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The problem of the dynamics and transport of narrow-band charge carriers in ferromagnetic
(ferrimagnetic) semiconductors at low temperatures (<T() is considered. -

Tt is shown that electron-magnon coupling is here not strong and does not form small
magunetic polarons due to prevailing *“static” s—d exchange interaction.

The influence of electron-magnon coupling on the small polaron transport is discussed
in details. The contribution of the magnon scattering to the transport is considered as well as
its competition with other scattering mechanisms.

The specific effect for high-frequency or non-ohmic small polaron conduction is obtained
which is associated with one-magnon spin-flip hops. The conditions of cbservation of the effect
are discussed. The observation of the effect provides a fairly precise determination of the parameter
[4,4] of s—d exchange coupling.

Some additional questions are discussed in the concluding remarks.

Introduction

In the last decade, a consistent detailed transport theory of the small polaron was de-
veloped for low-mobility (nonmagnetic) crystalline semiconductors [1, 2, 3]. The funda-
mental characteristics of the small polaron dynamics and transport are as follows:

1) occurrence of radically different transport mechanisms — aither band type conduc-
tion at low temperature T (lower than a characteristic T,,) and frequencies (< w,,) of the
electric field (the band regime) or hopping at high T (> T,,) and/or @ (> o,,) (the hopping
regime), the T- and w-dependences of the transport coefficients being essentially different
for the two types of transport;
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2) strong narrowing of the small polaron conduction band (in the band regime) as
compared with the initial electron one, what is due to the strong electron-phonon (EP)
coupling.

Little attention has hitherto been paid to the effect of exchange interactions on the small
polaron conduction in magnetic (ferro-, antiferro-, ferri- and paramagnetic) crystals (see
12, [7]). On the other hand, the basic concepts and methods of the small polaron theory
{1, 2, 3] were applied and extended in some recent papers [4, 5] to the study of the dynamies
and transport of electrons in ferromagnetic crystalline semiconductors® at low T < T,
(T¢ — is Curie point); assuming that electron-magnon (EM) coupling can be strong, the
two above-mentioned basic features of the small polaron were found for a new quasi-particle
named magnetic polaron (an electron “dressed” by a magnon ““cloud”), though EP coupling
was neglected. The s —d exchange model [6] used and strong EM coupling was treated as
caused by large values of |4 ,|/I, with 4, and I (> 0) denoting the integral of “s —d” and
““d—d” exchange integrals. At the same time it appears that some factors should be addi-
tionally taken into account in the analysis of the problem, such as the basic ““static” part
of the s—d exchange field which can effectively “‘reduce” the EM coupling. .

In the present paper, two .problems are in fact studied:

a) Is the EM coupling sufficiently strong to cause the autolocalization of the electron
{i. e. to create the strong coupling “magnetic polaron” of the small polaron type) in a ferro-
magnetic semiconductor at T' < T and |4 j|/[>1?

b) What is the effect of EM coupling on the dynamics and transport (and some optical
properties) of the small polarons in such crystals at T < T;;?

- Itis shown (Sec. 1), for 25 > 1 at least (S is the magnitude of the localized spin in the
Heisenberg model), that the “‘static” part of the s —d exchange field leads to EM coupling
and to the respective band narrowing; these effects are not strong. It can be expected, there-
fore, that the transport of such “‘magnetic polarons” is of a standard band type (rather
than of small polaron type). On the other hand (Sec. 2), the EM coupling causes an addi-
tional relaxation mechanism for small polarons in the band regime which can dominate
with characteristic T-dependences of the transport coefficient under some conditions.
Finally (Sec. 38), the high-frequency small polaron conduction (which is due to hopping
processes at low T"as well) shows a rather narrow infrared absorption peak in (practice, for
frequéncies lower than the basic small polaron Gaussian infrared absorption band, see [1c}).
This peak is a characteristic of both the small polaron and the s —d exchange and has a certain
structure — its experimental observation leads to the determination of the parameter |4,

.

1. Motion of the electron and small polaron 'in a ferromagnetic semiconductor. ( spin-wave
region)

The situation is considered when the charge carrier electrons or holes of a crystalline
ferromagnetic semiconductor constitute a nondegenerate gas with Boltzmann equilibrium
distribution and sufficiently low concentration IV, = N(T), the interaction between those

1 Actually, it is expected that the consideration and basic results of the paper concern the case of ferri-
magnetic semiconductors as well. :
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charge carriers being neglected. Then our study deals with some aspects of the dynamics of
an eleciron moving in a narrow conduction band of width D, a 224, (z is the number of
nearest neighbours; ‘4, the typical Bloch resonance integral) and interacting with boson
elementary - excitations: phonons (ph) (optical, acoustical) and magnons. The spin-wave
region, at low T'< T and relatively small (average) magnon number N,,/N <1, is implied
here. N being the number of elementary cells in the basic crystal volume?.

" The hamiltonian of the electron-boson system? takes into account the conservation of
the z-component of the total spin and can be presented, using the s —d model [6], as follows
(see [1, 2])*:

H =, H g+, 1))

with the operators (in what follows, & =1)

2
>, = %’H_L SV A0, A= % ; waby by,
i . .
Ha= VN Z Z {Vn@)e? "bpthe} = Hopt+Hpu. @

1=012.. f

describing, respectively, the electron in the static lattice field and the “static® part Ay()
of the s —d exchange field (4,(¥) ¢%), the “free” bosons - phonons (with! =j (=1, 2, 3, ...)
being the branch number) and magnons (I = 0) —with eigen-frequencies w; and £,
= ®,;—, and the linear electron-boson coupling, i. e. the eleciron-phonon (EP), # ,,, and
electron-magnon (EM), # gy, ones with “coupling” coefficients V(r) (¢ — numbers) and
spin operators I'\/f) —o = A (r)o*. In (1) and (2) the following notation (apart from standard
symbols), is introduced: -electron spin operators ot = ¢*+io¥ = (¢7)* with ¢ |o)
= ¢lo) and spin number ¢ =%, 0 = —1 for [o) =|1) and |6) =||) states, respect-
ively; bj; and b,—Bose operators for phonouns (b;; b;) and magnons (Bf =B}i=o: By)-
Here, by definition, in the ground state all localized spins are directed along the negative
z-axis

Ay(r) =25 3] A(r —s); A1) = —)/28 3 A(r —s) e= 19, 3)

where A (r—8) is the integral of s—d exchange of the electron () with 8 denoting the
vector of the crystal cell or of the site of appropriate type.

2 Tn what follows we can neglect the relatively small effect of the effective anisotropic integral magnetic
field and spin-orbital coupling. )

2 In fact, s-conduction electron stands for an electron (hole) in a narrow band of the d-type. The orbital
degeneracy and possible overlapping of such bands, for simplicity, are neglected. This does not change results
qualitatively and only simplify the estimates. In the concrete estimates, the case of cubic crystals is mainly implied.

4 Operator ,%”gﬂ)l of the EM coupling is the first linear term of the expansion of the operator Hy, in small
N [N; the next bilinear term has the form

%
2 > o
i (_NS) Ay =107 BB

and leads to renormalization of the magnon frequencies.
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Let us now take into account a certain similarity of the structure of the operators # b
and # gy in (1) and (2). Then, being interested in the problems a) and b) asformulated in the
Introduction, we may apply to the study of eigenvalues and eigenstates of # the well-known
procedure of the small polaron theory [1,2]. New ‘‘renormalized” quasi-particles are
basically decoupled by the appropriate unitary transformation of the hamiltonian 2 and
constitute the unperturbed system (#°,) — the localized (in the $™ cell) small polaron (in-
cluding the magnon “cloud” as well) and the ““new” bosons (phonons and magnons) with
displaced oscillator centres (and the same frequencies, see footnote 4), the perturbation 4,
being the ‘‘residual” relatively weak polaron-boson coupling which includes inter-site
transitions (S — 8’ = 8) of the polaron.

The appropriate unitary operator T, transforming # — 37 = T*# T+, can be chosen
(see e. g. [1]) as follows (the siructure of # gy in (2) is taken into account):

T® = T%,T%, = exp (U¥) with

U = Z Uf = Z ; 7jv_—(_x_',f,bﬂ—h. c.), (4)

1=0,1,.,
where

== H exp (U7) and Ty = exp (U3_g);
J

Xo= Xfleif's = X;foeif's;

1 .
X = Xpmj= = (8 = 0F(0) ¢7|s = 0),
A
24,50, ()

with 4, = —)/25> s = 0l47(r) €7*|0). In the long-wave approximation (fle<l)
the following estimates are used:

Xyony = Xpy=o0= Pjo~, &

™ ac @Wp &
Xjay = X (7)) ~ Xg¢ | ——
O
with 0%° ~ wlf| and wp ~ u, fp, 6)

for (longitudinal) acoustic phonons with wp, and f;, the Debye frequency and wave number;

1 ) [
- o b 8| Ay L ~1 — 2
Q; = 2:I8 (1 p Ea e ) % with zlSa (7)

Ay~ — /28 Ay with Asd5<s=0[ATlg”l

s=o>(zm,

and J is the vector of the nearest neighbour. In (4)—(7): A4 is the effective s —d exchange
parameter; [8) = ¢ (1) = ¢(r —S) is the orthonormalized, localized (in the s™ cell),
Wannier function for the conduction band. The relation (4) for phonons is exact, whereas
(5) (for magnons) is only approximate, with accuracy to correction of the order ~ N, /N
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(< 1) and (2S)~ (< 1), for 25 > 1. In other words, the diagonalization of the basic “‘one-
site” operator 4® = (8|5#|S) is achieved exactly for EP coupling, but approximately (with
the accuracy noted) for EM coupling. This difference is associated with the operator struc-
ture of the EM coupling ““coefficient” 7, ;_o(r) in (2), which corresponds to a conservation
of the z-component of the total spin as noted above. Therefore, T, T%" # T4 while T2,
XTET = T5,% (see, e. g, [1]). The relation (5) corresponds to the following simultaneous

»
transformations:

% TR g
Bi — B = Tip Ts+ ~ B —1U%, Bi1=p7 + VN Bfe~it 5o,

ot — 6+ ~ ot ]/% Z @it 88 67 4 % Z | Dy)20%0,
f f

=5 g 1.
2z 2 Ay OF — ———— ifs — el — — 2.
0 > 0* & O /r Z{(Dfe B; o~ +h. c.} N Z@fl oto, ®

and (4) to the exact transformation b;-—> Z~7ﬂ = by —N‘%X;‘jefif's (displacement of boson
oscillator centres).
The eigenvalues ¢,,, and states [Sno) of the transformed basic operator

B = Ts(s|#|s> Tt = (s|#|s>
= h§+h§ ~ 24 ,S6°+5,—ds+Qoto+ fZI: wpbibp ©)
can be given in the form:
e = Eyt-8,8, and |snoy = [s) 96> = |8y T |no)
where

t —if +s\N
Ino) = H(bﬂle/T—“v)ﬂlm [o> and |0) is boson vacuum; (10)
fl

fl

1
g, ==&, —0¢ and ds = w Z | X ;|2 0, is the standard polaron shift of the electron “‘site”

level &, = <s Ep% +V(r) S>, so the “‘site” polaron level ¢, can be chosen g, =¢=10
in an ideal lattice; &, — 20Ny is the boson energy with n = (my,; ny) = (- . Nyp. . ),
Ny = (.. Np...) and 77{;/1 =(...Nyg----) In (9) and (10),

Ly Mt 1y AP, (1)

O=% £ 2405-0; T N £324.48

® Practically the EM coupling diagonalization by means of T%, is an expansion in NV oV <1 and (25) 1< 1.
Terms omitted in (8) contain products of 2, 3 etc. operators ,5}' and B, or additional factors ~(25)~%. The diagonali-

R A
zation in the next approximation lead to a correction in (5) of the form §®g% at 6@ zZ@f,]zm ,

sdP e f
this being small, [6D/P] ~ (2S)™1 < 1 for 25 > 1.
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and : o S i

e, =A,(S+1)5,,~A,,58,, o - (12)
describes the split of the “site” energy level of the polaron, 1nclud1ng both the contribu-
tion of the “‘static” part of the s—d exchange field (4,;S) and the asymmetric shift®
Asdéa (#0 for o = +%) due to EM coupling. This asymmetry can be interpreted in accord-

ance with the study of the ground state of the system in [8, 9] since only the electron with
spin ¢ = -+4 can excite (at 7'= 0°K) a magnon and become coupled with it due to the EM

coupling conserving z-component of the total spin. The split of the ¢ = +% and ¢ = —}
levels is
G =legu_y—&, 4l = |4,1(25+1) (13)
so that
G G G |4 sdl
%—> (2S+1) > 1 for T Tcand —==>1. (14)

The parameters
By s L E : |D4]2 ~ (25)-1 and |@|? ~ (2S)1 (15)
EM N f = f

describing EM coupling in this model are small for 25 < 1, @gy< 1 and |@, < 1, and in
this meaning EM coupling is not strong. From this fact it follows that for 25 > 1 the EM
coupling is not an important factor of electron ‘‘localization” and the creation of a small
magnetic polaron, as is the case for strong EP coupling. The magnitude of the EM shift | 4|
can be sufficiently large. In contrast to the case of small polarons, the simple connection
between the shift of the level and the coupling parameter does not appear here even if
|44l > A4,. We will see this also when considering the narrowing of the polaron bandwidth
(as compared with that of the initial electron band). The reason for this difference seems
to be clear. The contribution of the static part of the s —d exchange coupling 4,(#) 0% is
considerably larger than the dynamical one in the spin-wave regime (for 25 > 1 at least).
When other factors of electron ‘“localization” (strong EP coupling or statistical dispersion of
the local levels, e, in disordered systems) are not operating, the dynamics and kinetics of
the charge carriers (‘‘magnetic polarons”) should be rather described by the standard band
theory and Bloch transport equation with their ““weak’ boson scattering (see e. g. [12]),
and not by the procedure discussed above, in which charge carriers are considered (in basic
approximation) to be localized (9) and the perturbation is determined by the “‘inter-site”

operator?
ﬁss» = <SITS%T8,+ISI>s7&s’ ~ A,(9) TsTls+8)+

at '8’ = §+6, (16)

Assuming further that EP coupling is sufficiently sirong so that small-polaron. criteria
ave fulfilled [1, 2] we will consider this case only) and investigating the influence of EM
couphng on small polaron transport at low T (< T in an ideal crystal, we apply the pro-

G Temperature dependent corrections to the grou.ud EM shift are small~N, [N <1 or ~(N /N )S Bt <1
7 Asin [1, 2] we neglect the comparatively small correction from s—d exchange couplmg to this operator
as compared with that of the latiice field 4,(8) = (s|V (r)|s-8). :
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cedure discussed above and separate the unperturbed (#,) and perturbation (5#,) hamilto-
nians in S in the basis of orthonormalized band-type (non-localized) functions- [1, 2]

ene) = D i M S LT

Here (in connection with the choice of functions |ne) in (10)), F is the wave number of the
small polaron in the reduced-zone scheme, which changes when n varies (the small contri-
bution of the U-processes is neglected here for T < T¢;). In this basis (see [1])

Hy= DA and #, = Vo, (18)

where operators D and ¥ describe the nondissipative (D) and dissipative (V) parts of the
polaron motion, without and with a change of phonon numbers (IV;;) and/or spin and magnon
numbers, respectively®.

In Eq. (16):
(knaIDAéf |k'n'o"y = {kno|#|kno>0,,:0,,:0,, and
knol#\knoy =e¢,,+ &,.(K). (19)
eno| VA0’ o'y = (eno| # ) K'n'e’y (1—6,,0,,) (see (16))

and

<kno_|%1klnlo_l> — i Z Z e—i(k—k')sAe(S)e——ik’ . S(no-lTsTs'+ InIO"),
s &

N
O == H 6Nf,N}-
Vi

For an equilibrium system of bosons,

Enoll) = &4(K) = Zeb(n) & oll) = Ze"ksﬁ (0)0:(9), (20)

so that the width of the “averaged” polaron subbands (¢ = £13)
D]~ 2z Ay ~ 224,Q, ~ D,(Q, (21)
with the narrowing factor
Qu(8) = X 04(n) <n¥a|nVay = 1z [0, TOTOH] < 1. (22)
n

Here,
éb = exp (2, —f Zz wflb;;bﬂ)v
1>

05(n) = (n]gyn) = exp (BFy—p Z wNp)

the trace is taken over boson variables; f = (kT)~L. The matrix elements (no|T5T% T|n'c")
in (19) are calculated using the relation

T = Ty Ty T with T3 = exp (3] X35, —h. c) (23)

. 8 The change of definition of the operator Y(and consequently of D)as compared with ““pure” EP coup-
lmg case is associated with the fact that the z-component of the fotal spin is conserved.
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and expanding T%,T5;" into powers of N,/N (< 1) and (25)* (< 1) (with the accuracy
corresponding to (8)):

T5T5 =~ Dt oto—+ D% o~ot+ Do+ Dot . (24)
In (24) the identity 6t~ +070" = 1 is used and (cf. [5]) operators DI.(D¥) and D!.(D%)
describe transitions without and with spin flip, respectively:

Dy =% {ch Z (B B, + Py B )+ ch Z (D5 °Bf + D7)} x
X exp {— Z I ,12 — P} Py = (D) eXP{ Z [10,/2— 25 &;°} (25)

(with an accuracy up to x4 for the expansion of ch x in %) so that, with (15) and the accuracy
to corrections ~ (25)1 < 1,

D, ~ —(Di)+ ~ & {ch Z (@*ss B+ @3 287 ) +ch 2 (D5Bf —i—@*sﬂf)} -(25’)

and

D~ —(DIY) ; (B3 —®3)B; ' (26)

with accuracy to terms ~ (25)7%, % Z []@i,]z—@;‘/s@;:] (D;fﬂ?i and terms ~ (2S)' N, /N;

X35 = X et —1) and D35 = D% — D% = D38 —1) (27)

with 6 =§'—s.
Average quantities, tr g,4,4,... (like @,(d)) with A denoting unitary operators
T5 or T°%, are calculated using expansions of the type

A, =exp (V—%—ﬁ'> V_ Ul +...

and retaining the finite (at IV — oo) contribution of the form N~ 3} #(f). Then (exactly

T
for EP coupling but approximately for EM coupling in accordance with (8), (24)-(26))

(A 450 =tr gp Ay Ay = 14+ ——= 2N (UR+U3+2U Uy)s
1
A2 exp {Z—N— (UE+ U22+2U1U2>b} (28)
and similarly for {(A;4,45>, etc. In particular,
4,(8 o 5 .
) = G = o~ = QuBI0hd) (29
with
Mo
Qp(0) = 7% and Qu(0) = ™%
Here

B = o (U= (U322, = Byt DY (308)
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and

=LY et P2 (1—cos - 0) = Y B() = u(D)

O = o Y (B2 cos - 8) (cthﬂTQf +2a) = o¥(T)

can be treated as the electron-boson, EP and EM, coupling parameters (see [1] for @)
For 25 > 1, with (15) and (7),

Mo _ kT 1 }
@ NE{1+20+C (215 +0 | 5s

and the “magnon” narrowing Q%(d) is insignificant. @Y is finite for 6 =% giving Q},(9)

-1
A (1—— §1§) ~ (1—®@g,) 2, but vanishes for o0 = —4, giving Q},(6) =1 at T'= 0°K.

i.e. DY < gy < 1,
C;<1

Let us note that the subband ¢ = } is the lowest one at 4, <C 0, its “‘magnon” narrowing
0',(0) being in accordance with the respective estimates at T' = 0°K made in [8] (and in [9]
if the formula (23) is applied for 2S > 1, see the note added in the proof in [9]) for [4,l > 4,

neglecting EP coupling®. (For A,; > 0 the lowest subband corresponds to o = —%). Thus,
EM coupling does mnot cause significant band narrowing Q,(6) ~ Q,,(d) = e~ % and
Di ~ D, ~ 2zA, ~ 22/,e”%, so that the width of the two subbands (¢ = £3) are nearly
equal For ¢> 1 (strong EP coupling) and 4,/& <1 the case

D, < kT and D, <G (30)
is realized for not too low T' (see [1]). Here

1 .

=% O Xl sin® G f - 8oy (1)
i)

is the characteristic parameter of the small polaron (activation energy in its high-temper-
ature hopping)0.

9 Here, the polaron resonance integral 4, = Aee plays the role of A4,, so that 4, < [4gq] at (30).
10 Actually, the strong EPcoupling can be due to the contribution of one(jth) phonon branch (@, = @py(7))
mainly of the longitudinal polar phonons, @ = @P°L or acoustic ones, @ = @9, when respectively,

(pol 1 1 ;. glac) g ac
& =~ &ol) ~ E_wp"l @pol and & = lac) = ry wpP? (32)

with @, = @(T= 0). The Einstein model for narrow branch optical phonons is used
a)&POl) = Dol B dw (33)

with dw being the width of the branch. Let us note that the characteristic temperature T, (see Introduction)
is estimated (for (ac) with (9)) as follows

T, ~T, with TPl — 2% yhen &~ @pol (1] or
. B 2k 1n 4D,
(D
Tac ~ when @ =~ @4 [10]. 34)

1 ki @34
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2. Low-temperature small polaron conduction in ferromagnetic samiconductors .

In this section, the low-temperature (" <€ T}, conductivity 6,,(w) = Res,,(w) of non-
degenerate small polarons in’a ferromagnetic crystalline semlconductor is consulered at
sufficiently low frequencies o(< w,, < Dp <{w,o3 @p; kT¢}) when the band regime can
be actually expected (i. e. when Ty S T, )*% In this region of T and o, EM coupling gives
rise to additional scattering mechanisms, apart from those due to acoustic and polar phonons.
The contribution of the latter is discussed in detail in several papers (see, e. g. [1, 2])-and
can be neglected at w,,; > kT > £T. As in [1], the study is based on Kubo formulas for
0,,(0), e g
with

0

Maen(@) = E ( = fdt €™ cos wi{vt)vy)

Eg(w) = $w cth —‘829~ (35)
W:{@) being the frequency dependent (longitudinal) mobility (other notation is standard, i1
The matrices of the current operators, in particular of Ju=ev, in the |kno) basis as
determined for small polarons [1, 2] are used (by neglecteing the small corrections due to EM
coupling). The explicit calculation of (35) is performed in |kno) basis by applying the
method developed in [1] (see also [11]). The idea was to calculate separately the nondissipa-
tive (Do (E ) and dissipative (Vg (E 1)) parts (see (18)) of the effective density matrices
0 1) determining mobility

;m@>;mwnmm»—ﬂH5 CR XURER 1028 T

here
(Bily—iLy) 6(E.) =3, @7

and

LA =1, All,moq with #y=Ds#, #, = Yo, E =E, = (nFio),. ,o;
v, =} (0v,+v,0) with ¢ = exp (BF—B#) and v, =i [H#, x].

In (36), u (w) and ,uxx(co) determine the contributions of band-type and hopping transport
with equations for Dg,(E) and .Y§,(E):

I(E) Dg(E) = Q.(E) with
I(E) = E—iLy—iDL,+ DL, G(E) VI, (38)

11 EM coupling can give only small corrections to the transport coefficients in the hopping region at
®=0 (T > T}) when this region overlaps the considered one, i.e., when Tc> T
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and ¥5,(E) = 0X(E)+60.(E) with ¢%(E) = G(E).¥,, and
| 86,(E) = iC(E) YLD (B), ST (39)

where '

QO (E)= D {v,+iL,0"(E)}, i. e. Q.(E)~ Do, in the band regime; G(E) = (E—iLy—i YL
Then, the appropriate regular perturbation theory is applied as given in [1] and based on
a regular expansion of G(E) in L, (i. e. in the perturbation ), the basic (o) terms being
determined by neglecting corrections of the order of the small parameters of the theory as
discussed in [l, 2].

As in [1, 2], the situation is considered (at T < T;) when the characteristic transport
time 7, > tg, tg being the typical largest relaxation time of bosons (phonons, magnons),
i.e. of the deformation of the atomic and magnetic structure of the crystal, so that individual
scattering acts (or hops) can be basically treated as noncorrelated ones in a Markovian pro-
cess: In this approximation (neglecting the polaron-boson drag effect in band transport
and small equilibrium fluctuations of boson numbers), the w - and T-dependent nonequi-
librium ““distribution function” ¢ (a; &) of small polarons over a = (k, 0) can be in-
troduced:

CknolD g (E L) K'nod = 6,.00(on) @ (knos o) = 8,.04(0n) ¢.(; +o),
<“nl(};x(E:};)l“’nl> = ann’amx'(px(“; iw) (40)

where @ (a;0) = @ (03 0, T); g4(an) = {anlgglan)y with g, = exp (BFy—p#,) so that
2o(®, ) = 04(n) go(ko) ~ (1) 0o(0) and go(0) = e~ Fo(e P4 PN as g (feo) = &PFr—Féell)
X 0o(0) ~= go(0) where &,(k) ~ &(k) and | E(J)| < kT see (30) (the operator ¢ (E.) is de-
fined as acting in the  variable “‘space”).

Then, the basic (°) mobility which is here determined by band type transport is as
follows:

o) ~ 1) = g IPWCHEER

B3 Y weputes +0) 040 @

ko

H

‘ 2
the approximate equality holds for w < AT, when Eyw) ~ kT [1 +0 (%) ] In (41):

o) = Y ) amluulamy ~ o lt) = TE0 . § gk -y, 5)
i )

with

v,(6) = i6,4,(9) (42)
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The transport equation determining @, (;®) can be derived from (38) and (39), (42) by
summing (38), in |kno) basis, over boson numbers (n) and by taking into account that,
basically,

> <an|v,jan) =} > oolan) <an|v,005 *+h. c.|an)

~ 0o(@) 2] 0(n) {anlv,an) = 0o(2) v.(®).
For sufficiently low external magnetic fields H ~ 0 (see (65)), the following can be written
[+io+R] p,(k; £0) ~ v,(k) (43)

with the scattering operator R defined by the relation

Ry 0) = 3 04(n) <anlLyG(E) Ly Jom)
= Z, [EV'om’(px(“; w) - Z’V-oc’q,(px(“’; w)] (44‘)
and the basic scattering probability W - independent of @ at low o (w,, <(wp; k T;)).
The basic scattering probability W in (44) can be calculated (see (18-(19)) as the basic

contribution of
Y = Re [ dt €7 {(52) 1 (H1(0) 0P (45)
0
i. e Wm,= Ym,

where A(t) = "4 e7*** and A4, = <a|4|a’y. The general formal solution of (43) and
(38) can now be expressed through the eigenvalues of the operator R, and transport relaxation
times 7,(r =1,2...), so that [lc]

Usr Tr(iw>
x5O0} 2 Uy tle .
Hlo) ~ o) HelB Y Z~ Trarzayt
Vye,r 271( iw)
~ le|p ; P 1+wd (+w) r
where 7, = t2° and ¢ = ¢, for the lowest subband (0, =1% at 4;< 0, but ¢= —}% at

A,y > 0). In the last equality the basic contribution of the conduction in the lowest subband
is only accounted for at G kT, g4(0,) ~ 1 and gy(c # og) ~ e 7?9 < 1, and the ““inter-
band” (with spin flip) scattering (o, —> 0 7 0,) can also be neglected when calculating the
respective basic scattering probabilities in (44) and 7, in (46) (with the same accuracy of up
to ~ exp (—BG)) because the average Planck number of magnons taking part in such pro-
cesses is ~ N, = J_V(.Qf)lgf-»c;m e %G (see also (71) and (74)). Thus, in what follows

Ve = Wi = Wiael®) 3o+ Wiat(00) (L=00) = Wigo(00) 85000, 47)

°

and @ = (koy) = k
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The analysis of the expansions of ¥ o (39) in the perturbation ) (similar to that for
polar phonons in'1, 2]) ‘shows that under conditions (30) we have (neglectmg corrections
of the order of the small expansion parameters in the theory [1,2]): 1) The basic contribu-
tion W o i W, is given as a sum , o

W= X WY (18)

LLog=02 .

of the Born contribution (W ~ A2 _2@) and non- Born one (W& ~ A% at &> 1:
W) =Re f dt ™" (A1) agr (H1D0)was

aa’ T

—2772@0 WKl IR Soy )i 9)

Wip = Re f die™ f dity LD air ([#1(Do> #1(D)als Hr(t)o)arades (50)

where .
A(t)o zxoerzmx

2) The basic terms in W3 and W3, at the T under consideration (I'<< Ty, T <€ Ty),
describe, two-boson scattering processes of absorption — emission (~d(wy—wyy)),
as one-boson scattering (absorption or emission) processes. are practically forbidden in
a very narrow band (D, <£T). The scattering is due either to two-phonon or two-magnon
processes because the z component of the total spin should be conserved. Thus,

Eka' = g’ kle'(ph)+ Eka'(M) Z [ngk (ph)+ Wh(:k (M)] - (51)

3) Formulas for W9, and W2, show that the Born boson scattering is essentially nonisotropic;
i e. W9 = WOk —F, k), whereas the non-Born one is basically isotropic, i.e. W,
= W(z) (k —F’) both for phonon [1, 2] and magnon scattering. Such-a structure of small-
polaron boson scattering is determined by the strong EP coupling. Formulas for Wkk “(pol)

describing the scz_ttterlng by polar phonons were given in [1, 2], in particular (C; = 1),

+2A%020 E-4]eFopol . (52)

-?pol = W‘
Formulas for Wkk (ac) describing the scattering by acoustic phonons are derived from
formulas (83) in [la] as follows:12

00 — Z L — Z 4. (8)Pe® =5 Z 8 (wy—wy) X

fife

7
x I e [S o ) ’;jf ~20 (g2 (Tl) T (53)

y=1,2

12 The estimates of Q(") and Q2 in [11] were made in the longwave approximation (6), at f ~ f7</D»
but with| fla>1 (so that C,,(s 8, &) ~1and sin®} f+ 8~} as here a denotes the large average distance between
the impurity centres. Here | fla <1 ((,(0; 6, 5’) ~ f2q? and sin? 3 f- 8 = (§20%?), this giving the difference
of the T-dependences.
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Wide= Y, 0 (s) and 02=2 Y Wi, = wPs =0)
4 ' kk’.

k—Ek

with W,,(f)(s) = Z ]Ae(s)lﬁlé‘e(ﬁ’)P ]'.. Z‘é(wl_wz) H w%&; 5, 8")
5,8"

4 &)® N2 - mis sh3pw,
22 APt [ T \ !
~ 20W ) —T;' J: ®fas (54')

where T = T = wp/2k-(in [1], T, = TE" = vot/2k. By taking into account that at
T < wpfk, the essential scattering is associated with long-wave acoustic phonons at '~ f7. &

~kT|uy < fp (see (6).) In (54), P& = —Ffz [ X7123(1—cos f+ 8) ~ £ | X |2is the contribu-

tion of the acoustic phonons in the long-wave approximation (somewhat overestimated) ;

. dxxie
0, =w,;]= f Sy = 4(4a) ! {(4c).
1]

The estimate

’ \ " do e o
VX 9 (5 8) 27 5) (- 6 -8 ~ (o)
Y

with ¢3(s) = 1 is used here. In a similar way, by using (24)—(28), (7) and (15), one can
calculate the probability Wi,y of magnon scattering (neglecting corrections ~ (PA N
see footnote 5). The basic two-magnon Born scatiering (without spin flip) can be described
by the formula

nzA?

4

e——2¢% Z 5 (‘QI_QZ) Efxlz l(pf”_lz X

Iif2 Sh2 _.‘B_Ql. )l

1 } : 0
Q(O) e W( ) —~
M = —“N ER'(M) 7
374

2,-20
X [8—2cos f; + 82 cos f,+ 8+cos f, - § cos f,+ 8] ~ zdce ( kT

3
1927%15° '2‘[?) Fa- 55)
Analogous estimates lead to the formulas for 7, ,gi),( My W((A%I))(s) and 2@ = W 9(0). Omitting
similar, very lengthy, calculations and using the analogy of the structure of QP with that
of Q{9 (as a consequence of the sirong EP coupling) and formulas (83) of [1a] and (25)—(26),
one can obtain that

.Qﬁ) = Wﬁ) (S =0) ~ 'n3-( 4:6‘)—)6 9IS (56)

42244138 ( kT )7
~ Jote
It follows from (53)~(56) that magnon and acoustic phonon scattering, the Born and non-
-Born processes, can complete with one another as they have essentially different power
T-dependences T7 (with r > 1), and all these scattering processes can compete with polariza-
tion phonon scattering, so that one of the processes dominates in the appropriate intervals of
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T. In fact, expressions (53—(54) and (55)—(56) are the basic terms of the expressions of 2,

and .{OQM in powers of the parameters

Lop01 o (TR e T\? 1(T"2 e
ol ac 3 - g e |
ople” T o<1, B (T0> <1 and @EM(TC> ~aslmm) <4 6D

which are the additional factors for each additional boson, polar or acoustic phonon and
magnon, respectwely _

When the isotropic non-Born scattering dominates, the transport equation (43)-(44)
is solved by the Fourier method [1] so that in [46] the essentlal transport times
7, =1(8) = [0 = WA ~ [W O] = [Q¥]* (58)

r

are practically equal, and [v,,1% = [0,(0)[> = 824%(o).

When the non-isotropic Born scattering dominates, the solution of (43)—(44) can be
approximated by assuming that all the essential 7, in (46) are of the same order of magni-
tude, i. e.

77t~ QO (59)
Then, at @ < kT (and D, <1 < 6),

Tir
L1+w?r

xx(w ~ zlela?BA3 (60)

with the usual approximation

Tt Qo Qo+ Py (61)

for v, € 4, (kT < {kT,; wp; 0,1)), and 4, = 4, e~?. For such EP and EM coupling
parameters and T when 7' ~ 0,42, > Q_,, the situation is as follows. Comparing the

contributions of the phonon Born and non-Born scattering (a), the magnon Born and non-
Born scattering (), the Born scattering due to magnons and to phonons (d) and the non-
Born scaitering due to magnons and to phonons (e), one can define the characteristic temper-
atures:

&lhe— 1P
T, ~ 0. 2 _V_— ~ Tb(< {Tc; To; T?_c})
with
QT (T 1,
(T QDT

00
ac 1t (T)
Td~025T( )/]/@ ‘°’(TZ) ~ 1,



(2)
T~125T0( )/chac i 2 62)
o (T2)

The actual meanlng of the esumates isthat T, ~ T}, and T;< T, (the number coefficients
inT, T, and T, have a tentative sense) Thus, the Born scattering dominates at T< 14
When T; > T, (the case seems to occur at @ >>1) the magnon scattering prevails with 7'~ T
and r = 3. When Td< T, two regions can be found: at T; < T' < T, the phonon (r =17
scattering and at T'<C T, the magnon (r = 3) scatterlng dominate. The non-Born scattering
dominates at T'> T,. When T, > T, two regions can be. found at T << T<<T, the magnon
(r="7) scattering and at T, << T'<C T%° the phonon (r—-— 11) (at T, << T,,if any, only
phonon (r = 11) scattering domih’ates in a region 7> T). If Te > T5¢ is possible the
magnon non-Born mechanism is the basic one at T, < T < T% with r=71

The conditions of dominating polar phonon scattering, w1th LIREN Q(~ e7Ferer),
can be found similarly. Thus, at 7, < 21 the mobility ° '

fnl©) = e = ,uxx(O) le|zpa2A2r; = 'i[— 2T,pA;

{T‘T— or % 66“’pol}’ with m* = (,A;:a’z)fle A L (63)

decreases with T in a power (r > 1)-and exponential way, depending of the inter-relation
of the EP and EM coupling parameters, whereas at 1 < 07,,(< fw)

2 42
(@) ~ %—”ﬁ ~'{T"1, or —% e‘ﬁ“’pol} ' (64)
increases with T'in the way noted here. It follows from (62) in particular that the Born magnon
scattering  dominates at sufficiently low T' (< min {T;; T,}) with r = 3, whlle the non-Born
magnon scattering with r = 7 can domlnate at hlgher T, see ‘above. ‘

Further more, approximate formulas can be given for describing normal (non spon-
taneous) galvanomagnetic effects in an external magnetic field 'H, when ‘using formulas
(98)~(101) in [1b] or (101)-(106) in [la] (at H = 0, the operator DL, Dp, in (38) describes
the effect of the Lorentz force in transport.equations (43)~(44); see (92) in [la]). The case
of not too high H is implied,

H < Hy=hc(lela? L i.e.  of ]e]H

ll

- <4, = A2, (65)

when the H-dependence of scattering probabilities W, can be neglected. Then, the Hall
mobility (H]||02)

_C ool m
P e = T Thaded

or
H py m

el mBAy o[ o delm
(= ‘m* 1+owird \ m*(1+wird)

(66)
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and -
|Auxx(H>l (@7 |
AMxx(H) = Yigu(H) — pty <.0.and e (er e (67)
The case pgy = Ui ) is reahzed for a (non cublc) crystal lattlce in whlch crystal planes ortho-

gonal to magnetlc field H contain triades of mutually nearest neighbour approprlate sites
and for the'region of T where the approximation of one essential transport time, T Tl .Qé

is applicable, whereas the case yy = u® is for all the other situations [lc]. Thus,

~ T pgp ~ T l ,uxx(H)| ~ T-%H2 (68)
. ) /’Lxx e
e y
at wrT, <€ 1, with ﬂ a2 (B4,)"t1>1 and B a2 1.

The change of the carrier concentration N (T,.H) with external magnetic field H also
M(H,T)
M(©0,0)

contributes to the magnetoconductivity, because actually the gap G ~ |4 sd(ZS

and the concentration activation energy

Fy e FoH = 0)+ Ay [s M(g o) D+ 05 a]

M(H, T) denotes the magnetization, while constants p; and y, describe the split and EM
shift of the impurity energy level (impurity semiconductors are here implied), see [16].

Then, with N, = N, (H = 0) and AN(H) = N (H)—N,,

Aoe(H) _ 04 (H)—0,s At (D) AN(H) \
Oxx - Oxx = leiNC - Mxx + [eIMxx Nc ’ (69)
so that - N < 0, and when this effect dominates (this is usually the case) one obtains

positive magnetoconductivity, Ao, (H) >0, even though Au,, < 0.

Finally, the Seebeck cocfficient practically does not depend on the scattering mechanism
in the narrow small polaron band (84, < 1) and basically is determined by the chemical
potential of the small polavens (see (112) in [lc]). -

3. Characteristics of high-frequency and high-electric field conduction of small polarons

The split of the small polaron band into-two subbands (¢ = %) in the ferromagnetic
semiconductor causes. the characteristic effect of a resonmance-type infrared absorption
at @ ~ G(> kT) due to'the ““inter-subband” transition of the small polarons, with spin flip.
As the gap G(> kT) actually corresponds to infrared o (@ > w,,), the small polaron longi-
tudinal conductivity ‘o, (@) =|e] N, u,(w) .and: the related .absorption coefficient 7,(w)
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(~ 0,,(®)) are determined by hopping (and not by band-type transport [1, 2]), so that

(see (38)-(40) and (35))
+o0.

- 0 = e2N, _ o

Grr(0) & Grfw) = o) f dt cos wt e~ v, (£)g Y1, ),

-0

where [ dt A(t)y = [ dt v =m0 = [y =14 = (1 —iLyy14 and (Ayy = 1r o,
+0 0 ]

The explicit general formula for o” () is obtained by calculating trace {(4>, in |sno)

basis (equivalently, in |[kno) basis, with D, < kT) and considering (19)-(28), (42). This
formula contains the contributions of all the »-phonon and »-magnon (v = 1, 2, ...) hopping
processes and is given, at the low T under consideration, as a series in small parameters of
the type (57) (the »™ term describes the v-boson hopping processes:

Ge(0) = Ths(o0) = E( )Z O2I(8; ) (70)
with [1, 2]
I'(0; w) = |4,(0)|2 Re f di cos wt e™ 37 04(0) LT+ T3(0)o ¥ (TO+T0,
+0 o=+% .

= 114,812 3] 3 04(0) 3] 04(m)[<0RO|n @2
+ < n

X O(e,+8,—6, —8,20) (1=8,,0,,) = 1 ITP(6; )

y=1
and (neglecting corrections ~ exp (—®) < 1)
Tyw) ~ Z 20(0) 28N (w) (71)

1 . =
where QO(w) = T ’§ WO () and WO (») = Re f dt cos wt ™" YH 1) 40 H1(0) ) e Ds
0
(see (45) and (53)~(55)). Then, at @ =~ G, the basic term P,(,%}M)((S' ) in I(8; w) (andin 5]‘ (@)

can be determined to be one-magnon hops with spin flip from the lowest energy level &,
for the O-th site to the upper level for the d-th site, with magnon emission (+) or absorp-
tion (—), @ —G£L2,=0.

This term alone determines the absorption effect under consideration, and it can be
obtained from (70), (71) and (26) as follows:

T35 0) = |A9(6)|2e‘2‘1’290(o‘) Re f dtcoswte“"’%z |@;]2 (L—cos [+ )X
[ 0 f

X {60"Nfeit(s1-—el+9f)+ 601(1 +Nf)e—z't(ef-sl +.Qf)} (72)

.
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and. the contribution of magnon hopping processes
Ty 0) ~ TRp@:0) st 0 ~ 6 @3)

}hegigct;ipg corrections ~ (28)71 (Tlc)' (see (57)).
Applying (7) and the standard transformation ¢+ i ¢ in (72), and neglecting cor-

rections = exp (—BG) exp (+ % flw—6)) at fG>1 and w =~ G, one can transform (72)
to the form:

T1448)2e=22 [ KT\
Than(8; @) ~ Lidn(8; 0) ~ V '67§§JI ( ZIS) ¢() (74)
where
B\ oroyhg—s L |P* oy B
— 2 £ i [ S — — . —
@p(z) = 3n S(z (2IS)l=e i 50, (1—cos f-8)6 2"+ 5
T oshe

~ it () rsy (04292 (1 /302, (1 B2) ) o,
2 Shﬁ_‘Q_ V2uQa? 2 sh [2'|
¢ 2

YA}
gu(Q) = x 2ll§—— is the density of magnon frequencies 2. The function ¢(z) has minimum
7
at 2 =0 (® = G), a maximum at 2’ ~ 0.5, i. e. at ® = G+kT = w,,, and an inflectional
point at 2’ =~ —0.5, i. e. at @ —G ~ —kT, so that

(@ENmin = ¢ = 0) = 0, (P(&") max = P& = 0.5) = 0.42 (75)
and @z’ ~ —0.5) ~ L.1.

The schematic curve for ¢(z') in the neighbourhood of these extremum points is given
in Fig. 1. In fact, [},(; ) at @ = G is very small (but non-zero),

Lo G0 =06) 1 (T)5/2<1.

Fh(M)(S w = G-|-_kT) —T(—;_

Actually, Iy M)(é ® = G) = 0, so that the absorption peak lies at ws G because the densi-
ty g(£2) of magnon frequencies 2, is zero at £ = 0: the absorption peak is shifted to higher
o = G+ET (at lower o (== G— kT) the symmetric maximum of function |2/|*?/sh|2’| is
transformed into an inflectional point due to the effect ot the ““background” ~ e = &'
‘which grows with |2’| at 2’ < 0). Thus, the small polaron hopping conductivity o,,(w) ~ o% (w)

and the related infrared absorption coefficient 7,(w) at @ ~ G has the structure shown
in Fig. 1. When the conductivity ¢, (w) is determined in (70) by the one-magnon hops,
Iw) =~ T{jyo), i. e, at 0 ~ G> kT,

2e2N, 2¢2N,
¢ Zél’h(M)(S 60) :

Oxx() ~

Z 82T She)(8; ). (76)
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The absorption peak is nonsymmetric — its left half-width - {0 <'w,, = G+kT) is smaller
than the right (0 >w,) one and increases with T as well as the frequency o,, of the peak,
and the height of the peak increases with T as T"% N. ow, it-is necessary to study the condi-
tions when (76) actually holds at @ ~.G, i. e. to make cOmparatlve estimates of I7,(d; w)
with the contribution I7,,, (6; ) of phonon hops in I',(d; w). If 0 > G (> kT), the

w}t _

| 1 —1
° -1.0 0 } 1.0 20 z'—s

Fig. 1. The curve for tp(z’) determmmg G (®) and Np(w)nearw = G; 2’ = (w—G) ) 2kT for the hlgh -frequency
conductivity 0,,(w) and 2’ = (0g—G)/2kT for the high-electric field conductivity Gy, (E), wg= le|Ea

contribution I',,)(65 @) of polar phonons can be finite, describing only »-phonon processes
with ¥ > 1 and, therefore, they are relatively small (~ @5 ~#“pol, see (57)), but it can be
negligible if @, > & > dw. The contribution I,,,(5; @) of the acoustlc phonons. can be
significaiit at 0 ~ G if G < ‘wp, so that one- phonon hops domlnate and, with approxima-
tion (6) (somewhat overestimating this contribution)

Fh(“)(s 6()) Fh(ac)(s 60) ~ 4~A2 _2@ ch ﬂTw X

— Jx5e sin2 L2

1
X e

N, 7 hﬁ”Olf’

(n )
| e | \sin
So—udlf) ~ 2ndlem0 By Z\ 1— ety

(77)
at o~ G < wp. In this way, at @ — G ~ kT and G < o

Lhan(®) _
Iy (ac)(w)

“Bop " BT A" e ;
V2 aSdg (215) ( D) #E) >l " 78

>1 only, when
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I o

pol

(;]:) < 1 in (57)), 50 that .

Swpe(z’ BT\ [op \3[ T, \%
Than(@) [ Thiae)(@) > 1 if V2 S:}?é;az)vﬂ (—2T§) (E%) ( To) 51

where » = [GJwp] (this condition is less stringent than (78)). Thus, the infrared small polaron
absorption is actually determined by one-magnon hops with splin flip, and (74), (76) take
_place (Fig. 1), when conditions (78) at Wpo >G> b0 and wp > G or (79) are fulfilled!.

Now, one can apply the analogy between the behaviour of the high-frequency small
polaron conduct1v1ty (co) A2 0' () as a function of and that of the small polaron con-

>G> {wD, 60)}, the contribution I h(ac)(é ) is essentially smaller {as faras @g¢

ductivity o, (E) = o’ (E) in hlgh ctatlonary electric fields wy = le] E a > kT, as stited
in [10] (see also [13])14. o,,(E) is obtained from o,,(w) by replacing in the last formula

o — e (E - ) = wgy(d) (80)

Note that bo{th () at o > kT and o, (B) at wg = |e| Ea > kT are basically due to hop-
ping {ransport, i. e. 0,,(0) ~ 0" () and o, (E) A~ o%(E). By applying.(80) to the formulas

(74), (76), one obtains the following formula for o, (E) at wg = le] Fa ~ G:
T B)og 26 = G log a6 7 22N 2 32T ion(85 05(8)

232chdza2 kT Ny
¥ saryzse \2S) R ®1)
with 2" = (0 —G)/2kT; 0y = |e| Ea, if conchtlons (78) or (79) are fulfilled. The shematic
curve for o, (E)|, ¢ is the same as in Fig. 1. Note that the T (E) curve has in the region
' dJ.(E)
dE,

1s negative

wg ~ G intervals of E in which the differential conductivity Z (B) =

(< 0), at o< G and 0y < o,,

13 This characteristic infrared absorption peak can be separated from the laitice ones, for either the small
polaron concentration N(T) can significantly increase with T or the gap G essentially differs from the characteristic
frequencies of the lattice-absorption peaks. When 0,3 Wpo1s the peak at wy,, =~ G+ kT under consideration
can be hardly observed against the background of the basic small polaron Gaussian absorption band which also
exists at low T (see [Lc]).

1% At this opportunty let us correct some misprints in [10a]: the first formula on p. 84 and the third formula
on p 87 should read

gq(el .- ng(aza ]) = Hgl(sz)gl( )g_'(wji)
i ¥ i,
and
8ale1, €2) ¥ guler)gu(ea)g (@), -

respectively, with g'(wy) the appropriate 'energy-diﬁ'érencgs éotrelation function (see (8) and (11) in [10]).
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An experlmental investigation of these characteristic effects predicted for high- frequency
conduetion 0,{® ~ G) and for conduction g, (E) in a strong electric field, at wy & G,
seems to be interesting both as an observation of the action of the ferromagnetic’ spin system
on the high-frequeacy and high-field small polaron properties, and as a falrly prec1se way
of determlnmg the parameter |44l of the s—d exchange.

Concluding remarks

1. EM coupling in the ferromagnetic semiconductor (in spin-wave region T< Te)
is not strong at 25 > 1, even though [4;|/I’> 1. This is associated with the essential role of
the “‘static’” part of the s—d exchange field splitting the electron conduction band in to
two subbands (¢ = %) with a gap G (> k7). It can be expected that the qualitative results
‘hold also in the case 25 = 1.

2. The ”’static” s —d exchange field and EM coupling cause a-characteristic nonmono-
tonous variation of the high-frequency small polaron conductivity, (the associated absorp-
tion coefficient) with @ at w ~ G and the high electric field small polaron conductivity with
electric field B at wgp ~ G (Fig. 1). This specific effect is due to small polaron hops with
spin flip and one-magnon processes conserving the z-component of the total spin and it
allows an estimate of the s —d exchange parameter |4 | to be made. A similar characteristic
effect should be expected in antiferromagnets (this should be separately discussed elsew-
here).

3. For the band regime (T < T, ~ Ty), EM coupling determines the additional magnon
scattering of smal polarons of the Born and non-Born type, the first dominating at suffi-
ciently low T (the last can also dominate at higher T’ under some conditions, see above),
This results, together with phonon scattering, in diverse power-type (or exponential) T-de-
pendences of the mobility. In the band regime and spin-wave region under consideration,
the characteristic transport time 7,, describing boson scattering of the band small polarons
and the mobility determined by (60), (61) is sufficiently large if the well-known criterion of
Boltzmann-type transport in a narrow band (4, = A,e~® KkT) are fulfilled

Tot < Apy i €. Ly ~ vy, > Z‘ ~ (m*A)~% = A, ~ a, (82)
»

Here, v, ~ a4, Eq. (42), m* ~ (a®4,)7%, Eq. (63), [,, and A, are typical free-path (transport)
length and be Broglie wave length, respectively,. and A, ~ @ for a narrow band (4, < kT).
. In future work discussion of ‘spontaneous small polaron galvanomagnetic effects will be
given.

4. Let us estimate, for comparison, the contribution 7{¥ to the transport time 7,
caused by the small polaron scattering on point defects of the lattice (impurities etc.) Wthh
can dominate at sufficiently low T and high defect concentration N (<€ N) in a non-ideal
lattice. As the band width D, ~ 224, can actually be smaller than the typical magnitude
of the defect potential the defect scattermg, generally speaking, is of a non-Born type.
Then, at not very high N,;, when

[ ~ 030> 4, ~a, (83)
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this scaitering can be described by the exact ‘.‘oneldefect:’7 "s‘c:attering amplitude;-ln particular,
S D s NG €A e LD e (N > @
e AR
N, <(atdy™

for the case of a short-range defect potential with the radius ro( 2 @), where ¢, is the characte-
ristic amplitude of ‘‘forward” scaitering, i.e. ty(k—K) ~t,0)=¢ A#0) at small
‘transfer of small-polaron erystal momentum |k —k&'| <l_1 ~ a1 Inparticular, ¢, ~ rj 2 a2
so that N; <(atj)™ < ¢=® ~ N. Then, comparing 7:(d) with (84), one finds that the boson

scattering of small polarons prevails and the discussion given in Sec. 2 holds true, with N,< Nj
= NYT) and 7(N) ~ 72°)(T). In particular when conditions (84) are satisfied we have

Nd < N; ~ Q(vpt?i)_l and Q _ Q e ‘QM+'onl (85)
In the opposite case NV, > N see (Eqs (61)-(62)),
H
Y@}~ T_ 5 ,MH ~ T9; ,u ~ T-1 and 'Aq_’ffu ~ TO (86)

with 7, ~ 7@ ~ (1, N3y~ ~ T° (defect scattering is the basic scattering for band small
polarons).

5. Generally speaking, the effect of the spin system on the small polaron transport
in a ferromagnetic crystalline semiconductor outside spin-wave region is more complicated
and strong — we hope to discuss this in detail in a future work. (Here D, <kT'and D, < |4,
whereas for magnetofluctuons — magnetic polarons of strong coupling and large radius,
D, ~ 224,35 |A 41> kT is assumed [14].) The comparatively simple influence of the s —d
exchange on the hopping mobility at temperatures near T is discussed in [2], [7] actually
for the case when To> T, (= T). The situation is much more difficult for the case when
To <€T,, (= Ty and the band-regime region contains a part of the paramagnetic region.
Let us make a remark concerning this actual case. Basing on the preliminary analysis of the
Kubo formula for this case performed by one of the authors (M.LK.) it can be concluded
that in the region where the localized spins S are essentially disordered (not too far from Tj),
in the paramagnetic region at least, at G = [4(2S+1)> kT (|4,,/> I), the small polaron
mobility,

I I ~ lela®4,

T poPdy <t @7

Moy 72

with gy = lela? ~ 1 cm?/V-s, can be interpreted as the quantum-mechanical non-activation
type Brownian diffusion (Markovian process) due to noninterferring individual tunnel
transitions (~4,) of the small polaron between nearest neighbour equivalent sites and to
its strong scattering on short-range (=~ a) fluctuations of the disordered spin configurations.®

15 Tn this respect,the mobility under consideration has similar features with the Brownian diffusion of an
electron in a system with disordered atomic configurations as discussed in [15], though the dependences on T'
and other parameters differ from each other. Thus, it can be expected that (87) holds true for small polarons
in systems with disordered atomic configurations as well.
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Thus, accepting the transport-process .discussed, one ‘can coricludé that the temperatire

interval, near T, exists for small polarons ina ferromagnetlc semlconductor (between the

‘band region, at T'< T,,; and the hopping one’ Ll 2] in which criterion (82) is not fulfilled

for the strong spin scattering and the formula (87) is similar to (63) for the band mobility,

but with the smallest limit values of 'effective transport length [, ~ A, &~ a and time
~ (4,)7* (The details of the calculations will be published. in future)16 ;

‘ One of the authors (S.K.) has the pleasure of thanking Dr J. Morkowski for 1nterest1ng
;dlscussmns related . with certain questions concerning the electron dynamics in ferro-
_magnetics.
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