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INFLUENCE OF MAGNETIC FIELD ON THE KONDO EFFECT
ANDERSON MODEL

By B. KozarzEwskr*

Joint Institute for Nuclear Research, Dubna
(Received February 6, 1971)

The effect of an external magnetic field on the scattering of conduction electrons by magnetic
impurity is investigated. The method of Green’s functions is applied to the Anderson model
and an integral equations for scaftering matrices are solved in the strongly correlated limit.
The temperature dependence of the critical magnetic field and magnetoresistivity of dilute
magnetic alloy are calculated.

1. Introduction

The interaction of the localized magnetic moment with conduction electrons has been
the object of studies in a great number of works. Most of them are concerned with the
s —d exchange model (for reference see [1]). Recently, more attention has been focused on
the investigation of the Anderson model. Theumann [2] and Mamada and Takano [3] using
the equation of motion approach derive an integral equation which in the limit of infinite
intra atomic Coulomb energy can be treated in analogy to Nagaoka’s equation in the s —d
exchange model.

The effect of a magnetic field on the properties of metal with paramagnetic impurities has
been investigated in various approximations in the framework of s—d exchange model
only [1], {4].

The purpose of the present work is to obtain some information about the system of
electrons interacting with a paramagnetic impurity in the presence of arbitrary magnetic
field at finite temperatures. In Section 2 the necessary Green’s functions are introduced
and their equations of motion are set up. These equations can be reduced to the system of
two integral equations for the scattering matrices, which are solved in Section 3 in the strongly
correlated limit. In Section 4 an equation for critical magnetic field, at which perturbation
theory diverges, as the function of temperature is determined. Also the magnetoresistivity
in some approximation is calculated.
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2. Equations of motion

As stated above we consider a system consisting of conduction electrons interacting
with one impurity located at the origin of the coordinate system. We assume a non degenerate
d-level of impurity and energy independent interaction. Then the Anderson Hamiltonian
of the system in the presence of a magnetic field H is given by

H = D) ittt 2y Eng+3U Dy nn_ .+ D) (Vefd + V*die,) 2.1)
ks s s ks
where
ens = ex—1s % h, E,=E—}sh,

h=gugH, s= +1.

&.(g) are the Lande g-factors of the conduction (impurity d-level) electrons and other
symbols have their usual meaning.
The properties of our system are most conveniently expressed by the Green’s functions

Lew(Dleld = Ty (7), G5 0), (2.2)
K@)y = —<d,(x), df (0))- (2-3)
The Fourier transform of function (2.2) given by
8
(ewslein = [ e Lew@eiNdr
0
with

JT

Z2=iw, =1 2n+1
g @+
satisfies the equation of motion
(2 =8p) (Censleilsd) = O+ Vil i) - (24)
For the new Green function in the right hand side of Eq. (2.4) we obtain the equation:
(e —EB)((dlefy) = Uln_dlaly) +7* 23 {Laleil))- 2.5)
1

In order to take into account the correlation between conduction and d-electrons we must
consider higher order Green’s functions. The equations for them are

(E—E,~U){{n_dcl)) = V* ? {{n_aleid) +
+V* 20 (dt i dlelyy =V 20 et d_dl6by), (2.6)
13 i

(2 =2he) ((_rrleil)) = (n_) g +V{{n_dlleii)) —
—V 20 el erdleid) +V* 25 ((dE e earleiiad)s @7
[ [}
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(Z —Epr—s +Sh) <<di_sck’—sdslc;;>> bl V< <n—-sdslcl_st‘>> i

= ? (e w—sdlei) +7* lZ QCARRCA )R (2-8)

(2 +e_ —2E—D)((Gh_d_dlcky) =—V*{{n_dleg)) +

—s T —87Ss

+ V7% 3 b o dlei)) 75 20 e dilei))- (29)
] i

If analogous equations of motion starting with the function (2.3) are set up and an appropriate
decoupling procedure

<<Cl—*-—sd—sck’s|cl—§s>> = <cl_{—-sd—s><<ck'slcl_cl_x>> etc.
and
((dF g dJdFYY = (AL Y {(dJd)) ete.

is applied, the closed system of equations of motion can be obtained. It is possible to solve
this system, by means of simple but lengthy procedure, with respect to functions (2.2)

Ok (2
Kewslea)) = e +1VI* (z——ski)(('z)'—’s;J (2.10)
and (2.3)
(dddS)) = £(2)- @.11)

Another two Green’s functions that we will need in following may also be expressed
in terms of f-matrices as

(ebyy = 7 (212)
and
el = v L 213

For the time being the t-matrices depend on thermal averages that follow from the
decoupling procedure. However using Egs (2.10) to (2.13) with relations of the form

1o ., _
()= ; don((dJey) = TN, 2.14)

the t-matrices can be expressed in terms of integrals of themselves yielding a system of two
singular integral equations for £,(2).

For arbitrary U these integral equations are very complicated and we will not write
them down. As it was mentioned above, we are mainly interested in the strongly correlated
limit (high U) which seems to correspond to the s —d exchange model and describes the
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Kondo effect. Thus we can expand our equations in the power series of U~ and take into
account the leading terms only. It follows after a simple transformation

1—<n_x)—f{&w)——ﬁiz) t(—.;; iw)}

Z—100

1(e) = L _ S B 2.15)
s B- iR (59—, [ LETER |
(39 = tie—don, 7o = Y 2 216
where '
R(s; 2) = &, { I-V(ZZ“’_);OF (z—)} —1F(2) (2.17)

and #; means the “shifted” frequency sum of form (2.14) which, when converted into
integral bent over to the real axis, can be written as

T [ (i0)} = F{fliw—1% sh)}

o0

=i f th POTER 1) £ (0)1do 2.18)

— 00

A certain approximation wes also made in (2.15), namely we omit the quantity (g —g,)upH/2
in the arguments of functions F. This causes a negligibly small errors cf the order

(8 —g)upH|2D, where 2D is the conduction electrons band width,

3. Solution of integral equations

In order to solve Eq. (2.15) we follow the method most frequently exploited in the
Kondo problem. However, since we have the system of two equations, some generalization
in needed. In the following we assume the Lorentzian form for the density of states

D2

N(w) = N(0)e(w) = N(0) WL DE 3.1

which is sufficiently regular function in complex plane'. One then finds for F(z)

. AD

" — - 2 .
ﬁr’a(z)_ziiD’ A = aNO)|V |2 (3.2)
Let us replace F(z) with F, ,(z) in Eq. (2.15) we then obtain equations for ¢,(s; z) and

t,(s; 2) that can be rewritten as

L)~ F) el ) = 23 (3.3)
1—[Fy@)]— Fofa)ta(s; 2) = 22 552) (3.35)

D, (s; 2)
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where the nominators
X, ofs3 2) = 2— E—3Fy(2)—Fo(2)— {n—)[Fi(z) - Fo(2)| = R(s; A+ylss2),  (3.4)

with

—1iw

x(s;z>=—fs{[F<zw> R (o)~ Fue) 2 “")}, (3.5)

contain besides known functions, only the regular function y(s; z). However, the function
#(s; 2) is of the order A%/E2D and can be neglected in the cases when no differentiation of
#(s; 7) with respect to temperature is involved. We write the -denominators as

D, o(s; 2) = 5— E—8F, (2) —R(s; 2) —F(2) Fo(2) Lo(s5 2)t +
F[F(2) + Fa(2)]L1(s; 2)—Ly(s; 2) (3.6)
where

Fn (L(D)

Z2—Iiw

L.(s;2) = F, { t(—s; zw)} 3.7
The functions R(s; 2) and L,(s; 2) are represenied by Cauchy integrals which for Imz 2 0
define the functions R*(s; z)-and LE(s; z) holomorphic on the whole complex plane excluding
the real axis. For the discontinuity across the real axis, Eqgs (2.17) and (3.7) yield

AR(ss 0) = R¥(s3 0)—R-(s3 @) — ~ 4 —Ffay] h PO 3
ALy(s3 0) = — HF@)t(—s; 0)— Fitw)ts(—s; o) mPCEER 3

Then from Eqs (3.4) and (3.6) with help of Eq. (3.3) one finds the sprung relations for
D,(s; w) and D (s; w)

A@,(s w) = AX,(s;0) o E_: Z; (3.10)
AB(s; 0) = AX(s; ) ‘;E:Zz; . (3.11)

Combining these relations we can see that the function
w(s; ) = B, (53 ) By 3 2) X (53 DX ~:.2) (3.12)
is continuous across the real axis, i.e.
w(s; ) = w(s; o). (3.13)
By use of Eqs (3.2), (3.4), (3.6) and Liouville’s theorem one finds
w(s: 2) = A%+ 30 —4(n) (n_)] —

—idso(z) [Z(E—z) +540(2) %] m (3.14)
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where n = (n,) +(n_) and m = (n,) —(n_). Now by means of Eq. (3.12) we can eliminate
the unphysical function @, in Eq. (3.10) and arrive at a certain generalization of the Riemann
problem

1 1 _
EF,,(w—E)dij(s; 0) 5 Felo—E) g (—s; )

= ﬁFr(w—E)Fa(w—E)[Xf(s; )X (—s; 0)+w(s; w)] = K{(s; w) (3.15)

where F(w—FE) and F,(w—E) are introduced in order to guarantee the vanishing of
In K(s; ®) at infinity. The equation (3.15) can be solved as, [5],

Fis: ) = 4DVK(33“’) —in(s; )
D, (s; ) = Fio—E) ° n(s; @)
D, (s; 0) = AZK(IE;(:_% ©) gin(si ) (3.16)
with
7(s; w) = §Pn— f lna[f:(:s;wwz dew’. (3.17)

The Eqs (3.16) and (3.17) with Eq. (3.3) form the complete solution for the t-matrices.
The unknown function x(s; w) can be neglected or caleulated in an approximated way if
needed, n and m can be in principle determined self-consistently from Eq. (2.11) but we
will consider them to be adjustable parameters.

4. The critical field and resistivity

The quantities interesting to us in this Section are determined by the properties of
the scattering matrices at the Fermi surface (o = 0) ouly. The Eq. (3.4) with (in following
we-assume that 4 <€D which is fulfilled in all real cases)

R<(s30) = 2 g(o) [ln L (~i . <w+%sh))] (@1)
yields

XE(s;0) =w—E— %@(w) [iiizz (I—4n_))+

pD 1, P 1 4.2
+ln?ﬂ———y) gi%(w—l—zsh) . ( . )
The critical magnetic field He(T) is determined by
D1Re XF(0) =0,
5
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(where and in following f(w) means f(s; w+%sh), or according to Eq. (4.2)

m§+mﬁﬁ+mw(a-“)=a @.3)
In the absence of magnetic field this equation determines the Kondo temperature
kaTx = fDe (’ZE ) (4.4)

where In4a = —y(3) and conditions |E|> 4 with E < 0 must be satisfied [3].
If the definition of T is used, Eq. (4.3) can be written as

23:7:4 HK(T) _ _73_
Reg+(2nk3 T )—_ln T 4.5

where
g+(%) =pEFFin)—p(3).
We can see with the help of asymptotic formula

Re g+(x) = In dox— = for x>»1

242
that
T 2
HK(T) = HK(O) [1+21 (—) J near T'=0,
Tk
and
Re g (x) = 70(3)x%2  for =x<l
that
T
HK(T') = SlHK(O) 1/1-— b near T = TK
Tk
where
H(0) = 22 (46)
T 2aupg '

A more detailed calculation shows that the critical field increases with temperature increasing
from 0 to about 0.3T where it reaches its maximum value 1.2H(0), while it seems, for
physical reasons that He(7") should be monotonically decreasing function for all 0 << T'<< T

We consider now the electrical resistivity. If we réstrict ourselves to the lowest order
term in the Sommerfeld expansion, the resistivity is related to the retarded scattering
matrices at the Fermi level in the following way

-1 .. ”06’2
¢ dm*c |V Z Im ts(()
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where

ren L " Xiow) gins(a
1(0) = 2iAp(w). [1 (—E+iD))/ K(w) ()L=o (4.8)

with K (o) and #(w) given by Eqs (3.15) and (3.17). As the K (w) for |o] < E is an’even
function of  and the contribution to #,(0) from large w is negligibly small we can neglect
the phese factor in Eq. (4.7). Then

] e

1
o= 1+R . SR
¢ 20(¢ Z[ e']/E2+D2 V XiXZ+w,

. . .. m*
where ¢ — concentration of impurities = -
L » 807 nee2N(0)

A sh
+ _ 1 17 — — o7, 7
X = 3shTHAQL—4n_))+ p- [“H‘gj: (an3T>]
and ‘l V

T :11'1 —T;-.
The explicit form cf resistivity for arbitrary H is very complicated but in the case & <kgT
can be considerebly simplified. One finds by expending Eq. (4.8) to the ovder (HjkgT)?

72

o(H)—0(0) = 0o¢ [0.22- ( i +0.221)ﬂ ; VEerm (”’ ng)z (4.9)

where

A = [12427%24-n)]%.

The resistivity in the absence of magnetic field follows from Eq. (4.7) with H = 0.

2(0) = goc {H [% +D(%‘n)]1‘1(E2+Dz)‘%}'- (4.10)

It is seen from Eq. (4.8) that the magnetoresistivity is negative and tends to zero for 7> Tk.
The solution for ¢-matrices that we have found can be used to calculate other physical
quantities, in particular the magnetic susceptibility at a finite field.
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