Ay sin' &) X (26)
To=1f2+ Ay sin 70 Ty (4 sin 70 A, sin 5E)],+ .
+(Ag sin 7Q5—I~A4 sin 5@+A sin 30)],+
+(A;sin 79+ A4, sin 5P+ 4, sin 3@—]—146 sin @)(J, —1)/2}

kx, g, D are the cylindrical coordinates of the wave vector ke (k, = ko sin D, k., =k, cos D).
The parameters A, are defined by

Ay = (Ly+Ly) Co5 —2M, Ci] [ —y + 0 —1]y+
=Ly + Ly Cia+ 2V, C] [ —y —1],
Ay = [(Ly+Ly) Coy —2M; Cyi] [ —3y — 8+ 1]y +
+[— (L +Ly) Cig+ 2M, Cyy][ — 3y +1],
Ay = /16){[(Ly+Ly) 033 —2M,Cyg] X
X [y3+y2(— 26+3)+y(62 36—1—3) O+1ly +
=Ly + L) Cyp--2M, C ][y +.y2(—6‘+3)+y( 6+3)+1]}
Ay = (16){[(Ly ++ Lg) g5 —2M, Cyg] X -
X [Ty +y3(—66+9) +9( —62+36 —3) +55—5]y+
+[ =Ly + Ly) Cog+2 M, Cul[ 793 +92(—3849) (5 —3) =513,
Ay = (116){[(Ly +Ly) Cog —2M Crglc -
X213 by ¥(—26+3) +p(— 302498 525) LT85Ty ¥
R[S (Iy L) Crg  2M C 12193 4 2( S 54 3 +9(36° 25) 7]}

. . 6— (1/16){[(L1‘|“L2)033 2M Cls]X J
. ><[35y +7%(108—15) +(302 —90 —80) 118+ 11y +
- <L1+L2>013+2M CullE5y 4725 -19) +7(~30-39) +11: - @D

The relaxation time can be calculated by the method explamed above

‘ n/2

1/1‘:_,... ‘ ﬂBLbiz" ‘ d@— 0u? o i
‘ Ah VM (Ch—Ch)? ) wf14g2cost @
0 VO B ANE S TR
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X {A; sin 3D J,+ (A, sin 3P+ A, sin B)(Jo—1)/2+ 4, sin 7P Jg+
+(Ag sin TP+ A, sin 58)J, +
+(Ay sin 7O+ A, sin 5P + A sin 3P)],+

(A sin 70 + 4, sin 5O+ A sin 30 + 4, sin B)(J,—1)/2)2. @9
The Bessel functions J, = J,(4u) depend here on the argument Au, where
% = 1, V2n)(Cy cos® B+C, sin? D), (29)
u = {—cos® @ +[1/y2+cos* P|%+N,+N, —
— [V, =)+ 1/ %% (30)

and y is defined by Eq. (19).

Under the assumption of independent scattering from single dislocations we can
estimate from the relaxation time 7 the contribution to the ferromagnetic resonance line-
-width due to dislocations. For the special case of a system of parallel dislocations distributed
with density n, the contribution to the ferromagnetic resonance line-widith due to dislo-
cations is given by (see [1])

AH = (h)2uz7)(V]L)n. (31)

It is interesting to compare relaxation time (or the corresponding line-width) calculated
for elastically isotropic medium, Eq. (22), with the result obtained with elastic anisotropy
taken into account. For definiteness we consider a crystal of cobalt cut in the form of a very
long circulas cylinder (N, = 0, N, = N,). We take the following values of the material
parameters (see [4] and [5]):

Cyy = 3.071x 1012 dyn/em?, €,y = 1.650 %1012 dyn/cm?,
Cys = 1027102 dyn/em?, Cas = 3.581 1012 dyn/cm?,
Cys = 0.755 %1012 dyn/cm?, L, =1.821x10% dyn/cm?,
Ly = 2.531x108 dyn/cm?, M, = —2.500x 108 dyn/cm?,

M, = 1400 gauss; C; ~ Cy = 8.507x 10713 em? (C; = 2JSa?upM,,

where for cobalt JS = 160°kg (kg is the Boltzmann constant) and the distance between
nearest neighbours a = 2.5x1078cm). For the value of the Burgers vector we take
b = 2.5x108 cm. As a representative value of the parameter r; defining the range of
.the deformation field of the dislocation we take 0.64 pum; this gives 4 = 110. We choose
the value g = 0.35, corresponding to the ferromagnetic resonance frequency equal
to 66 kMc/sec.

The results of calculations are conveniently expressed in terms of the line-width using
Eq. (31). For the isotropic case we find from Eq. (22) AH = 0.239 X108 n (cm®Qe) whereas
if the anisotropy of elastic properties is taken into account as in Eq. (28) we obtain

AH = 0.157 X 1078 n(cm*®Oe).
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APPENDIX A

Estimate of the influence of disclocation core on the line-width

In the present calculations as well as in [1] we neglected the contribution to the inverse
relaxation time from the scattering on the region of high deformation along the dislocation
line, the so-called dislocation core. The dislocation core is expected to be ineffective in
scattering magnons because its diameter is much smaller than the typical wavelengths of
magnons involved in the scattering.

In the present Appendix we shall justify this guess. We shall estimate the upper bound
on the contribution of dislocation core to the inverse relaxation time. Inside the dislocation
core the material is highly deformed. We take the simplest model into considerations:
we assume that strains inside the core are so high that the material is no longer ferromagnetic.
A region of vanishing magnetization inside the ferromagnetic material will scatter magnons
because of the appearance of local demagnetizing fields by the mechanism proposed by Sparks,
Loudon and Kittel [8] in another connection. Let the dislocation core be a circular cylinder
of the length L and the radius 7y We assume that the local magnetization is zero inside the
cylinder. The stray magnetic field H(r) induced by the boundary by the local magnetization
M(¥) will be calculated by methods of magnetostatics. Let us expand tho local magne-
tization M{(r) into the Fourier components M(r) = > My (r) where My(r) = my e

k

and the components of the amplitude, can be inferred from Eq. 3), e.g.
m = (ugMolV) #aky+ay), ... (A1)

The magnetic field Hy(r) induced by the mode M(r) can be calculated from the appropriate
magnetostatic potential ,(¥)

Hy(r) = —grad y,(r) (A2)
where : :
() = — f dr d?:zif(li) + P do %:)_ -r’,'l(’“) . (A.3)
14

The first integral extends over the volume of the ferromagnetic sample, the second one over
the surface of the dislocation core, 1(r) is a unit vector normal to the surface.
The energy of the internal demagnetizing field H(r) = 2} Hy(r) is
%

#y=—% [drM(r) - Hr) = — } % [ drMy@) - Hy(v). (A.4)
v ‘v

From (A.3) it is evident that the energy %, is quadratic in the magnetization mode ampli-
tudes M, Expressing M, in terms of magnon operators we shall obtain from (A.4) explicit
formula for the energy of magnon interaction due to the dislocation core.

The magnetostatic potential (A.3) can be easily calculated in the coordinate system
(% %y, %3) conmected with the dislocation. Let the xz-axis be directed along the dislocation.
line and %, and x-axes be parallel to each other. As usually, the (%, y, z) coordinate system
is determined by the principal axes of the ellipsoidal sample, the z-axis being parallel to
the applied magnetic field Hy. The angle between the dislocation line (¥5-axis) and the applied
magnetic field (z-axis) is denoted by ¢ We decompose the local magnetization M(r) in



Eq. (A.3) into plane waves and use the éxpansmn

AL el e

I’l' — | Z f déetm(w—'l? )Jm(EQ)Jm(fg )e—élxs—xs l ) (AS)

m"———000

(0, @, %y are the cyhndrlcal coordinates of“'r). -After ‘integration we obtain

o n=—oo

valr) = _27”0 ¢ Z {"n_l-}n 1( oTo)e 1)¢+ (A.6)
i n+1(k07'0)e z("'*'1)45}1 (k3r0)K (ksg)elnlpelkaxs_l_ o

+2mwirgm® Z {i""lJn_l('koro)e_v’,'("‘_l)‘lD —* alkegro)e Tt NPy

n=--—00

XT, (oK, (k)™ ™54 (L 0, ) 10, - e {—devi™ k31

+Agrir? z ime—in?] f Talkore?) L (gro2)2da]K, (kg0 simeeionsy, -
n=-—00 .
Using (A.6) together with (A:2) in (A.4) and replacing m,, by appropriate combinations
of magnon operators we obtain the magnon interaction Hamiltonian # ;. From the complete
expression for #;we choose only those terms which describe direct scattering of the uniform
magnon (k= 0) into the degenerate manifold of % s 0 magnons, i.e. terms of the form
Hy= D, W™afay+h.c. (A7)
EZ0 A

These terms lead to the inverse relaxation time given by the formula (5).

In the present case, using the approximation [sin (k3L/2)/ks]2~ (7/2)LS(k;) we have

8rSuBMgroL |3 sin? @ cos 2 T
‘u};}z = { 7 N [ko’o( > Jo(FoR) —T; (ko’o))

| W];:ore I

P p o v ‘ ’ . 2
—4 (Trz%? To(koR) =7, (lcoro))] +(2—6 sin? & sinz@) To(kore?) zdz} S(ky).  (A8)

Here R is a parameter of the order of magnitude of hnear dimensions of the sample (for
a spherical shape of the sample R is the radius of the sample), we shall replace R by infinity
in.the final results.

The relaxation time due to the dislocation core is given by

72
1z 27 ,uBMoroL 4P B(u?)  [3sin? Fcos 20
core ™ Ve, Vl +22[1 —sin2 @ sin® P]2 Au?

[ To o | 1 .
X | Agu (f J5(4uw) _Ja(lou) —4 (F Jo(Agu) —Jz(ﬂ-ou))] ‘[‘

V2
+(2—6 sin? & sin?0) f To(Aguz) zdz} (A.9)
0
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where
A = RV2n/C,, 2y =r,V/2n|C;
and u = u(®P) is defined by Eq. (18).
In the limit R — o0, Agu <1 and y <1 the inverse relaxation time 1/, or the corre-
sponding contribution to the resonance line-width (4H,,,. = (h/2ugt)(V]L)n is given by

core
the simple expression

4 4
(AH)core = % (4—12 sin? 9 +27 sin® 9) (A.102)
1
for A= N,—n(l—N,)? M,y/(H,—4xN M) < 0
or
aMron

(4H)core = 4C, 0 (9 —0p){(4 —12 sin? §4-27 sin* J) X

% [7/2 — arc sin (J/ Afsin 9)] —2)/ A }/sin2 ¢ —4 (12—184 -9 sin2 §)}  (A.10b)

for 4 >0, where 94 = arc sin l/A.

(4H), e strongly depends on the radius ry of the dislocation core. Taking the values
of parameters appropriate for cobalt and taking r, of the order of magnitude of a few lattice
constants, say r, = 1077 cm, we' obtain from (A.10a), for the case N, =0, d = /2, (4H),..
= 0.38x 1019 (cm20e) which is completely negligible as compared with the contribution
from the extended deformation field of the dislocation.
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