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The influence of magnetic ordering on the dynamics and mobility of the small polaron
in a crystal lattice is discussed in ferromagnetic semiconductors, in the spin waves range.
The energy level structure of an electron due to the splitting of an atomic energy level
by s—d exchange interaction is shown to be asymmetric, and the temperature dependence of the
widths of subbands of a charge carrier varies according to the direction of its spin; the narrowing
of the subbands resulting from the interaction between carrier and magnons is small, because
the electron-magnon interaction is weak for physically real cases.
The mobility of the small polaron interacting with magnons is ealculated by the Kohn-Lut-
tinger density matrix formalism in Born’s approximation. The conductivity of the polaron
interacting with magnons exhibits band character in the temperature range discussed here.

Introduction

In recent years, considerable interest has been devoted to the study of the physical
properties of a large group of chemical compounds having a magnetic ordering and exhibi-
ting semiconducting properties i. e. magnetic semiconductors (for a review, see [1]).

The existence of uncompensated magnetic moments localized at crystal lattice sites
of a magnetic semiconductor modifies the dynamics as well as the kinetics of the electric
charge carriers.

The interaction of a carrier’s spin with the magnetic moments localized at crystal
sites is responsible for this modification. Until recently, only few papers have been devoted
to the theoretical investigation of the physical properties of magnetic semiconductors.
Thus, in the papers [1, 2], the methods [4, 5] previously derived for the small polaron
have been used for studying the influence of carrier-magnon interaction on its energetic
spectrum in a ferromagnetic semiconductor in the spin wave range neglecting, however, the
Ising part of s —d exchange interaction which, here, plays an important role. The influence
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of interaction between the carrier and the localized magnetic moments on the shift of the
optical absorption edge is discussed in Ref. [6]. Haas et al. [7] considered the influence of
exchange interactions as well as an applied magnetic field H on the broad-band electronic
conductivity in systems with ferro- and antiferromagnetic orderings. Woolsey and White [8]
derived contributions from exchange interactions to the energy of an eleciron and the energy
and specific heat of magnons in a broad-band degenerate ferromagnetic semiconductor,
in the spin-wave range.

. Until recently, little interest has been devoted to the influence of magnetic ordering
on the dynamics and conductivity of the small polaron [9, 10], which ¢an be formed in
magnetic semiconductors considering the type of their chemical bonding,

It is the aim of the present paper to discuss the influence of magnetic ordering on the
energy spectrum and mobility of the small polaron in the Born approximation for a ferro-

magnetic semiconductor, in the range of low temperatures (7T < T,, where T, is the Curie
temperature).

1. Hamiltonian of the system

Let us proceed to consider a system of ferromagnetically ordered magnetic moments
localized at the sites of an ionic crystal lattice with an electron (or a hole) interacting with
lattice vibrations as well as with localized magnetic moments. It is our main interest to discuss
the motion of the electron modified by its interaction with the localized magnetic moments
of the lattice, at strong interaction with phonons. This is the case of motion of a carrier in
a narrow band; thus, the state of the electron can be described by Wannier’s function
lg) = o(r —~R,). Let us assume, moreover, that a weak constant magnetic field H, directed
along the z-axis, is applied to the system; in the ground state, the localized spins are anti-
parallel to the z-axis.

The hamiltonian of the system takes the form:

H = %”e+=}fph+.7feph+Ji”dd—l—ffsd—!—,}’fﬁe]d, (L.1)
where
0 N
_b _
=Ly gZ:l Ur—R,) (12)

is the sum of the kinetic and potential energy operators of the electron, Ur—R,) its
potential energy in the ficld of the g-th unit cell; 4" the number of unit cells of the crystal,

R, the radius vector of the position of the appropriate cation in the unit cell g. The second
term in Eq. (1.1) is of the form:

Hyy= D ho (bFb,+ %) (1.3)
q .

and is the Hamiltonian of the system of mutually non-interacting phonons; ¢ = q, j,
where q is the wave vector of the phonon; j labels branches of the crystal phonon spectrum,
bF(b,) is the creation (annihilation) operator of a phonon in the state ¢,
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The third term in Eq. (1.1) describes the interaction between the carrier and lattice
vibration, and is of the following form [11, 12]:

‘%eph = E Z Zhwq(y;qbq+h C.) a,;;aga; (]4)
g g 0©
-1 Vq* ig R
Voq = (2AN) 7% T © 9%, (1.5)

q

¥4q determines the deformation of the neighbourhood of the crystal site g due to the carrier
localized there, ¥ is a parameter of interaction between the carrier and the crystal lattice.

The Hamiltonian of a system of localized spins, in the approximation of nearest neigh-
bours, can be written as follows:

d_LVsz —2I 218, 8,155 ([ >0), (1.6)
!L

where L =gluglH, 6 =R, ; —Rg, g 1is the spectroscopic splitting factor, S, the spin
operator localized at site g, ugthe Bohr’s magneton. Let us now proceed to express the Ha-
miltonian in terms of spin wave operators making use of the Holstein-Primakoff transforma-

tion [13]
]/25 ct, Sy VTS Cyo

, 1 .
s T _ LR,
Sg S-tegeqs ¢ V7 Z etrBf ey, (L.7)
It results that
de = E0+Z hw&o)();—c;h, (1-8)
*
A is the magnon wave vector, Ey = —LSA" —z4" IS, 2 the coordination number, S denotes

values of a localized spin, [ is the indirect exchange integral.

¥

1.
© __ 7R )
hwy’ =L+s&, &= 2[52(1 . 25 e ) . (1.9)

The hamiltonian (1.8) describes a set of noninteracting magnons (moreover, interactions
between the phonons and localized spins are also neglected [14]).
A carrier moving in the crystal lattice interacts with the magnetic moments localized

at the lattice sites. Let us assume that the interaction can be expressed by an hamiltonian of
the form [15]:

Hu=-2Y Ar—R)s-S,~4Y o (s— = Z o cx) i
g g0

— Z ho{(ygperafiag,+h. c.), (1.10)
where

A 25 . ‘
VYar = mﬁ G eMRy, 4 = <O|A(’l") [O>, (1.10a)
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=D A(r—R,); o = +1 for a spin oriented along the magnetization direction ( 4 ),

g
and ¢ = —1 for a spin directed oppositely to the magnetization of the system ( | ).
The last term in the Hamiltonian (1.1) corresponds to interaction between the electron
and the external magnetic field. This is of the form:

Hgaa =% & 2, luglHoaa,,. 1.11)
g)d

Putting E, = 0, we obtain after simple algebra the Hamiltonian of the system under con-
sideration, in the form:

H = £, gy — Z Z V(J)aﬁsdag(,—l— Zhw ®Fb,+%)+

g.°

+ }r‘hwaﬂc;cl Zhw;~ Yorlr amam—I—h c)+ D ho(yg,b,+h.c) afa,,, (1.12)

9,9,0

where
1 N
& = &+ IMB[HO"[—O'A (S—— 7 Z Ccy Cl) . (113)
hof) = hol+ 42, 2= JlV ongs, & =/(g|H,lg). (L14)

9,0
The Hamiltonian (1.12) describes the carrier with spin at interaction with the phonons
and magnons as well as with the applied magnetic field. In the present case, this interaction
is not weak and, therefore, the last two terms in Eq. (1.12) cannot be treated as a perturba-
tion, as is usually done in the theory of metals. In order to find the perturbation, we shall
recur to a unitary transformation of the Hamiltonian (1.12). This will be performed in
two steps. First, we shall eliminate terms containing single phonon operators; next, we shall

eliminate the magnon operators. The transformation eliminating the single phonon éper-
ators is of the form [11, 12, 16]:

# = exp (—=8;) # exp (8) (1.15)
where

Sl = (ygqu —h. cl.)a;,ag

59,0

After this transformation, the Hamiltonian (1.12) takes the following form:

% Z (l)a’ga gs Z (6)B g+ﬁu go‘+zhw b+b +2)+

9.9 g,6,0

-i—; hoPe;Fc, — Z}~ ho(yseratat+h. c)+
g,

+ Z Z Zhwqyfqygq go fa go [0' (116)
(wﬁf) (6#0)
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where

e =¢,—¢, 8, = Z ho ly |2 V(0) = —{g+0|#,|g).
By =exp {3 14,9.9+9)—h.cl} (1.17)

AfG, 9+0) =Yg, Vgrs0 (1.18)

The last term in Eq. (1.16) accounts for interaction between electrons localized at different
lattice sites. This interaction will be neglected because we in general omit here interactions
between the carriers. g, is the polaron shift of an atomic energy level of the carrier resulting
from its interaction with the phonons: aj(a,,) is the creation (annihilation) operator of a
polaron formed by dynamical interaction between the carrier and the crystal lattice. Thus,
the second term in Eq. (1.16) describes the interaction between the polaron and the phonons.

In order to diagonalize the terms with magnon operators, we shall perform the following

transformation:
# = exp (—5) # exp (), (1.19)
where
§; @0 ata,, ~h. c.) (1.20)
and
J— o) (1.21)

— e y x‘
8{1)—e§1)+hw&1) 7

The choice of the operator S, in the form (1.20) permits the approximate diagonalization
of the magnon terms in Eq. (1.16) (with accuracy to normal products of four polaron opera-
tors which are neglected), without naglecting the o-dependence of ¢,. Zilichikhis and Irk-
hin [3], when following a similar procedure with regard to the present problem, choose the
operator S, in a different form. Namely, they assumed that e, o &. This assumption leads
to the omission of terms by one order of magnitude larger than the beforelast term in Eq.
(1.16).

In order to perform the transformation (1.19), it is most convenient to transform one
by one the terms of the Hamiltonian (1.16). Thus, we see that the terms of Eq. (1.16) take
the following form:

) s‘(,l)e—éa;,agaesz Z eWa* B golys+
g o3

1(8(1) ~‘9(1)) Z l¢xizagaaga+(6(l) _‘9(1)) Z (@ xcx gta' ythec)+

a,1,0
+3(e - ‘”)fZ (D} D pakatapa,+h. )+
g5k
+3(N —el) X > o(P P, 0l e+ D, WD cohatan, ... (1.22)

g5 A,k
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—s S,
* 2 V(0) Byyagys,0000
9,80

. Z V(é) Bgﬁ{D;5+a;+5,1agT+D;S_a';-l—ﬁ,la'gl—l_

g,0
+b; g5 a’g+5f y\l+D95 a'ngS &agT—l_Z & (1.23) .

where

b;5+ ~ % {ch Zx [(en"'s_l) gzsgqts,xciF +¢;+a,xcx] +

+ch ; [(¢7? 1) Dpycr+ Pue 1} - exp [ - A(D)], (1.24a)
Dy = (DJsHy* exp [24(8)], (1.24b)

Dy ~ Z (€™ —1) Djcy, (1.24c)
D=~ (1.244d)

gd
8 =142 19121 — cos A 6).
Py

s =% 2 [(DFisa—P11) Pty s pty (P~ Prisn) Ppgag, s apagl+
+ terms containing more than four polaron operators. (1.25)
The third term of the Hamiltonian (1.16) remains unchanged in form, because
[82: 03] = 152 bg) = 0.
On transformation, the fourth term in Eq. (1.16) becomes:
kz_hwgvl)ef§chcle§é - Z haoMe;” cx—i-z hoV kc;ra!;dgf+ll. c.)+
+ % Z Zhw(1)|@l]2a -

gh ©

+ % Z Z thl)[¢* d;ylccxc},—l—@ dsglc ch] a ta, +

go'go
9.0 Ak
+ 4> hw&”[@}i@gxa;a;;aﬂam-]— h.e.j+... (1.26)
@

Finally, the last term in Eq. (1.16) takes the form:

1),_8, + .+ §, — 1), % +
— D hwPe Sy grn gy, + b c) €S = — > hof 1y D o —
g gshs0

— Ehw (yglc,va,gla,g?—}—h c.)—

- Z Z th;u )(ygkgb* Cyla _I_YQldng Kc).,) a’gaa’ga

9,0 Kk

— D hol) (yp Ppatasanag,+hoc)+ . (1.27)
o
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Having transformed the Hamiltonian (1.16), let us now proceed to the reduction of similar
terms. The sum of the following terms: the second in Eq. (1.22), the third in Eq. (1.26)
and the first in Eq. (1.27), is equal to:

Zx Z hwgvl)ygl gla’yt7 o Z & a’gd 9o’
gh o
e =%, hw&l)yg,ud)gx - (L.28)
7“ B

The sum consisting of the third term in Eq. (1.22), the second term in Eq. (1.26) and the
second term in Eq. (1.27) vanishes. The terms in Eqs (1.22), (1.23), (1.26) and (1.27) con-
taining normal fourth-order products of Fermi operators are proportional to 1/25 and can
be neglected for 253> 1. The sum consisting of the fifth term in Eq (1.22), the fourth
term in Eq (1.26) and the third term in Eq. (1. 27) is'equal to: '

= T2 Z XZ: th(l)(ygxdsgnc «Cn +yg7..d§gx Kcl)aga go (129)

9,0 LK

The expression (1 29) can be rewritten on the basis of the RPA approx1mat10n in the fol-
lowing form:

= Z amaa’go’a’go' Z thl yg?» gl, <n3,> aga ge

gk
— ; ohoy g, Pp <nged el ers (1.30)
g,A0
e =% D) ch(My D ;. (1.31)
x

It should be noted that the products '}’:;x@gx = yg,vdi;;,u, appearing in the above equations
do not depend on g. Finally, assembling all the terms derived by the canonical transforma-
tion, we obtain

H = Hog+ Ky (1.32)
where

Z &t yg+2 hao(bFb,+ %) —I—Z hoPete,, (1.33)

mt “Z V(6)395 {D++ ;—4—81 g1+D g+8¢ gl +

+D%at s a0+ Dystal 50,3 (1.34)
&y =eM—¢, —ema——zx: choPyy @, 1y, 68 = &, &, (1.35)
@ _ o W * PN A 2542
ho® = hol(1 ; oy Pir(ngs)) = hoof ( o oe ) (1.36)
Taking into account Eqs (1.28) and (1.31) one notes easily that
SA
Em+Ema — sm(l—.l—a), &y 2 — m B (1.37)

=54 T
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Eq. (1.35) now takes the following form:

&, = eV —e, (1+0) _Zx: choly, By, <> (1.38)

The second and third terms of the above equation are associated with the shifts in the car-
rier’s energy levels resulting from its interaction with the magnons. The last term in Eq. (1.38)
is of order of {(n,)/ 4" and can be neglected in the temperature range considered. Thus, the
possible energy levels of the carrier are determined by the expression:

&, =M —2¢,6,, (1.39)

Tt can be concluded from Eq. (1.39) that interaction with magnons shifts solely the energy
level of the carrier with spin parallel to the magnetization of the system, by a value of
2le,,|, irrespective of the sign of the s —d exchange integral. It seems worth to note that the
above shift takes place also for T'= 0°K. At the temperature T'= 0°K, a carrier with spin
parallel to the localized spins does not excite the magnons and, hence, does not change its
energy level. In the opposite case it excites the magnons changing the #, y-components of
the localized spins at constant z-component; thus, it interacts with them, thereby changing

its energy.
The spacing between the energy levels determined by Eq. (1.39) is given as:

gl 141 (20594 s (140

2. Energy spectrum of . carriers, band narrowing, and effective mass

Let us now proceed to transform the Hamiltonian (1.32). Adding and subtracting simul-
taneously the following expression [3, 11, 16]:

ZV <Ba 192 a’;_+5,6ag0' (2.1)
where ¢...> denotes an averege value over the states of the Hamiltonian (1.33), we obtain
H=H+W,

Hy=#0=3 3 70) Bp> (DF50,, D5 ™500,3 05,0 B (2.2)
23710 (et —<BaDI ) a0t

+(Bg5b;5— _<Bsbg_>) a +8,4 g¢+B (Dgs a’;+81 m'i'Dgs ag+SLa'gf)} (2.3)
The average values of the operators B s and D95 are derived easily [11, 17]. They are:

<Bga> = <Es> = exp [—57(3)]

Sr(8) = Z yal2 (1— cos q - 8) cth == m’ g = (kT)1; 2.4)
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Dy = <DFy = exp [-S7(9)]

hol?

S7(8) = 2 |D2)2(1— cosh-d) [a—l— th B 5 (2.5)

In momentum space, the Hamiltonians (2.2) and (2.3) take the forms:
Hy = 316,(K) a}a1,+ D ho (b5, +3) + X haer ey, (2.6)

ko q A
e — e 3 Y V@it e (B Dy —(BoD e+
g.h kK
+(Eg5‘bg_3_ _<§5D§ ) a:ﬁawﬁ (D 5 “mak ¢+D 5 “mak D} 2.7
where
&(k) = 8,— X V() B DYy ™. (2.8)
5

The Hamiltonian (2.7) can now be dealt with as a perturbation in the Ie-representation of

our problem.
The scalar effective mass of the carrier is determined by the expression:

o2
(m;k)— h_ (akz U(k)) -0
— 2 252 V(6) exp [ —S¢(0) —S30)]- (2.9)

As seen from Eqs (2.8) and (2.9), the energy and effective mass of a carrier depend on the
direction of its spin. The energy band splits into two subbands, their widths are described
by the equation:

o, T) = 2 X} V(6) exp [ —S(0) —S7()]. (2.10)
3
For longitudinal optical phonons [4, 11, 12, 16]
Sr(d,) = Sr(a) cth ! ———"—VOZ (2.11)
o r(@) =7 27 Vv T 2Ry’ ’

Wg

where 6 = — the Einstein temperature and %k — the Boltzmann constant.

. @
Let us now proceed to estimate S7(d). We assume &£ = 0; then wf) . w&o). More-
over, let us put H = 0. On performing volumme integration over the first Brillouin zone

instead of summation over A in Eq. (2.5), and taking |A|/2] = 10 as a typical example

we obtain the following result:

*
S3(9) Esgz'%"g_"{zﬁuggz r:(g/sz) ("TT) + -
370(5/2) [2T\™\ | 35aL(/2) [ 4T\™ | I\?
+8.92 700 (T) }+ as ) HoUF) ) (2.12)-

2= @uSCSH™Y  C(S) = [, (see [10]),
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(o) — Riemann’s {—function. As seen from Eq. (2.12), the widths of the subbands
exhibit a different shape of their temperature dependences. For the lower subband ( | ),
the first term in Eq. (2.12) disappears and S}. ~ T°%, whereas for the higher subband ( 1 ),
Sf ~ const + T*?+ 0 (T°?). The interaction between the carrier and magnons is respons-
'ible for the difference in temperature dependence of the subband widths, because the factor
resulting from carrier-phonon interaction is the same for both subbands. For S > 1 we have
S‘}< 1 and carrier-magnon interaction slightly narrows the conduction band; therefore,
in this aspect, this is not a strong interaction, although |A4|/I>1, and cannot be responsible
r(5) . —

2zv | I
19—

09}

0.8 -

0.7 |

—— e — % L

0 o1 02 03 04 T

Fig. 1. Temperature-dependence of the relative subband widths for S=1, 3/2 and 2 (Sy==0)

for self-trapping of an electron (or a hole) and formation of a small magnetic polaron at
low temperatures. The temperature dependence of the relative width of the subbands is
shown in Fig. 1 for S = 1,3/2 and 2, where interaction with phonons is omitted.

3. Equation of motion for the density matrix, and Boltzmann equation

Taking into account an external electrjc field F, we can rewrite the Hamiltonian of the
system in ‘the following form: :

= Aot H+Hpe™, — 00 <t <0, (3.1)
where 3y and ', are given by Eqs (1.33) and (1.34), respectively;
Hp=e D, F R (6 =ux,7, 2) (3.1a)
o

stands for the carrier’s energy operator in the external electric field; s —- adiabatic para-
meter (s —> -+0).
Let us now define a density matrix

or =271 e PHT 7 = Ty o= FHT
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fulfilling the following equation of motion

)
ih “LE=[# 1, 7). BER
The Hamiltonian #,,, is non-diagonal in the representation of eigenstates of the operator

#y which we shall apply in our further considerations

(| H 1> = 0, (3.3)
Hol0) = Egid), (3.4
Ey= &,+ >, ho (N, + 3+ > heo\Pn,, 3.5)
q 2
|9 =lo, g, {n}, {N})=10,G, .15 N,... ) = lognN) (3.4a)

where N, and 7, stand for occupation numbers of phonons and magnons in the states g
and 2, respectively. Since we are interested only in effects linear in the electric field, we can
write @, in an approximation linear with respect to this field, in the following form:

or = e+/e” 3.6)

where f is a time-independent correction to the density matrix linear with respect to
the electric field and resulting from its action at ¢ = 0 [18]. In our further considerations,
f will be termed the linear reaction operator or simply, the reaction operator. On inserting
Eqs (3.6) and (3.1) into Eq. (3.2) and taking into account the equation:

o O ;
ih 35—: [%0+%int H Q]a
we obtain:
ihsf—[Hy, f1 = [ Ko 1+ # 0] - 37

Equation (3.7) determines the reaction operator. In deriving Eq. (3.7), terms of the second
order with respect to the electric field F were neglected. Eq. (3.7), which holds in an arbitrary
representation, will be solved in the eigen-representation of the operator Hy. In the basis
eigen-functions of the operator #,, Eq. (3.7) takes the form:

_h(wﬂ'ﬂ —1s) f@',ﬁ = 6Fx(R§ _sz') Qo0
-+ ;ﬂ {% int 19",19f &9 —f «9“,@% int 0',0"}» (3-8)
@AW = App; ho gy = By —Ey..

Let us assume that the external electric field is directed along the x-axis. The matrix elements
of the perturbation operator ', take the forms [5,3]:

K= = 2 V0) 8557461 B gl N> <niD7e5(80 0y

+ 50(}’66‘,1_'_ 6d?l66’;l+ 6%;60’,1) |n>7 (39)
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The matrix element (3.9), diagonal with respect to n, N and o, after statistical averaging
becomes:
’ 5 DA++ li__
(OgnN|H i o ) ay = — Y V(8) O 5(Bs) {1<+ :_M{D n 1<+:+ﬁiw}, (3.10)

b

hw = éa;— gf-
Eq. (3.8) will be split into two parts: a diagonal part (n = n’, N = N’, 6 = ¢') and a non-
diagonal part (n = n/, N £ N', ¢ # o).
The diagonal part of Eq. (3.8) is of the form:

ihsf(onN) = eF (Ri—R%) g, (onN) +
N Z,, {'Wint ".‘I"”N,Ugang’g'»(O'nN) —
g

—¥, g"g(GnN ) H int og'nN,0g" ' nN. 3+

I3
D N C £ NN S

(3.11)

mfo”g”n”N",ngN'yfint crg’nN,u”g”n"N”}' ’

The sum over N”(n”) denotes the product of sums with one sum for each g (%),

Z’ () = Z () (1_566”61111”6NN”)5

g N g N
Qg'g(UnN ) = @ag'nN,agnNSf g'g(GnN ) =1, og'nN,ognN?
0y5(g') = wy5(g)-
On insertion of Eg. (3.10) into (3.11), one obtains:
ihsf,y,(onN) — eF(R: —R%) g, (onN) —
MAOICS, ( Do’ D5 |

5 14+ g Fho 1 - tbtw

+ Z, {yfint o’g''n’ 'N",o‘ynNfug'nN,G"g”n”N" - (3'12)

o g o N
_fa”g”n"N",ugnN’yfint ag’nN,a"g"n"N”}'
Analogously, after simple algebra, we obtain the following equation for the non-diagonal

part of Eq. (3.10):
—h(wyp—is) fﬂ’,ﬂ = eFx(Rg _R;C') O 01

+ Z {‘yfint a"g"n’N",cgang’g"(G,n/N,) '_fg"g(o‘nN) H-int a’g'n'N',ag"nN} +
rz
-+ Z {‘}fint ug"nN,agnNfa’g’n’N',dg"nN -
g

_fag”n’N’,o'gnN%int G'g'n'N',u’g"n’N’} +

+ , > ) {H ineor 0500 —Forr 0 ins o 07 (3.13)
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Kohn and Luttinger have shown [18] (see also: [5]), when solving Eq. (3.13) by the iteration

method, that in the lowest approximation with respect to 4,

equation is played by the second term on its right-hand side.
Thus, we can write:

the main part in this

1 ]' 7 pgf?? 1 AT? LAY
Fro= =5 g iy D UognNHinlo'g W'} fyy o)
—fgg(onN){og" 'nN|H in|c'g'n' N')}. (3.14)

Inserting Eq. (3.14) (on appropriately changing the indices) into Eq. (3.12), we obtain the
kinetic equation — a counterpart of Boltzmann’s equation, in the form [3, 5]:

ihsf g (onN) = eF (R —R3) 0gglonN) —

4+ 4=
= S [Pk ¢ PO o) ~ysglonl+PD,

~ 14t
(3.15)
where
D = D;+D,;
1 ! r’ .t (24 7’ e _ s (24 '
P=— Y (ognlN|Humo"g"n"N") (0" g" n' N"|#inlog'nNy + %
a",g".9"" sn"",N"'
>< l — 1 f ( 1! IINII) (3 16)
Wosr—1S Wpyrr 18 g7g\0 1 ’ )
D ___:_i ZI S 1 (O‘gIIInN'%. ‘Gllg”n’/Nll>X
1 h a)g”g—is int]
g o N
X" G"n" N | H ins|og'nNy fyrg(anN), (3.17)
1 ! 1 7! 1 11
Dy =~ Z (ww”—is ) (G| H el g "N
o‘”,g”,g"',n"_,N"
X" G 'n"N"|H ine|log""'nN) fyg(anN). (3.18)

In order to solve Eq. (3.15), we have first to calculate the expressions: (3.16), (3.17) and
(3.18). Let us now proceed to obtain P. Inserting (3.9) into (3.16), we obtain

1 s
== X" Y FOVENNIB, s
o”n"\N". 8,8’
X <n|D;i’8,6 [0, + 66,766”,1,_}- 66,£6a”,1]| n”»x
X <n”[b§2§, [60'0"’ + 60”’,166,L+ 6;1”,;60,7]1 n> X

N”) (N”’ég’,ﬁ’

N)x

Wyprr—18 Wys 18

1 1
(o= = o) forvsomsonw (3.19)
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The products of matrix elements appearing in Eq. (3.19) are of the form: '
<Nu§,,_§ sV KN |B NS
5 H{[l A9 0. O +4,(9", 9 +O)P) (N 411 dny w,—

—A(g—0,9) 49’ g +6) Ny n—1— A (g6, 9) 4,9’ g'+6) (N, +1D) by np1ds

(3.20)
where
Afg—6,9) A9’ g +0) = —ly [P I(g—9g', 4,5,
g —g'.6,9) = galo=9) (1 ae'—z'qfa) (1 —e—ia¥), (3.21)
For the various possible cases, Eq. (3.21) takes the form: ‘
(40, £9, T0) =2(1—cosq - d)cosq -9,
IY56, +0, £0) = —2(1— cosq - ) cos 2q* 4,
I4(£8, 8, £0) = —2(1— cosq + d),
130, +0, :0) = —I48, 8,—0)
130, 6, T6) = 145, 5, 0). (3.21a)

With regard to the one-dimension=l system, Friedman [5] showed that for g # ¢’ we have
P = 0 and, therefore, a finite contribution to P stems the last two cases of (3.21a). P atlains
its maximum value in the last case (3.21a), because the terms in P containing I%(0, 6, £:0)
account for processes of a higher order; their contribution to Pis small and will be neglected
in our further considerations [5, 11].-Putting in Eq. (3.20) ¢’ = —0 one obtains:

<Nll§g,5?§|N"> <N”|l§g’~§‘1gv>
— TTHIL 21,2 (1 — cosq - &) @N,+1)] dyy x,+

42|y, |1 — cos q - J) Nan[l’,Nq—l‘(‘2|7/q|2(1 — cos @+ 8) (N, +1) 0ny n 1) (3.22)
Analogously, . :
<n|DAUG”6 6[66 6”+ 60 166” L+ 60 Laa” T]In”> X
XD 5[0 g A BB - B 85,11 1>

- <n1[3;+§81n"> <n”1D’+ iny (e74®8, +eﬂ<5>5u )0+ (3.23)
+<n|D1;—“[n”> " \Dy Tl 5 ' M+ (3.24)
<D, T 50" D g 8,040, (3.25)

D > <L imy
— [T AL 1D, 121 —cos A - 6) (205, +1)] -Onyom, + Dy (1 —cos 4 - 0)ny Ony my—1 +
Y e
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+|D,12(1 —cos 4+ 0) (ny +1) dufmy+1}+
+1 H {[1—19,)%(1 —cos 4+ 9) (2n, +1)] duyn; —|Dy|2 (1 —cos 4+ ) ny Onj,ny—1 —
)

~|®,12(1 —cos 4 8) (ny+1) dumy+1}+
+ L] {1 —1D,[2(1 — cos 4 - 8) (2ny +1)]6ny, my, +2|D; |2(L—cos 4 * )13, Ony, my—1+
A

‘H@xlz("m"“l) O mA1}t+
+ 3 T {11 —19, )21 —cos 2+ 8) (2n3 +1)] Ouy, g —2|D;|2(1 —c08 4+ 31, Onymy —1—
Iy

~1D,)2(ny + 1) s mr 2} + [ ] {11 1D, 21 —cos 4 - 6) (2n, +1)] Ony),m +
. A

+|®B, |20, 0n, my—1-+2|D, |2(L —cos 4 - 8) (ny +1) On)'y myr1}+
+3 H {[1—{D,|* (1 —cos 4+ 8) (2n;, +1)]0ny, ny — | D, | 12 Ony., my~1—
.

—2|D, 121 —cos 4+ 8) () +1) Oy, my+1}, (3.23a)
DI, sin > <n” D, Fslny =% 1;[ {6n7, m, +21D,1%(1 —cos 4 - 8) (), +1) uyl, my+1}—

—3 [T {0, n,—21D;|2(1 —cos 4 - 3) (13, +1) Oufl, my+1}, (3.24a)
A
nl Dy oln'> 0| D glnd = $ T {8u7, 21D, |41 —cos A + 8) my Onyl, my—1} —
. A
—%‘ H {6;1;:, ny, —2I¢7~|2(1 —Cos A - 5) n;ﬁn;:, n;b—l}- (3.253.)
A .

Let us now assume, after Friedman [5], that the matrix elements of the reaction operator
: v P
Sg—5,g-5 (0/'n""N") diagonal in o, n and N can be written in the factorized form:

Jg—5,g-5 (00 N)y =fo_s 4 s8(c"n"N"), (3.26)
where

§(0"nN") = (o") 8(n") £N"); gle”) = 21 o P
Z = De By (3.27)

are the partition functions for the system at equilibrium. The assumption (3.26) accounts
for the fact that the thermal excitations of the phonons, magnons and the carrier’s spin are
not associated with localization of a single extra carrier. In the non-perturbed state,
with constant occupation numbers of magnons (the assumption (3.26) deals only with
diagonal matrix elements), a change in direction of the carrier’s spin is not possible.
As regards the assumed form of the partition function (3.27), for a system at equil-
ibrium, it should be noted that this assumption is necessary in any theory describing
irreversible processes and constructed on the basis of the time-invariant equation of motion
for the density matrix [5].
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On resorting to the relation:

+oo

_1_._ . 1' —; f dreixr—slt| (3.28)

xX—18 X—18

—o0

we can rewrite Eq. (3.19) in the following form:

+ oo
=+ Z z V2(8)fy—5g—s j dteimearn—slel
G <Nlég-5,5|N"> (N"[By-s| V)X
X [matrix elements determined by (3.23)—(3.25)] (1—ds-.9), (3.29)
where
85 5= 04 50, 0N, N5 g, g does not depend on the position of a site, since it represents

the difference in energies, independent of position. On insertion of (3.231),(3:24a), (3.25a)
and (3.22) into (3.29) and statistical averaging over n, IV as well as resorting to the transfor-

. 1/ .
mation: t = 7— 5 one obtains

P =ih gfg-s,g_sWT(é), (3.30)
where
W(0) = X p(0) W(6, o), (3.31)
W'T(éa 0) = W8, o)+ Wi4@, o), (3.32)
plo) =27t e P Z, = Ze‘”’; (333)

2
Vi, o) = % (72485 +640,,) X

(2)
X exp {—2 Z Ive|? (1— cos q - 8) cth ﬂhzw Z |D]* (1—cos A - 8) cth ﬁhw }X
q

+oo-+iBk/2 . -
x [ d‘re_s‘”elﬁs’f/z{ez% F(g)(1—cos ¢'8) cos wat(ch[2 X (F(A)(1—cos A + 8) cos wy7] -+
—co-+if%/[2 A

-+eh [ ; F)(2(1—cos A+ 8) +1) cos wy7] cos [ ; F) 2(1—cos 7&'" 8)—1) sin wy7]) -2},
(3.34)

7o) = V0 p {2 2 Xt i Phod

+00+ift/2 Bio
% dre—sltlgifski2e2 Z F(q)(l—-— cos g - B)cos 0aT{§ \eioTt "2 X

—o04i6t/2
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Bro

% sh[2 20 F(A) (1—cos A - 8)ef@s"] -+ 8, e ™" 2 sh|2 ZP ) (1—cos A - 6) eir7]};
X
(3.35)
& 2
ho = &—&; FA)= | )"I- (2) s Kl = [7al . (3.36)
osh P10 sh Phea
2 2
After.averaging Eqs (3.34) and (3.35) over spins, we obtain
W (0) = W(8)+ Wrs), (3.37)
where
1 V2(d e 24 £24(8) )
W (6) h(z) ( 1+e~ﬁﬁw + 1+eﬁﬁw ) exp {_2 Z ]y4[2 (1—COSQ'8)><
/9 ﬁhw“)
x oth 22 Z |y [2(1—cos A+ 8) cth (I,(3) +1,(8)); (3.38)
400 +-iB%/
Il(a) f d‘L’e_S17|+1ﬁSﬁ/2{e2EF(q)(l cos ¢-8) cosmqrch ZF(}‘) 2(1 —cos - 5)+
—oo+iff[2
+1) cos wP7] —13, (3.39)
+co-+iB%/
12(6) f d-,;e"slﬂ+1.35ﬁ/2{822F(4)(1 cosq-8)cos VAN [Z F ).) 1—cos 4 - 5) ~1) cos 60;“2)‘[] %
—oo+iff[2.
% cos [ Y] F(2) (2(1—cos 4+ 6) —1) sin w{P7] —1}. (3.40)
A
2
i) =10 exp{ Z 7ol (1—cos q - 8) cih fﬁ“ﬁ} LE: (64D

I,(8) = exp &%ﬁhw) I3(5) exp (— ¥ ﬂhw) I,(8),

1+6—ﬁtw ]_+ Bt
-+oo+if#%[2
I3(6) f d_’:e—s|r[+zﬂs}i/2 22F(q)(1— cos q-8)cos wqT+inT sh [2 Z F(l) —cos A - 5) ez’w;?)i'],
—0o-+if%[2
(3.42)
+oo--iB%/2
.[4(6) — dTe—s[r]+zﬁsﬁ/2 22F(q)(1 cos q+8) cos wgT—{wr sh [2 Z Fﬂ,) 1—cos A - ) e— ml -r]
) —oo+-if#[2
(3.43)

The physical meaning of Eq. (3.37) is obvious »} W(d) is the reciprocal relaxation time of
3

a carrier. The reciprocal relaxation time is equal to the sum of the reciprocal relaxation times
for transitions with inversion and without inversion of spin, respectively. W () stands for
the sum of probabilities of transitions without inversion of spin (WE(d)) and transitions
with inversion of spin (W24(d)).
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The expressions:

S@) =23 Fg) (1 —cos q + 6) cos w7, and
@(r) =2 33 F(2) (1 —cos 4 - 6) cos 0Pv (3.44)
%

stand for oscillating functions of 7 decreasing with growing 7 as 77 ¥[4b]. In the considered
temperature range kT <€ 2IS we have f(0) and ¢(0) < 1, and thus, in order to calculate
the integrals (3.39), (3.40), (3.42) and (3.43), we expand the sub-integral terms in power

series.

Then, taking the real part in the integral (3.39) and performing integration from — oo
to -+ oo, we obtain

11(6) = 4z Z‘ Flg) (1 —065 q - d) §(w,) +2n Z Fl(q) F(gy) (1 —cosq - 8) X

X(1—cos q,  d) [§{w,~w,) +d(w,+o,)]+
20 3V F () F(h) (L—cos 2+ 8) (1 —cos &y - ) [8(e, —, ) + 8o, 03, )]+

Yok
+ terms accounting for higher order processes. (3.45)
The first term in Eq. (3.45) is associated with a one-phonon process and vanishes by the
law of energy conservation. The terms containing d(ew,+g) also vanish for the same reason

(an emission or an absorption of two quanta). Thus, for the lowest non-vanishing and giving
basic contribution processes we obtain the following expressions:

L(0) +1y(0) = 2m {2 3} (o, —@42)1[1[21’ (q) (L —cos q,- )+

g1 g2

+37 8w, —e,,) F(Ay) F(A) [3—2 cos Ay 6—2 cos Ay - d-+cos Ay - S cos 2 - 6]}, (3.46)
i hs

Similarly, we calculate I3(d) and (), with |fhol>1 and I (8)~ePH1121(8) irrespective
of the sign of the s—d exchange integral: ‘

I;(6) = 4 {; 0w, +w) F(A) (1—cos 4 - d) -
+Zx F(3) F(q) (1—cos q - 6) (1 —cos 4+ 8) d(w, —w,+w)}. (3.47)
a
Making use of the same method, we can derive D (see [5]). We obtain the following result:
D = ih 35 Uy ) Wr0) 0 0n) W (=) (3.49)

The second term in Eq. (3.48) stands for processes of the type: gnN—>g"n"'N"—>g +26,
n''N" i. e. transitions to the second coordination zone; its contribution is small and thus
can be neglected. We finally obtain:

D = ih 3} g(onl) W(d). (3.49)
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Inserting (3.30) and (3.49) into (3.15), we finally obtain the Boltzmann equation deter-
mining the diagonal matrix element of the reaction operator in the following form:
g 50/ D8 D D5y
eFx(Rg_Rg’)Qg'g(GnN)_ Z V(%) <Bﬁ? {1 LBt + 1+ b X
= ;

X{ Sy, g—5 (OnN) ~f g 5,4 (onN)} i az fys, g5 (onN) W1(8) —

—ih ] fyglonN) Wp(d) = 0. (3.50)
5
Keeping in mind the assumption (3.26), we can rewrite Eq. (3.50) in the form:
« g 53 ((D3") |, (Ds )
el (Re—Ry)0g7s — ; V(8)<BS>.(1+€-M£0 + 1L gftiw X
X(fg,g—s Ty 15,9 Tl ;fgus,gfsWT(ﬁ) —tih 8ng'_.,WT(fs) =0. (3.51)

In order to solve Eq. (3.51), one has to know the matrix elements o g»é. o is the density matrix
of the system unperturbed by an external electric field. At ¢ = — oo (94(— o) = @), the
electric field is zero, but the matrix elements of the operator o, , do not vanish; conse-
quently, the density matrix g, depends on 5. This density matrix is of the form:

o =2 exp {—p(H o+ H,)}; Z = Trexp [—(H o+ Hin)]- (3.52)
Let us now expand the matrix element ¢ in a series of powers of J#;, [18, 22]:
(DNeld"y = 0f) s+0%) s+0) o+ .- (3-53)
It is easily verified that the terms of this expansion are of the forms:
oWy =2Z71 y1e7Es6, 4, (3.53a
oDy, = Z-1pr-1 e_ﬂE;g;E_s Hoini 0095 (3.53b

9 o o 79%0. > e~ BEss . o—BEs e~ PEsr_g—BEs
959,2 = Z-1 41 E LU L 5 - — -— 1. (3.53¢c)
= hwerge Warg hewss

The first term of the expansion (3.53) is diagonal in all stage state indices. This fact expresses
the translational symmetry of the problem and leads to the same probability for finding
a carrier at any lattice site and on the appropriate energy level determined by o. It should
be noted here that the probability is different for the two possible energy levels resulting
from removal of spin degeneration at a site by s —d exchange interaction. Qg, g 18 diagonal
also with respect to site indices and, therefore, does not contribute to ‘the field term of Eq.
(3.51). A finite contribution to this term is given by the second term of the expansion (5.53).
Its diagonal part (with respect to onN) is of the form:

W (onN) = —Z71 41 B e PEo {ognN|H#,,,|og'nN>. (3.54)

Cy'g
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In our further considerations, we restrict the expansion (3.53) to the term lowest with
respect to the perturbation and neglect the remaining terms as small and accounting for

previously neglected processes. Taking into account (3.26) and inserting (3.9) into (3.54),
we obtain

o) =8 ; V(0)8,, 15 Bys Dl (3.55)
Let us now insert (3.55) into (3.51), to obtain: -

_ _ i eF(Ri—Rp)op)
f!] g h Z WT(S) ’ (3.56)
8

or, on statistical averaging over o, n, N,

_ i PeFR;—Ry) s [ DTy (D57
fg'g - h 'A/Z WT(S) g V(8)69;91+5<Bﬁ> (1-—]—9_[”5"’ + 1+eﬁ_ﬁ; . (3.57)
2 :

This is the diagonal matrix element of the linear reaction operator in the linear lowest
approximation with respect to ;.
In order to evaluate the non-diagonal matrix element of the linear reaction operator

we insert Eqs (3.56), (3.53b) into (3.13). Leaving in Eq. (3.13) only the first two terms,

we obtain:

J 8,9 =/ ('T)qs +f. 79('?)19 (3°58)
where
M 1 1 £ pxy (1) a
Jop = — 7 o op—1is eF(R;—Ry)o5, (3.59)
1 1 L ! 17 [ ! 1 t
fﬂ(g]ﬁ I ‘%—m }_‘ [<GngNl3fim|0‘ gn N >fg’g"((7 n N)—
p
— {og''nN I% im]a'g'n'N ) fgug( onN)]. (3.60)

The diagonal matrix elements of the reaction operator appearing in Eq. (3.60) are deter-

mined by (3.56) or (3.57).

4. Mobility of the carriers

The mean velocity of a carrier in an approximation linear with respect to the electric.

field is determined by:
> =Trlop 0] =Tr[f, v] = g’fﬁgﬂ * Oy, g (4.1)
The explicit form of the velocity operator in the appropriate representation is obtained by
making use of its definition by the equation of motion:
dR; i i
v¥ = Ttg =5 [#r, R = Y [# ios R, (4.2)
where [#+# g, Rf] = 0 is taken into account.



615

The matrix element of the operator of the velocity component is of the form:
vho = 5 (Ri—R{)(O | H il 9. @3)
Let us now split Eq. (4.1) into two parts, the one containing the diagonal (with respect to

onN) matrix element of the reaction operator and the other — the non-diagonal matrix

element, i. e.

@y = B 4o, (44)
where
W =3 %(og’nN [v*|ognNy fy g (anh), 4.5)
99" 0n,
@ =3 Z Z Z Ko'g'n'N'lv*lognlN) f - (4.6)

I9 Ty (ry (NEN)

Considering Eq. (3.58), we can write:

RN B @.7)
where
<vx><h> = Z} Z Z 2; Ko'g'n'N'|v*|ognN) fi¥%, (4.8)
Ty ey )
and
=2 3 X 5 CGVNlognN> Dy 4.9)
9.9’

(G#G) (n#n’) (N#N')

Inserting (3.54) into (3.57), and then the obtained result together with (4.3) into (4.5),
and taking into account (3.26), we finally obtain:

@ = —F u; (4.10)
where
i b wrare e [ (DEDY L (D5y\?
T; S23(8) (Bs)? (1+ S R ] L (4.11)

Tr= (; W@ (4.12)

Analogously, we insert (3.53b) into (3.59) and the obtained result together with (4.3) into
4.8):

@) = 2h2 oz Pl 2 L Z Z-16PE|(aGnN| M ine| 0’ g'n/ N' Y |2X

oo’ nmn’ NN’
1 1 eflivsrs 1
*__ Rp¥\2 s e S 5
X (RE—R%) ( pevpr ww+is> T (1= darubrne). (4.13)
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The difficulties connected with summation over o’n’N’, caused by the beforelast unfactor-
izable term in Eq. (4.13) can be removed by noting that the Dirac 8-function therein guaran-
tees conservation of energy; comsequently, we can replace this term by its limit when
®y5 — 0 [5]. This is equal to . Making use of the integral form of the é-function (3.28),
we obtain after the evaluates transformations similar to those employed in evaluating P:

@Y = ~Fufays @14

where
tn =% ef ; EWr(8). (4.15)

It is easily shown, by inserting (3.60) and (4.3) into (4.9), that (v* > g—— 0, because the
obtained expressmn can be rewritten in the form: Z 0, 7(0), which is equal to zero, since
¥(6) is an even function of & [5].

As seen from Eq. (4.4), the mobility of carriers

W= g+, (4.16)

is detexmined by two competitive processes: mobility in the polaron band (%) and mobility
determined by the hopping process (Ma)h) As seen from Egs (3.46) and (3.47), the main
contribution to mobility is due to one-magnon and two-quantum processes. Each one-ma-
gnon process is accompanied by the carrier’s spin flip; in the considered temperature range,
with no external fields, such processes cannot occur. At low temperatures, where the spin wave

/“'bm - : I

[ ] | P
4-.0' (1) //"'//—r i
e
30 ,/;/
(2)
2.0 |
Tol L Ll |
0O 20 40 60 80 100 120 140 160 180 200

Te/T
Fig. 2. Temperature-dependence of the pf, for S= 2: (1), for 4 > 0; (2), for 4 < 0

approximation is reasonable, the main conductivity mechanism is band conductivity, [11, 12],
whereas interaction with magnons plays the part in the dlss1pat1ve mechanism. Moreover,
we do not take into account carrier scatterings on phonons [12, 13], whose role is restriced to
a factor narrowing of the conductivity band. Thus, considering only scattering on the magnons
we obtain

X

i

By = g, ” (4.17)
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From Eqs (3.38), (4.11) and (4.12), and keeping in mind that ffijw|> 1, we obtain
- ¥z
exp ('y %) for 4 >0,

*la
exp [—— (y —,TT:) :I for 4 <0.

_ (35 (5/2)\ " _ lela?® o o
y=x( eS| Hho = 7 >~ 1cm?V-.s,

(4.18)

s 968% [ TA\TY
om0 (T

XTC

The temperature dependence of uf,, is shown in Fig. 2 for S =2 and two possible signs
of the s —d exchange integral.

It seems of interest to derive the non-Born contribution to mobilily; however, the cal-
culation of transition probabilities of higher (up to the fourth) orders in the perturbation is
a highly tedious procedure in the formalism adopted here. The problem is discussed in
Ref. [23].

The author wishes to thank sincerely Dr J. Morkowski for suggesting the subject and
for his interest and discussions.
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