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GENERALIZATION OF WALLACE’S STATISTICAL PERTURBATION
METHOD AND ITS APPLICATION TO UNIAXTAL FERROMAGNETS
WITH FIELD

By H. PrErFrer™*

Institute of Theoretical Physics, University of Wroclaw®
(Received” March 30, 1971)

Wallace’s statistical perturbation method is generalized and applied to uniaxial ferromagnets
for arbitrary temperatures and fields. With an approximation analogous to Callen’s decoupling
a first-order renormalization of the spin-wave energy is carried out. It is shown under which
conditions can the first-order energy corrections be considered reasonable.

1. Introduction

In [1, 2] Wallace has. worked out two simple and efficient methods for treating many-
particle problems: the Hamiltonian perturbation method [1] and the statistical perturbation
method [2]. In application to the isotropic ferromagnet both methods were shown to lead
in a simpler way to results for low and high temperatures obtained by other methods [1, 2,
3, 4] in a more laborious way.

The aim of the present paper is to employ the statistical perturbatlon method to unia-
xial ferromagnets for arbitrary temperatures and fields. To do this, it is necessary to genera-
lize Wallace’s considerations to Hamiltonians which obey the following commutator equa-
tions:

[H, A= LA+ +M;’A'_,.+P;r. (L)

The Aj", A, are basic operators of which the Hamiltonian is constructed. They need
not obey Boson or Fermion commutation relations. The remainder operators P consist in
general of higher products of the operators A;", A;. L?, M? are c-numbers. We shall call
the Hamiltonian commutator equations (1.1) ¢ anomalous”, in contrast to the ‘‘normal”
ones considered by Wallace (M} = 0). For convenience, the respective Hamiltonians or the
corresponding systems shall also be called normal or anomalous (with respect to the opera-
tors AF, A).

In Sec. 2, Wallace’s statistical perturbation method and first-order energy renormaliza-
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tion are extended to general Hamiltonians obeying commutator equations of the type (1.1).
In Sec. 3, 4 we apply the first-order energy renormalization to a uniaxial ferromagnet with
arbitrary field. Zeroth-order results obtained in [5] by the same method and in [6] by the
Green’s function approach follow after specification of our first-order formulae. Various
approximations within the first-order energy renormalization turn out to be equivalent to
different decoupling procedures of higher Green’s functions employed by other authors to
isotropic ferromagnets. By means of an approximation similar to Callen’s [7] decoupling
we carry through explicitly the first-order energy renormalization for S = 1. Under certain
conditions this procedure is shown to give reasonable corrections to the zeroth-order results
if Callen’s empirical parameter is properly chosen.

2. The statistical perturbation method and energy renormalization

In this Section we shall briefly recapitulate the idea of Wallace’s statistical perturba-
tion method and generalize it to Hamiltonian commutator equations of the type (1.1).
Moreover, we derive a formula for the ““anomalous” thermodynamical averages of the type
B8y correct to first order. ‘

Let the Hamiltonian H of a many-body system satisfy the normal Hamiltonian com-
mutator equations

[H, 6] = w0 +R;} @.1)

and assume for simplicity the labelling 7 (lattice vectors, quantum numbers) and the para-
meters m; to be such that m; = w_;> 0. The operators 0}, 0, = (6;")* are still arbitrary and
obey certain g-number commutation relations. The basic requirement of the statistical
perturbation theory resides now in a suitable choice of the operators 0,, 0;" and the parame-
ters w;, so that the remainder operators R be small, in the sense that statistical averages
involving R} are to be small. _

Assume that such a choice has already been made in (2.1) and consider from now on the
remainder R in(2.1) as a small perturbation. Then, in the zeroth-order perturbation step
the R} are to be neglected and Eqs (2.1) reduce to

[H, 07]_ = o, 0;: 2.2)

Basing on Eq. (2.2) the following formulae for zeroth-order thiermodynamic averages have
been derived in [2]:

07259 = i <[2, 6,71 >0 (2.3)
Q050 = o7 <[0;, 2] >0 (2-4)

where £ is any operator and
i = (ePrit])t, f= .le (2.5)

The symbol { >, denotes canonical averages referring to the zeroth order (R = 0),and [ ],
means respectively the anticommutator or commutator. For 2 = 0, one obiains from (2.3)
‘the usual Bose or Fermi distribution if .0;, 0 obey the standard commutation relations.
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For non-vanishing remainders R;" one arrives from the Hamiltonian commutator

equations (2.1) at the general formula (Eq. (2.29) in [2D):

[oe]

(0 Q) = e~ (Q0;" )+ Z1 Sp {Q Z % (—p)"x

n=1

n—1
X Z HPR (H+wi)n—zv~1} (2.6)
=0
where
Z=Spe

Upon specifying 2 = 0, and evaluating approximately the second term in (2.6) one obtains
the following formula correct to first order with respect to R} (Eq. (2.33) in [2]):

070,51 = ¢ 10,5 071, D0 Ble* F1) (R0 2.7)

In a similar way we shall now derive an expression for the anomalous average BFOE .

With Q = 0%, the second term of (2.6) reads:

Z-1Sp Z {f( ﬁ)nz 0 HPR] (H +a;)v~ 1} (2.8)

Using (2.1) one finds by induction
07 = (H—o0)"0",+0(RE), p=0,1,2.. (2.9)

Thus, (2.8) takes the form

Z—lspZ{ (—p)” i (H—w)? 02 R} (H +-o0;)n=2~ 1}+0(R+Ri,)
pour:

o0 n=1
= s YL o Y 0t -0 oy ) 0w kY.
n=1 p=0

(2.10)

In the last step we utilized the equality Sp AB = Sp BA. The sum over p in (2.10) gives

Y - )T o) P = — g (o) -0y~ o). @1Y
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The insertion of (2.11) in (2.10) and the contraction of the remaining sum to the exponential
function provides!

e Bwi__ gboi

71 g Sp e”’sHefin—l-O(Rzﬂ—R——‘—_i)
e Boi__ phwi o + o+
=& T (05R Y+ ORI RY), (2.12)

From (2.6) and (2.12) we finally get
. 1
(B0 = ¢i (1075 67100 5 — (@ ) HOLRT s, (2.13)

In the sense of the perturbation theory the averages on the right-hand side of Eq. (2.13)
have been evaluated in the zeroth order. Wallace did not derive this formula, because for
the problem studied in [2] (isotropic ferromagnet) it leads to the trivial result <8; 61,5, = 0.
However, for anomalous Hamiltonians (e. g., anisotropic ferromagnet with field of arbitrary
direction) the average (2.13) will contribute [8]. Moreover, for such systems the energy
renormalization carried through in [2] must be generalized. In doing it we start with
Hamiltonian commutator equations of the type (1.1). The parameters L), M} can be
renormalized in the following way:

[H A7l =LA+ MA_,+PF —LiA} —MM_,, (2.14)
L= I0+I}, M= M+ 2.15)
Now we ““diagonalize” (2.14) by a suitable transformation?
(i, A) —~ (07, 6;) (2.16)
to obtain
U, 071 — 5,(LY, MY0} + Ry (L%, M) (217

i. e., commutator equations of the type (2.1) with the energies and the remainders R} de-
pending on L}, M}.

The so far arbitrary parameters L}, M} can now be determined from the condition
that the perturbation terms in (2.7) and (2.18) vanish:

(RF0:350 = DR 5o =0. (2.18)

Thus, the equations of the first order (2.7) and (2.13) become equations of zeroth order:
070,50 = &:i <[9;, 6f]i>09 (2.19)

OF0% >0 = ¢ (0%, 6,710 (2.20)

11n the general case 2 = 0;" we obtain from (2.1) and (2.6) instead of (2.12) the result
foxp (—Be)—exp (B |KOERT D [(w;+p)+ ORFRY)

which for k= —i and w;= w_; leads to Eq. (2.12).

2 For Bose or Fermi operators, e.g., this can be achieved with Bogolyubov’s transformation [9] which
diagonalizes the bilinear part of the Hamiltonian and leads therefore automatically to commutator equations of
the type (2.17).
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where

&zi — (eﬁwi(Lil,Mil):i:l)—-l' (221)
With the zeroth-order basic equations (2.3) and (2.4) the conditions (2.18) can be written as
<005 Ri1.d0 = <[RF L 0215 = 0. (2-22)

Eqs (2.19), (2.20) and (2.22) represent a coupled set of equations for the quantities

L}, M}, <0;0,>and <0; 0% 5. For M? = M} = 0the above results coincide with those of

[2]. Because second- and higher-order terms in R;7, R;"have been dropped in (2.7) and (2.13),
the use of the zeroth-order basic equations is justified if

L} < LY, M} < M. (2.23)

Only then can the L}

, M.l be considered as reasonable first-order corrections.

3. The Hamiltonian commutator equations for a uniaxial ferromagnet with field

We consider the following Hamiltonian of a uniaxial ferromagnet in a homogeneous
external magnetic field of arbitrary direction:

H= —h, 2§ —h, 315 —S1,8, 8, — 3 6,55z (3.1)
j j 7k 7k

The anisotropy direction is assumed to be parallel to the z-axis-and the field to lie in the
x0z-plane; j = j and k = k denote lattice vectors; §;= (S’f , 5']3’ , S’f) denotes the spin vector
operator ascribed to the lattice site j; Iy, G, stand respectively for the isotropic and aniso-
tropic exchange integrals. If translational invariance of the crystal lattice is assumed the
latter depend only on the distance between lattice sites:

L =1G—k) = 1(f); Gp= G~k = G(f) 3.2)

Intra-atomic interactions (e.g., crystal-field anisotropy) are excluded: [; = G;=0.
Furthermore, the following abbreviations are used:

h’x = IMH;N hz = IMHz (33)
H,, H_ being the components of the external magnetic field and g — Bohr’s magneton.
Next, we perform a homogeneous rotation of the lattice spins around the y-axis by the
angle ¢:
SF = VST S
Sy =8 (3.4)
= —rSnS
Ve =sin @, 7, =cosq.
The angle ¢ will be determined later. Tt is convenient to work with the three operators

SE,  SE—SraiSy (3.5)

7
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which satisfy the commutation rules

IS, Sel-= 28,57, [SF, Sfl-= T 0,57 (36)
and the operator identities
s
587 =S5+ - ~(5p%  TI(§) =0 (3

with S as the maximum spin eigenvalue [9].
We now perform the Fourier transformations

Sf=N%Xe,, S7=N %3 e by (3.8)

v

$F =3 o', (3.9)

where N is the total number of (magnetic) lattice atoms. Greek ondices denote reciprocal
lattice vectors. The operators b,, b\, a, obey according to (3.6), the following commuta-
tion relations:

[6,,b}]-=2a, ,, I[b,,b]-=1[b},bf]-=0 (3.10)
b,,a,).=—-N1%,, ,, [b,a)-=N1b,_,. (3.11)
u o 2 Iz
For S =1 the operators a, can be expressed by b,, b :

a,=%06,,—N"1] 8(v+y—0)b; b,. (3.12)
7,0

This follows from (3.7), (3.8) and (3.9). By making use of Eqs (3.4), (3.5), (3.8) and (3.9)
the Hamiltonian (3.1) takes the form

H= _(hxyx+hzyz)Na’0— % (hxyz_hz‘yx) V-Zv (b(_)l- +b0) -
—31J6) [b}b,+Na,a_] - GO) [Nyfa,a_,—
—¥:7: VN (o, +ba,) — L yib7 bE,+2b7D,+b,b_)] (3-13)
where J(») and G(») denote the Fourier transforms of the exchange integrals I(f) and G(f)
J) =X e7I(f), G =2 P G@). (3.14)
f f

With (3.10) and (3.11) the Hamiltonian commutator equations following from (3.13) are

=23 Jwbja,_,+2 2 JO)ab, ,+2y2 > GWab), ,—

—y7 N % 2 GO A2y, N 3 G, 0, —

oy N=% S G)brb, —y2 S C@)bra, 92 Cwb,a,_,. (3.15)
yxyz v (-4 yx L o yx -1
¥ » »
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4. First-order energy renormalization

In analogy to Tyablikov’s decoupling [9] in the Green’s function theory we introduce
in (3.15) the substitution
ay, = {ay+(a;—<a) (4.1)
and consider (a;—<a,>) as a small operator. Since {57y does not depend on the lattice
site we get from (3.9)
{ayy = 0y <Sf> = 0,050 (4.2)

where g is the reduced spontaneous magnetization per atom in the direction y = (y,, 0, ¥,)-
With (4.1) the Hamiltonian commutator equations (3.15) read

[H, b} = K8,9-+Lb} +Mb_+P;, (4.3)

K = /N Solh.y,—h.y,+250G(0)7:7.], (4-4)

I = hy,+hyy, +2S0(J(0) —J(@) +250y3C(0) —SoyiC(e), (4.5)
M = —SoyiG(a). (4.6)

The direction y = (¥,,0,y,) can be determined [10, 11] from the condition K =0
which provides the equation

In the zeroth-order approximation we would have to neglect the remainder Py in (4.3).
Because this approximation has been already carried out for the Hamiltonian (31) in [5]
wo shall at once start with the first-order energy renormalization. The zeroth-order results
will be special cases of our formulae.

According to (2.15) we rewrite (4.3) with K =0:

[H, b1 = Lb} +Mpb_+R; (4.8

where
o= Lot Ly, M= M+, (4.9)
R =PF —LibF —Mp_,. (4.10)

The Hamiltonian commutator equations (4.8) can be converted into normal form by means
of the transformation

¢, = ()T = ub,+v.07, (4.11)
with real coefficients Ugs V- The reciprocal transformation of (4.11) has the form
ba = (b:_)-‘— = Ugly _vucia’ (412)
if the condition
ui ——vz =1 (4.13)

is assumed (without loss of generality).
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The so introduced operators ¢, ¢, obey in general g-number commutation relations;
these are not relevant for our further calculations. We multiply (4.8) by u, and the Hermi-
tian conjugate equation

[, b—az]—: _Lmb“z_Mub: _R—aa (4"14')
by v,. Summation provides with regard of 4.11)
[, eg1- = b (u Ly =0, M) +b_y(u, M, ~v,L) + R} (4-15)
where
Rf=uR} v R_. (4.16)
If the equations
Ul —v,M, = w0, (4.17)

u, M, —v,L, = 7,0,

are satisfied the Hamiltonian commutator equations take the normal form

[H ¢l =w,i +RF. (4.18)
Taking into account condition (4.13) the system of equations (4.17) can easily be solved:
o, = (L3 —MD)*, (4.19)
Ly+w, % Lo—aw, %
= g = {5 . 4'
(e () .

(The solution o, = —(L2 *Ms)l/z is inadmissible on physical grounds.) According to (2.22)
we determine the corrections Li, Mol, from the conditions

(e Ry =0, (RF,ct]y=0. (4.21)

(We remind that the averages are to be calculated by the zeroth-order equations (2.19),
(2.20) with the renormalized energies @, ; for simplicity we omit the index “0”.) With (4.10),
(4.11), (4.16) and the abbreviations

Xo= b, Pf1> = <lby, [H, bF] > ~2S0LY, (4.22)
Y, = KPS, bE 1> = <[, b1, b ,] > —2S0M? (4.23)

the conditions (4.21) turn into
lew BI1> = X, +0) 2V 1,0, — oL 0 442) +20 M p, = 0 (4.24)

RS, el > = Y (ui+v?) —2X U0, —oMy(ul+v2) +20Lku v, = 0. (4.25)

aaa

In the lust formulae we utilized the relation

[b,» b71-> = 250, (4.26)
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The solutions of (4.24) and (4.25) are:
L= lx, M= 1 Yo (4.27)
o o

We see that the present renormalization procedure actually reduces to the evaluation
of the double-commutators in (4.22) and (4.23). However, this evaluation turns out to be
not unique. As an example we consider the double-commutator part in (4.22) corresponding
to the third term of the Hamiltonian commutator equation (3.15). The commutator to be
calculated in this case reads »

{[bg, by a,_g]->- . (4.28)
We take advantage of Eqs (3.10), (3.11) and, by using Tyablikov’s decoupling
) (4«29)

we obtain

<[ba;7 bj_av—oz]‘> - 2<a'u—vav—o;> _N—I <b;!—bv>

— 252625, N1 (b}"b,>. ‘ (4.30)
On the other hand, according to (3.10) the operator a,_, can be written as
@, = 50,0 —bib,). (4.31)

On the basis of (431) we get, with the aid of Eqs (3.10) and (4.29),
(g, b,y = <@g bbb b,a0> (@, b b, ~
(b agh,> = 2508, {ae> = 25%6%0,,. (4.32)
Finally, in the case S =1} we can use formula (3.12) and obtain with (4.29)
by b @, ) = $8,,[b,, b3 1> —
N1 8(p—a+y —0) <[bg, biF b bl

v,0 7
= 1028,0—oN-1<b,} b, ). (4.33)
The calculations in Eqs (4.22) and (4.23) for the other terms of (3.15) lead to similar

discrepancies. It can be shown that in the special case of isotropic S = } ferromagnets the
different approximations (4.30), (4.32 and (4.33) lead to the same renormalized energies as
the respective different decoupling procedures in the first-order Green’s functions theory:
the Hartree-Fock decoupling for the Bose-type Green’s functions [12], the RPA-decoupling
[9, 13], and the Hartree-Fock decoupling [12, 14] for the Pauli-type Green’s functions?.
As is well known, the first and the last approximation violate the obvious condition ‘

ol —H) = —a@ _(4.3@

8 The situation is probably much the same for anisotropic ferromagnets. Unfortunately, no similarly
complete Green’s functions results are so far avajlable for unjaxial ferromagnets.
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and, besides, the first gives an infinite Curie temperature. Therefore, evaluations of the type
(4.30) and (4.33) should be dismissed for physical reasons. On the other hand, the remaining
method (4.32) provides the trivial result Li =M ; =0, i. e., it leads to zeroth-order energies,

One way of overcoming these difficulties is to take advantage of the very ambiguity of
the above calculations, by introducing into the theory a new parameter which, e. &-,can be
fitted to experimental data. (In any case it has to be chosen in such a way that the condition
(4.34) is fulfilled for isotropic ferromagnets.) For instance, for S = 1 we can combine 4.32)
with (4.33) and, following Callen [7], we multiply Eq. (4.32) by (1—p) and Eq. (4.33) by p
where p is the new parameter. Upon adding those equations we have

<[b¢7 b:_av—a;]—> = %GZ auv %PO'N_I <bj_bv>' (4'35)

For p= ~1, p =0 and p =1 we obtain Eqs (4.30), (4.32) and (4.33) respectively. The
question of the proper choice of p will be discussed further below. The evaluation of the
double-commutators in (4.22) and (4.23) according to (4.35) leads with (4.27) to the correc-
tions

L=p| 2 S U0 To-a) 70y 252 Y Goainy

2 e 9 .
+ 223 coxnny + =) G(v)(byb_»J , (4.36)

M, =p [7%7 Y U0 - T ) (6L~ %y,‘f; Y Co—a (b bEyx

+ % Z G(v) (b, b,y + %v Z COV(b b, J . (4.37)

Next, we calculate the averages <b,'b,>, (b,b_,>, (bb* > occurring in (4.36) and (4.37).
For ihis purpose, we have to use the zeroth-order basic equations (2.19), (2.20) with the

renormalized energies (4.19). We specify 0,=c,, 2 = b, or b_, and obtain
<c;|_b1)> = ¢'V<[b’u7 c’j‘]—>7
bosed = olle,, b, (4.38)
with
@, = (e 1)L, (4.39)

Due to (4.11), (3.10) and (4.2) the relations (4.38) lead to the equations
4, (b b, +0,Cb_b,> = ou,p,,
0,$b;7b,>+u,(b_,b,> = —ov, —ov,qp,. (4.40)
With (4.19) the solutions can be written as:

Lv v
(bjb,) = 0 Wi+ ¢, 4-ov, = —% ( " cth /3;’ —1) . (4.41)
(bsbsy =B b5 = —oup2p,+ 1) = — L Mo oy, PO (4.42)

2 o, 2
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After insertion of (4.41) and (4.42) in (4.36) and (4.37) we encounter sums of the form
2 Jv—a)g,. (4.43)

Assuming simple lattices with nearest-neighbour interaction the sum (4.43) simplifies ac-
cording to Callen [7] to

J(@) Z x> (4.44)

with y, == J(#)/J(0), and the corrections (4.36), (4.37) become finally
Li = paA(J(0) —J(a) —y2G(a) + %3 G(0)) —poB %’26 G(0), (4.45)
M2 = —poB (J(0) —J(2) —2C(e) + V; G(0)) +pod 1’; G(0) (4.46)

where.

A= N1 Z ol cn B2

W, 2
M, . o,
— N-1 il N
B=N Z p ol oh L. (4.47)
The magnetization can easily be obtained from the relation (3.12). We have
0 =1-2N"137<b}b,>. (4.48)
With (4.41) this yields
L, ﬁwv
1 N1\ o PO
l=N Z eth 5 (4.49)

The coupled equations (4.7), (4.47), (4.49) for the quantities y,, y,, 4, B, ¢ must be
solved simultanecously. The zeroth-order approximation can be obtained by putting p = 0.
In this case the above set of equations reduces to (4.7) and

0 0
ol =N-1 Z %(’)— cth ﬂg”

(4.50)

with
! = (L) (L)%,

" Eqgs (4.7), (4.50) have been derived in [5] by the same method and in [6] by the Green’s
functions approach (for arbitrary spins). On the basis of Eqs (4.7) and (4.50), second-order
phase transitions in uniaxial ferromagnets with perpendicular field have been studied in [15].

Up to now we left open the question how to choose the parameter p within the first-
order theory. Taking into account physical criteria Callen [7, 16] proposed

p=d" (4.51)
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So far, for isotropic ferromagnets the cases n =1 and n = 3 have been studied {7, 17].
(Because of the condition (4.34) the integer n must be odd.) In the following we assume
h =h, #0, h, = 0. With the choice (4.51) the quantities L}, M} are not reasonable first-
order corrections because conditions (2.23) are in general not satisfied. Moreover, the pro-
perty of the energy spectrum at the critical point [15],

wO(Tk7 h) = wO(T» hk) =0, (4.52)

is destroyed by choosing (4.51). On the other hand, Callen’s considerations can be re-in-
terpreted regarding o as order-parameter. In our problem, however, the order-parameter
turns out to be ¢* = y,6 (h, = 0; cp. [15]). With the assumption

p = (9" (4.53)
Eq. (4.52) holds and the conditions (2.23) are fulfilled near and far below the transition

point, as well as in the paramagnetic phase. In these cases our first-order energy-renormaliza-
tion method is fully justified. It can easily be shown that the first-order calculations do not
change the zeroth-order results concerning the phase transitions if the first-order iteration
methods of [15] are applied. For 2,7 0 and A, # 0 hardly anything can be said about the
validity of our method because in this case Eq. (4.7) cannot be solved exactly.

5. Final remarks

It is instructive to show briefly to what results does a straightforward application of
Wallace’s energy-renormalization procedure to our problem lead. Diagonalization of Eq. (4.3)

(with K = 0) with the aid of (4.11) (with L, = L% M, = M?) leads to

[, ¢fl-= wgef + P, g = [(Ly)*—(M)**. (5.1)
The renormalization procedure of [2] is based on the equality
[H, ¢f1- = (0g+0p) ¢ +(PF —ge] (5.2)
and requires the energy corrections w, to be determined from the conditions
Py —oef) ey =0 (5.3)
which leads to the result
wy = (LX,—M,Y ) 0w, (5.4)

with X, and Y, as defined by Eqs (4.22) and (4.23). For S = 1 the magnetization formula
reads now .
ol=N1> (Lg/q)g) cth (Bw,[2), o, = o)+l 5.5)
[

In the case £, = 0, G(0) > 0 the above first-order energy spectrum o, has the following
drawbacks (cp. [15]): ,

with the choice (4.51) we have always wy— o0 as T'— T} or h — h;

when chioosing (4.53) and n = 1, the ehergy w, is finite and positive, but the applic-
ability condition o} € ®? of Wallace’s method is not fulfilled;
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for (4.53) and n > 1, the result (5.4) coincides in the paramagnetic phase with that
derived in Sec. 4, but in the ferromagnetic phase the agreement is only approximate and
limited to the extreme cases T'<€ Ty, h <€hy and T2 T}, h = b,

Furthermore, the averages {c;c’ > do not vanish to first-order.

It is thus evident that our method as presented in Secs. 2-4, which actually differs
from Wallace’s procedure by first carrying out the renormalization and thereafter the dia-
gonalization, leads to more satisfactory results.

Wallace’s statistical perturbation method and its generalization as. presented here (to
first order) can be applied in two ways:

(1) the calculation of the perturbed averages according to formulae (2.7) and (2.13);

(i) the evaluation of the unperturbed averages with renormalized energies; the
renormalization resides in this case in removing the perturbation terms, and the energy
corrections and the averages are coupled by transcendental equations.

In neither case is a “‘convenient™ perturbation parameter needed. Whereas the variant 0]
is useful for a strict treatment of limiting cases (e. g., small temperatures, small fields;
cp. [1-4, 8]), the variant (i7) is more suited for calculations over a wide range of the external
parameters (cp. [2,.5] and present paper). Although the latter approach is similar to the
Green’s functions technique, Wallace’s method clearly shows certain advantages. In contrast
to the decoupling of higher Green’s functions, we have in our method a reliable criterion
for the quality of our approximations, Eq. (2.23). In this way, for instance, we were able
to restrict the choice of the parameter p in Sec. 4.

The first-order formulae (2.7) and (2.13) are used in a subsequent paper [8] for calcul-
ating the low-temperature weak-field expansion of the magnetization of uniaxial ferromagnets
with transversal field.

The author would like to thank Dr W. J. Zietek for helpful discussions and for cor-
recting the manuscript.
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