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GROUND STATE AND LOW-TEMPERATURE WEAK-FIELD THERMO-
DYNAMICS OF A UNIAXIAL FERROMAGNET WITH TRANSVERSAL
MAGNETIC FIELD

By H. Premrrer**
Institute of Theoretical Physics, University of Wroclaw®
(Received March 3, 1971)

The most suitable spin-deviation reference state (approximate ground state) for a uniaxial
ferromagnet with an external magnetic field perpendicular to the anisotropy axis is determined
by applying three different methods (4, B, C) which are shown to be equivalent for weak and
strong fields. By utilizing these results the low-temperature weak-field expansion of the magnetiza-
tion is carried through by means of Wallace’s statistical perturbation method. In the isotropic
case Dyson’s 7% — term is recovered. The anisotropy is shown to give contributions proportional
to T?and T3.

1. Introduction

A crucial problem in the application of the standard longwavelength low- -temperature
spin-wave approximation to the Heisenberg model of anisotropic ferromagnets is the choice
of a suitable reference state, that is the state from which the system’s elementary excitations
are generated [1]. Tt is obvious that the adequacy of the single-particle spinwave energies
and the convergence of the perturbation procedure depends decidedly on the proper choice of
the reference state. For isotropic ferromagnets and certain special cases of (uniaxial) aniso-
tropic ferromagnets with the external field parallel to the anisotropy axis the exact ground
state is known to he the state of complete spin- ahgnment (spin-deviation vacuum), and its
choite as reference’ state is in this case,doubtlessly fully ]ustlﬁed 'In general, however, the,
spln -deviation vacuum is not the grorund state of an anlsotropm ferromflgnet partlcularly
if the external magnetic field is, not parallel to one of the magnetlcally easiest directions.
What is more, the exact ground state in this case is unkrown and its determination appears
to be impossible. Nevertheless, even in this case one usually assumes a state of complete
spin alignment as the spin-deviation reference statg, appargptly for reasons of mathematical
sunphclty [2, 3, 4]. In determmlng the favourable dlrectlon of spin alignment, three different
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methods have been examined in [5] for a quite general spin Hamiltonian: the method A4
which resides in minimizing the expectation value of the Hamiltonian in the class of states
generated by spatial rotations from the state of complete spin alignment, the method B
which is based on eliminating from ‘the transformed Hamiltonian the terms linear with
respect to spinwave creation and destruction operators, and the method € which consists
of the minimization of the ground state energy of the diagonalized spinwave Hamiltonian
in the non-interacting spin wave approximation. '

In Sections 2 and 3 of the present paper these three methods are applied to a uniaxial
ferromagnet with an external magnetic field perpendicular to the anisotropy axis, and the
equivalence of methods A4 and B proven in [5] is here demonstrated. Moreover, the method
C is shown to be approximately equivalent to methods 4 and B under the restriction to
weak (h < 2SG(0)) and strong (k> 25G(0)) fields.

Upon determining the reference state we use in Section 4 Wallace’s statistical perturba-
tion method [6] in the first approximation, in order to calculate the low-temperature weak-
-field expansion of the magnetization. In the nearest-neighbour approximation, explicit
results are given which are correct to T* and A2 In the limit case of an isotropic ferromagnet
we obtain the correct low-temperature expansion of Dyson [7]. It is shown that due to
the anisotropy there appear in the expansion terms proportional to 72 and T53.

2. Methods A and B

We consider the following Hamiltonian of a uniaxial ferromagnet in a homogeneous
external magnetic field perpendicular to the anisotropy axis:

H= —h Y §— > LS, - Sp— > G555%. 1)
J I 7

The anisotropy axis and the field direction are assumed to be parallel to the z- and x-axis
of our co-ordinate system, respectively. According to the conditions () and (i) of [5] we
impose upon the isotropic I and anisotropic G exchange integrals translational invariance
and exclude intra-atomic interactions, 7. e.,

Lp=1G k) = I(f), Gy = Gu(j—F) = G(f)
L.=G,.=0.

5i ji

:S"i = (S']" . S'Jy , g’j’) denotes the spin vector operator ascribed to the lattice site j, and A = pl,

where H_ is the field component in the x-direction and g the magnetic moment per lattice
atom.

Next we performi the following homogeneous rotation of the spins in the x0z-plane

by the angle ¢:

5 = v 0.5 -
Sjs.v =5
8% =y, 57—y, 57 (2.2)

where .y, = sin ¢ and y, = cos ¢.
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The transformation (2.2) is a special case (¢ = 0) of the general homogeneous spatial
rotation (10) in [5]. It can be assumed without loss of generality because of the rotational
symmetry of the Hamiltonian (2.1) around the z-axis. The Hamiltonian (2.1) in the new

spin operators S7, S7, ST reads:

H= by, L Sj~hp. 25— 3 1,55, — e L (VESESE 2y, SESE SIS, (2.3)
7 7 s Js

By using the Holstein-Primakoff mapping [8] from the spin operators S; to Bose cre-
ation and annihilation operators a;, @ in the second approximation, i. e.,

St = (S = S;+is? > V2S V1—afa2S a,
=25 1 —af q;/4S—..) a, (2.4)
- SF—>S—afa;

and upon passing to ideal spin wave operators a;", a, corresponding to the wave vector »
according to the Fourier transformation?!

1
o = VN 2 a; et (2.5)
we obtain in the ideal spin wave representation the following Hamiltonian:
H=E,+H+H,+H,+H,+... (2.6)
where
Ey = —hy NS—NS2J(0) —y2NS2G(0) 2.7)
H, = R(ag +ay) (2.9)
Hy, =] Lata,+% Z MJ(a)at +a,a_,) (29)
Hy = Y3 0(v+p—2) Nata,a,+ Z oy —u—2A) Nafa,a, (2.10)
vpd
Hy= >} 0(v+p—2—2x) F,a ataa,+ Z 0y —p —A—n)k 0 a,a,a0,+
vuAn vuldx
2 0(vrptd—n) kata aj‘a (2.11)
vulz
“with the notation
R =3} V2NS (28y,7.6(0) —hy,) (2.12)
L, = hy, +25(J(0) — J(v) +2Sy2G(0) —Sy2C(») (2.13)
M, = —$7,6() (2.14)
N, = V2S|N(h,/85 —y7,60) ~17..6(0) (2.15)
Fro = N2(J0) 4169 ~2J(0 ) + Y 60) + o2 2260 —)  (2.16)
k, = N8 y2G(v). E 2.17)

1 We use a simplified notation according to which j» denotes the scalar product of the lattice vector

j and the wave vector v.
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We neglect in the Hamiltonian (2.6) higher than fourth-order interaction terms.
In the above formulae, J(») and G(») denote the Fourier transforms of the exchange integrals

Iy and Gy

7

J(v) = ;} I(f) e™, (2.18a)
G) = D G(f) &7, (2.18b)
f

N is the number of lattice sites, and S the maximum spin eigenvalue.

The method A of [5] resides here in minimizing the quantity E,, Eq. (2.7), with respect-
to the angle @. One easily proves that Ej is equal to the expectation value of the Hamilto-
nian (2.1) in the saturation state of complete spin alignment along the direction given by ¢,
which in turn is equal to the classical counterpart of the spin Hamiltonian following from
(2.3) by assuming the spin-vector operators to be classical spin vectors.

The necessary condition for the minimum of E, leads to the equation

dEy/dg = —hNS cos ¢+2NS? cos psinp G(0) =0 (2.19)
or !
cos @ (2SG(0) sin ¢ —h) = 0. (2.20)
The solutions of Eq. (2.20) are
() sing=1
(b) singp= -1
(©) sin g = h/25G(0). 2.21)
The sufficient condition for the minimum of Eg,
d2E,[dg? >0, (2.22)
leads to the inequality
h sin ¢ —25G(0) (sin2 ¢ —cos? @) > 0. (2.25’)

If the inequality (2.23) is satisfied by more than one of the solutions (2.21), the one
corresponding to the lowest energy Ej must be chosen (when neglecting meta-stable states).
Thus, depending on the sign of A and G(0) we get the following solutions of Eq. (2.20)
corresponding to the absolute mmlmum of Egy:

(@) GO) >0, h< 03 h2SC(O) 1+ (2] -
HRSCO) <1t ()
(B) 6(0) >0,k > 0; |hj256(0)].>1: ;-(b) @224
| 2SCO) < 15 (c)
. (‘}/) G0)< 0,h>0: (a)

(6) G0)< 0,h<0: (b)
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The analysis of the third and fourthderivative of Ej with respect to @ shows that for
the equality sign in either case, () and (B), both solutions correspond to a minimum. At
this point (b = h, = 2SG(0)) a second-order field-induced phase transition takes place.
In each case the first solution describes the paramagnetic phase, and the second one the
ferromagnetic phase — in the sense of [9, 10]. For G(0) < 0 (the cases (y) and (d)) only
the ferromagnetic phase exists, regardless of the field strength (magnetically preferred
plane). This is in accordance with the conditions for the second-order phase transition in
uniaxial ferromagnets derived in [9-11].

The method B of [5] resides in eliminating the terms linear with respect to the spin
wave operators in the transformed Hamiltonian, that is in our case R =0, Eq. (2.12). We see
that this method leads to the necessary minimum condition (2.20) of method A, in agree-
ment with the general proof given in [5] for the limited equivalence of both methods.

3. Method C

In [5] a further method for determining a suitable reference state has been proposed
which consists in the minimization of the ground state energy in the non-interacting spin
wave approximation. This procedure shall be applied, with a slight variation, to the Hamil-
tonian (2.6).

At first we remove the terms linear with respect to the Bose operators from (2.6),
by means of the canonical transformation [1.5]

af = ad,g+b; 3.1)

where @ is a real c-number. Upon inserting (3.1) in (2.6) we neglect higher than second-
order terms with respect to b,, b; (non-interacting-spin-waves approximation). Furthermore,
we drop terms 0(e%) generated by Hy, Hy, ..., whereas the quadratic contribution of H,
to the ground state energy is included. This approximation is justified if St <1 and

o} < 1. (3.2)

(Note that (2.6) represents a series of decreasing powers of S.)
Under the above assumptions the Hamiltonian (2.6) takes the form:

H = Ey+0Ey+R(b§ +bo)+ ) Lb b,y 23 M(bb%,-+b,b_,) (3.3)
with ” ”
0E, = 2R +a*(Ly+M,), (3.4)
R == R+a(Ly+M,), (3-5)
L, = L,42a (N, +N,), (3.6)
M, = M,+2aN,. 3.7

The parameter & is now determined by the condition that the linear terms in (3.3) vanish,
i. e,

R. =0, . (3-8)
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This leads to
R 2NS7.28y.6(0)—h) 20
Lot My~ 2(hps+25,2G (0 —2592G (0)) ° (3.9)

The remaining quadratic part of (3.3) can be diagonalized by the “local” Bogolyubov
transformation [3]

o = —

b, = u,n,+v,nt, (3.10)
with real coefficients u,, »,. The operators 7,, 7} are of Bose type if
ul o =1. (3.11)
A standard calculation gives for these coefficients the result
u? = Yy [ (/L™ 411, 08 = Y, [(1— /L)% % 1. (3.12)
The diagonalized Hamiltonian reads
H=Ey+0Ey+AE+ Y 0,1 1, (3.13)
where
w, = (L2 —M3%, (3.14)
AEy ==Y w02 (3.15)

If the higher terms neglected in (3.3) are to give no large contributions to the ground state
energy we must have

vl <1, (3.16)

which corresponds to the (stronger) condition of the applicability of the approximate second-
quantization method to spin-wave theory [3].

The expression Ey = Ey+-0Ey+AE, represents the exact ground state energy of the
bilinear Hamiltonian (3.3) and approximates reasonably the ground state energy of the
original spin Hamiltonian if conditions (3.2) and (3.16) are satisfied.

The method C resides now in minimizing E, with respect to the angle ¢, and the solu-
tions have to meet the conditions (3.2) and (3.16). The difference between our approach
and that in [5] consists in the different non-interacting-spin-waves approximation. In [5],
this approximation has been carried through in the operators a,, ;' i. e., before the transfor-
mation (3.1); here, we do it upon passing to the operators b, b under certain restrictions.

For the sake of simplicity we confine ourselves now to the case

G0) >0, &h>0. (3.17)
It is instructive to start with the minimization of

_ hae _ o 1 cos? (p(ZSG_(O) sin p—Ah) ]
Eﬂ—l-é.E,,w——NS[ hsinp—SJ(0)—SG(0) cos2p—1 i sin g +256(0) (cos g— sin ) |°

(3.18)
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. .
The necessary condition for an extremum reads:

8 in p—h)2(h—8SG(0) si
dg{; (Ey+ OF,) ZES_ cos® @(25G(0) sin g—h)*( (0) sin @) _o.

2 [hsin ¢-+25G(0)(cos? p—sin? g)]? (3.19)

From (3.19) and the examination of the higher derivatives we obtain the following extrema:

sing = =+1 minima (3.20)
sin ¢ = h/25G(0)  inflexion point (3.21)
sin ¢ = A/8SG(0)  maximum (3.22)

where sin ¢ = 1 is the lower minimum of (3.20).

A comparison with the results of methods 4 and B shows accordance between (3.20)
and (2.21a, b). The minimum (2.21¢) of method A, however, appears to correspond to the
inflexion point (3.21). Moreover, we have the additional maximum (3.22).

The minimization of the total ground state energy E, of (3.13) cannot be carried through
rigorously. Tt can be proved, however, that the solutions (2.21) are among those of the

equation
d
F (Ey+0Ey+AEy) = 0. (3.23)
To show this we note that
d _ d . — dL, — dM,\ _1 dL
Gy ABo= o0 g~ Ao =5 cos e Z [(L B My, )“’” dyx]
(3.24)
when utilizing Eqs (3.14) and (3.15). With (3.6) and (3.7) one easily verifies that
(dL,f d?’x)yx=h/2s0(0) = (de/dJ’x)th/zSG(O) =0 (3.25)
and, consequently,
(A E[dP) g g1 = (dAEG[AP)in p—niasce) = 0. (3.26)

From (3.26) and (3.24) follows (3.23).
One easily proves that the solutions (2.21) of Eq. (3.23) correspond for sufficiently
strong and weak fields to the following extrema of Ey:

sinp =1 minimum | for &3> 25G(0), (3.27)
sing = —1 maximum (3.28)
sin @ = A/2SG(0) minimum  for A <L 25G(0). (3.29)

Moreover, for the solutions (3.27) and (3.29) we have to check the conditions (3.2) and
(3.16). In either case, the first one is automatically satisfied for arbitrary field-strengths as
a =0, and condition (3.16) is also fulfilled under the above field restrictions as

o, sing = =12l if h>256(0),
lo,(sin @ = h/2SG(O)| <1 i h <25G(0).
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We see that the method € leads for weak and strong fields to the same results as the methods
A and B, when disregarding the fact that the equation (3.23) may yet have other physically
reasonable.solutions corresponding to minima of E, besides (3.27) and (3.29). These, how-
ever, cannot be obtained analytically’.

4. Application of Wallace’s statistical perturbation method

In this section we shall caleulate the low-temperature . weak-field expansion of the
spontaneous magnetization by means of Wallace’s statistical perturbation method [6]. For
this purpose we use the results obtained in the preceding section, where the spinwave re-
ference state and the spin quantization direction in the weak-field limit has been shown to
correspond to the solution

y =y, = sin @ = hf2SG(0) < 1. 4.1)

For simplicity we assume again G(0) >0, A > 0.

We start with the Hamiltonian (2.6) and confine ourselves to terms up to the fourth
order in the spin wave operators. The linear terms of (2.6) vanish as R = R = 0, and the
bilinear part can be diagonalized by the Bogolyubov-transformation (3.10) with I, = L,
and M, = M,. Note that due to (3.9) and (4.1) we have @ = 0. Furthermore, we perform
the transformation (3.10) in the interaction terms and confine ourselves to terms up to the
fourth order with respect to 7, taking into account the relations

M, \*
Uw:%( L ) +0(y6),
JZ” ~ 2yl = 1402 (4.2)

following from Egs (2.13), (2.14), (3.11) and (3.12). Thus, we obtain

H = Eo+ 37 (0, +0Q,) 0,4 X 8 +p—A—n) Py 1 n,m,+

viAn

+ 27 0w —p—A—%)T,,. 1 1, mm.+h. c. (4.3)

A

with the notation

veT e veTYTor -4 4

Q, =D (Fow2+2F 02 +AFC v,0, +F2 o2 4-
«
Fhv,+2kp,) ~ yt (4.4)
Pypn = Foet L4 F o i+ F 5 F 0%+
+ 0,0, - Fopi 4 Fow,0,+Fovi+
+3k,2,+3k,v, 4.5)
Tyun = Fpo, + FL v, +F, N (4.6)

—un
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where F), denotes the y-independent part of ¥, defined by Eq. (2.16). In (4.3) we neglected
terms proportional to ntnn, yryty,.ny, yryt, because they either play no role in the
following perturbation method or contribute to the magnetization in the order 8.

Before applying Wallace’s statistical perturbation method to the Hamiltonian (4.3)
we shall briefly outline the method itself. Let H be the Hamiltonian constructed of the basic
operators @;, @F that obey the Hamiltonian commutator equations

[H, 6F]_ = 0,0} + R} (4.7)

The operators @;, ©; and the (real) c-numbers w; are to be chosen in such a way that the
remainder operator R;" be small, in the sense that statistical averages involving R} are to be
small. Using (4.8), a formula for the average (@; 6,5 has been derived in [6], which is cor-

rect to the first order in the operators R :
(0705 = D70, O] Do £H(DF £1) (RO, G

where
o = (ePort1)-1, B= i 4.9
' ’ kT’ :

Here, { >, means the zeroth-order average (R;}* =0) and [ ] . denotes respectively the
anticommutator or commutator. In generalizing [6], an expression for the average (0;"0+,>

has been derived in [12]: ‘
1 -
(070L), = 007, 0]1.), + 2—6(”(@?)“1(@:13?%- (4.10)

The operators @, @F need not necessarily be of Bose or Fermi type. The smallness
of R in the above sense is to be checked @ posteriori. We prefer to apply Wallace’s method
to our problem because, firstly, it is easy to work.with and, secondly, for isotropic ferro-
magnets it gives the correct low-temperature expansion for the magnetization obtained
by Dyson [7].

For our case we specify in Eqs (4.7), (4.8) and (4.10) O, = 7, and choose in (4.8),
(4.10) the commutator. For the Hamiltonian (4.3) the commutator equations (4.7) read

[H, nf]-= (0, +Q)ni + R (4.11)
where
R;— = Z; a(v_l_lb‘ —A v“) (Pwuloc_l_Rvual) 7]:_ 77;— 7]1—]_ (4'12)
v
+ Z; 6(’)) —H —A _a) (Tvuav"_ T;J,u2+ Tvom) 17:_ ’Lﬂh-
v
Since

<7]1:|_ 77; 772 77¢>0 = ¢v¢(4( 61/1 6#0; + (?wwé,u/l) (413)



576

one obtains

<R+7]u>0 - ® Z ¢v v 0 (4'.14!)
<17+ R+>0 = quz Z q511 Ve (4!.15)
where
Sve = Provet Prgar+ Pt Py (4.16)
W =T aat Doyt Topat Doyt Top et T 4.17)

and @, denotes the Bose distribution
O, = [ ) 1)1, (4.18)

Thus, with (4.8), (4.10) we arrive at the following averages.in the first-order statistical per-
turbation approach:

Ny Mg = D, —B(P,+1) P, Z ?,S,, (4.19)

(d e =  (28.+1) Z D, W, (4.20)

2w a+Qu

The spontaneous magnetization in the quantization direction given by the angle ¢
can be written as

1 1 1 : ,
0=1— = ¥ (alag) = 1— 5z 3 [0h+ B+ e+ Zuava( i nEa)].
o4 [#4

4.21)
(Note that in our case {5 nt > = {(n,7_,>.) By virtue of (4.19), (4.20), (4.21) and taking
into account (4.2) one finally obtains the following formula for the magnetization correct
to the order p*:

o=1— —j\;_s [Z Qjm‘l' Z Q)a_ﬁ Z (dja“l‘l)@u@vsva_

_ 2 0o N Ve
28 Z (Bt 1)D,D,SY, Z o 2Pt 1),45”117,.‘,,] (4.22)
where

Sy = 2F%, +Fp,+F, (4.23)

denotes the y-independent part of S,,. In the denominator of the last term of (4.22) we have
omitted the quantity Q, because Q, ~ y* and, therefore, v,(w,+Q,) " = v+ O(y9).

In the following we shall explicitly evaluate Eq. (4.19) up to the fourth order in the
temperature 7' but only to the second order in the reduced field p. The latter restriction
simplifies markedly the calculations. Accordingly, Eq. (4.22) turns into

o=1— ]\}—S[Z ®,—B Z (@, +1) @xqsvsm] : (4.24)
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Further, the quantity @, in (4.18) can be dropped. With (2.13) the spin-wave energy spectrum
reads

w, =VIE—M2 =L (1-0 (%) ~ L, (4.25)

In order to analyze the formula (4.24) we expand at first the function (4.18) into a series
and pass from sums to integrals:

B, = 3 e~ (D1 1)D, = S nenion, (4.26)
h=1 h=1
1 14 1
—N— Z —> —-]—VT M Wfdsa. (41-27)

For simplicity, we assume a simple cubic lattice and use the nearest-neighbour approxima-
tion. The calculations can be carried through ‘as well for a tetragonal lattice, but are in this
case considerably lengthier. With these assumptions Eqgs (2.18a) and (2.18b) become

J() = 2I (cos av,+ cos av, + cos av,), (4.28a)
G(v) = 26 (cos av, + cos av,+ cos av,) (4.28b)

where a denotes the lattice constant, and I and G are the isotropic and anisotropic nearest-
neighbour exchange integrals.
To obtain the correct low-temperature expansion of ¢ up to the order 7* within the long-

wavelength approximation, the cosine functions in (4.28a), (4.28b) are to be expanded to
the sixth order:

2% xt ot
COS.’)CN].‘—‘E‘!—‘I—Z‘T—?!“. (4'.?9)
The spin wave energy w, can now be writien as
0, = 0O +od +of) +of (4.30)

where @™ involves products of n wavevector components %y, 0, . With (4.30) we rewrite
and expand the exponential functions in (4.26) as follows:

e~ MBwe — e—nﬁwoe—nﬁwa(z)e—nﬁ(wa(“)—l-wa("))

2R2
== g "Bmog—nfua [1——n,3(w£,4)+w,(f)) + %’f— (@P)2+ ] . (4.31)

The above expansion is again necessary to get all temperature powers up to T The insertion
of (4.31) and (4.26) in (4.24) and the use of (4.27) leads to integrals of the type

I= [[[ e Attam+ e +@adV g 2(ag, ) (ast, ) d*a, 4.32)

where p, g, r are even integers. Therein, the integration has been extended beyond the first
Brillouin zone over the whole wavevector space (see, e. g-» [2] for justification). The in-
tegral (4.32) can easily be calculated:

1 p-+l g+1 r+1
= A~-3@+p+gtr)
I a3A pta P(2)F(2)P<2) (4.33)
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where I'(x) denotes the gamma-function. After somewhat tedious but straightforward cal-

culations we finally obtain
o =1-SYP, Z, (df7)t"+PyZ (AT +Py Z, /z(d/-c)r’/ur
+ Qo2 (1) 2y (4022 + Qy( Zuy (1) 21, (A ) + [ 2oy (D)D) 73+
+(QuZuy (D) Z:, (d]7) +QaZoy (d]7) 2o (A7) 7] (4.34)
with the dimensionless quantities

ET

T="8n—S]—., (4'.35)
3 37 5 33 7
= 1— - o2 == 2 1 g2 S o, 3 1 TP
P/z 1 4g7, P/z 4 (1 4g7)7 P/z 32” (1 4g7>
4, 3 3 3 3
Qz=n—§(1—§- 2—~§gy2), Qs=1§g(1-—§yz—2gy2)
3= g 35 , 5
04—53‘(”’5[1—7? B ])
_ 2a 3., 5 .y ,_ 3 1,
Oy=— 558 (1— 5 7P 58y ) d=5_ (1—57) (4.36)
g = G/[I, v = k125G, (4.37)
Z,(x) = Y n e, (4.38)
n=1

Let us briefly discuss the magnetization formula (4.34). To begin with, we consider
h =0, G=0 (isotropic field-free ferromagnet). In this case we obtain Dyson’s [7] low-
temperature expansion to the order T%, apart from a slight discrepancy in the coefficient
of the T* term due to the different approximation methods. Note that the spurious T%-term
of the first order Green’s function theories [3,13] does not appear in (4.34). For G >0
and % = 0 additional contributions proportional to T2 and T® emerge. The presence of
a weak field perpendicular to the anisotropy axis does not change the powers of T but
merely changes the coefficients according to (4.36).

5. Concluding remarks

The method C, as employed in Section 3 to the uniaxial ferromagnet with transversal
field described by the approximate spin-wave Hamiltonian (3.3), was shown to lead for
sufficiently weak and strong fields to the same result as the methods A and B. We may
therefore conclude that the methods 4 and B — which are by far simpler — are consider-
ably more effective and sufficiently adequate in determining the suitable spin-deviation or
spin-wave reference state which reasonably approximates the spin system’s ground state,
provided the class of trial states is properly chosen.
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It is to be noted that the field-restrictions in Eqs (3.27-3.29) actually result from the
Bogolyubov transformation (3.10) and the condition (3.16). When using the method A4 or B,
they also turn up (though in a weaker form) upon applying the method of approximate
second quantization in determining the spin-wave energy spectrum [14, 15], without re-
stricting in any way the reference state itself. It may also be noted. that there have been
suggested other methods of determining the spin-wave reference state which are yet to be
explored [1, 16].

Finally, it should be emphasized that the low-temperature weak-field expansion of the
magnetization (4.34), obtained on the basis of the reference state corresponding to (4.1)
by means of Wallace’s statistical perturbation method, presents a generalization of Dyson’s
results [7]. It can easily be seen that the perturbation term in Eq. (4.24) is much smaller
than the unperturbed term if 7 €1, h <€h, = 25G(0), g = G/I <1, which constitutes
in our case the criterion for the applicability of the statistical perturbation method.

The author would like to thank Dr W. J. Zietek for suggesting these investigations as
well as for reading and correcting the manuscript.
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