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FIELD-DEPENDENT PHASE TRANSITIONS OF UNIAXIAL
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In the molecular field approximation (MFA), the thermodynamical properties of a ferro-
magnetic system described by a Hamiltonian bilinear in the spin operators are examined.
It is shown that, discontinuities of the thermodynamical quantities lie on a ‘‘critical hyper-
-surface” in the space {M, H, T}. This leads, under specific conditions, to a field-
-dependent temperature of the second-order ferro-para phase transition. The latter result is
consistent with recent experimental and theoretical investigations. The influence of the uniaxial
anisotropy on this phenomenon is also discussed.

1. Introduction

As shown by recent experiments [1, 2], the second-order ferro-paramagnetic phase
transition in ferromagnets is not necessarily destroyed upon application of an external
magnetic field. According to theoretical investigations [3-9], such a phenomenon can occur
in a uniaxial ferromagnet with the field perpendicular to the easy axis, vanishing in the
case of other field directions.

The influence of the perpendicular field on the magnetization direction of a uniaxial
ferromagnet seems to be well known and understood (see, e. g., [10]). Below a critical value
of the field, H ("), there are two energetically equivalent directions of the magnetization
which form the same angle with the field. Above this value, only the direction of the field is
admissible for the magnetization. The papers [3--6,9] show the existence of a second-order
phase transition at the point H,(T), above which the magnetization assumes the direction
of the external field. In other words, if we write the inverse relation, T (H), the temperature
of the second-order phase transition is field-dependent. It coincides with the ordinary
(field-free) Curie temperature in the case H = 0.

For the Heisenberg model such results have been obtained upon the assumption of the
exchange anisotropy [5, 6, 9]. From a purely physical point of view, however, it is rather
obvious that the occurrence of this effect should not depend on the type and the origin of the
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anisotropy. This is also suggested by phenomenological considerations [3, 4, 8, 10], but
a proof of this statement based on the Heisenberg model and MFA will be given in the present
paper, where we do not specify the type of the uniaxial anisotropy (excluding, however, an
anisotropy of crystal-field type). In our present formulation, the possibility of shifting of the
transition temperature with the external field follows immediately from the equations of
state for the anisotropic (uniaxial) ferromagnet. Furthermore, we extend here the consider-
ations to the case of a ferromagnet with three mutually perpendicular inequivalent preferred
directions and the field perpendicular to the magnetically easiest one, in which case a second-
-order phase transition should apparently occur as well, but with the transition temperature
depending additionally on the field direction in the hard plane.

2. Minimization of the model free energy

Consider an arbitrary Hamiltonian bilinear in the spin operators,
H = —%fz Aé‘g-'sfsjg —pH, fz s{, (1)
#&

where s/ is the spin operator of the i-component at the laitice site f, Aff = Aff >0 is the
interaction tensor, and H; the components of the external magnetic field. We use the summa-
tion convention over repeated lower indices. A convenient approach to the problem in MFA
is the application of Bogolyubov’s variational principle [11]. In this formulation, the thermo-
dynamical description of a system is obtained through the minimization of the so-called
model free energy, F, which can be easily obtained [12, 6] for the Hamiltonian (1). Upon

assuming
ol =Ghls = @)
(s is the maximum spin eigenvalue) and introducing reduced quantities, it reads

s+1 . sh {25 +1)Bi(0)/2s}

3s sh {B(0) /2s}
+ S;;l 10‘575(0)—h;nia—%“ijﬂin]ﬂza 3
where
q)EN—sF;E’ TES(SS%)Q, hiz%, nriE—V—é%;E%, (4)
o, =01 ; A%, 0= %} A%6,, ®)

N denotes the number of lattice sites, and B(x) is the inverse function of

Rl oy S0 e L R ©)

By(x) = - 2s 2s 2s 2s
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In our case, the minimization procedure should be carried out with respect to the magnetiza-
tion components g;, or the absolute value o and the direction cosines n; of the magnetiza-
tion vector. In the latter case, the necessary conditions for an extremum of (3) lead to the
equations
Gi(n;, 05 hy) = epn(hy+oymne) =0
Gy(n) =nm;~1=0
s+1

Gy(nj» 03 by, 7) = 35 Tﬁs(a)—hini—ac,yninja =0, _ (7

where e, is the antisymmetric unit pseudotensor.

One can find effective solutions of (7) only in special cases, choosing appropriately the
form of the tensor a,; (or A{f) and the direction of the external field. However, the form of
a;; can also be simplified due to the symmetry of the lattice.

Let {x;} and {x;} be two Cartesian coordinate systems such that {x;} = U{x;} where U
is any transformation of the point group corresponding to the given crystal lattice, and assume
that, e. g., the x3-coordinate axes of each reference frame coincide with the crystallographic
axis of highest rotational symmetry. Then, it is obvious that for two fields, A; and ﬁiv such
that h, = /1, the respective solutions n;and n, of Eqs (7) should be identical, which leads to
the conlusion &; =, and, due to the invariance under the transformations U, to the result

Oy == 0y1 0501 + “2251‘251'2 + 030,30, 8

if the lattice has higher than monoclinic symmetry and the coordinate axes lie in the principal
crystallographic directions.

The sufficient conditions for a minimum of (3) to exist can be analysed by the method
presented in previous papers [12, 6], by examining the sign of the quadratic form

d2*® = [p(0)ay; +4(0) 51] do?+of (@, —0tp) 0 _51] dn3+
+ol(oy; — %ap) 0 — 711] dn3 —2[2,+ };2] do dny— ©)
— 220430 + hy] dod iy — 20628y ditgdii,
= “ijdi’ i d&'i

where
dy, = do, dy, = dny, dy, = dn, (10)
D = g+, (1)
;Lk = Ry, Ek = Ry;h;, &kl = Rkile“ij (12)

q(x) = Bfx) >0, p)=x¢@—-1>0 for O0<ax<I1, (13)

1 d
Es(x) dx
and the transformation matrix

sin ¢ sin sind  cosy cos @
(R;) = — cos Y sin o 0 (14)

—cos?siny — cosPcosy sind
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with the angles 9,y defined by
ny = sin ¥ sin p
ny = sin ¥ cos @ (15)
ng = cos ¥

is chosen in such a way that 7, = 1. In the formula (9), the Lagrange factor 4 and the tem-

perature T have been eliminated by applying the necessary conditions (7) to @, i.e., — =0

and e = 0, respectively. Making use of (12)=(15) and (7) for @y, = ay; one can show that
g

the coefficients a; = a;; of the quadratic form (9) for the diagonal tensor a;;, Eq. (8), read

ay; = p(o) “ijninj+Q(G} h;n;

Gy, = 0272 {s5(n} —13) +13(ogy —0tzmm)} + im0

gy = 0% 2(1—2n3) (a0, —0gg) +hn,o (16)
1y = yngt " %150, Olgg = —TiqTiggl ™™ %150°
g = 171 {ny(hyny =+ hong) — hyn® 2150 (503 +sa5m3) }
where
2, 23
n= (n1+n2)/29
#yy = 0, %19 = Gyy — &g, %13 = Ay gy, Xy = Ogp ~Opy -+ 17)
For the form (9) to be positive, the standard conditions are to be satisfied, such as
the positiveness of the eigenvalues of the matrix a;; or that of the principal minors of det
a;. In this way, by assuming an exchange anisotropy, the cases ay; = Opy 7 g3 (easy axis
or plane, depending on the sign of #,3 = ,3) were considered previously [6] and shown to
lead to a second-order phase transition? if the field is perpendicular to the easy axis (plane),
and to no phase transition in the case of the parallel field (see, however, Footnote in Section 4).
Our present analysis shows, moreover, the validity of these conclusions for an arbitrary
(anisotropic) tensor A{-}' if only the lattice is of tetragonal, trigonal or hexagonal symmetry
(a cubic lattice implies, of course, @y = &yy = tgg). The case of the orthorombic lattice
(ot 7 Ctgy # gy 7 yq) Tequires special consideration which will be given in Section 4.

3. Thermodynamical description

According to Bogolyubov’s variational principle-[11], the model frée energy approxi-
mates from above the true free energy of the system under consideration. By inserting a
solution of (7), which satisfies the conditions (16) and represents an absolute minimum of (3),

1 There is an error in formula (19) in [6] (Acta Phys. Polon.) where a factor 2 has been omitted in the
term proportional to P, Consequently, the determinants 4 in the sufficient conditions (31) and (53) in [6]
should respectively read

A= yP(o)|xlo>—h7 4™ 31)
A = y"P(o)hjjln[1—|x|0? (53)
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into (3), one obtains the approximate free energy of a stable state of our system.
(A relative minimum of (3) corresponds to a metastable state). Thus, if the solutions n; and
o of (7) exist and meet the conditions (16), Eqs (7) can be considered an implicit form of
the equations of state described by n,(h;, 1), (h;, 7). The system (7) consists of five equa-
tions for four quantities to be determined; it can be easily noticed, however, that of the
three functions G; one is linearly dependent on the two others and, as the Jacobi matrix
constructed of the derivatives of G;, G, G5 with respect to n; and o is of fourth rank, the
system (7) is consistent. Therefore, in our further considerations we can restrict ourselves
to four of the functions G;, Gy, Gy, e. g., G, where g =2, 3,4, 5.
If
oG,

det 3y,

#0 (18)

where v = 1, 2, 3, 4 and y, is defined by y; = n,, y, = 0, it follows from the continuity of
G, (and G,) along with their first derivatives that the solutions of (7), nih;, 7), o(h;, 1),
and their first derivatives with respect to %; and v are continuous (and Single-valued) func-
tions. In other words, if n,(h;, 1), o(h;, 7) and/or their derivatives are discontinuous or
multiple-valued), Eqs (7) are satisfied, too, and, instead of (18), the equation

G,
oy,
holds. These equations, (7) and (19), represent a new set of five linearly independent equa-
tions for the four unknown functions n,(h;, 7), o(k;, 7) and lead therefore in this case to
a relationship between the variables 7 and A;, say 7(%;). This, in turn, leads to a “‘critical
hyper-surface” nj(h;), o,(h;) and one can easily show that the point of a second-order phase
transition in a uniaxial ferromagnet [6] lies on it.

In the opposite case, when the conditions (16) and (18) for a set of the solutions nh;, 7)
o (h;, 7) of (7) are met, other thermodynamical quantities (for a stable or metastable state)
can be obtained from (3). Thus, by differentiation of (3) with respect to 7 or A; one has the
entropy (in the units of Nk gas constant) -

det

0 (19)

5= 1 PABEDNB2S _ 5 o) (20)
sh {B,(0)/2s}
the specific heat at constant field
5, do
C = By(o) PR @D
and the isothermal susceptibility tensor
do on;
=N~ +0O el . 22
Xif ahj ah] ( )

(In the latter formula, terms containing second derivatives and those non-linear in the first
ones vanish because of (7)). Since n,(h;, 7), o(h;, 7) and the respective derivatives of these
functions are continuous, ¢, S, C and % are also continuous. Hence, discontinuities of o,
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andfor S (corresponding to a minimum of the free energy) can occur in the case of (19)
or at the stability boundary (d?® = 0). If the stable values of o; and S are continuous
functions of A, 7, the existence of a second-order phase transition requires any of the first
derivatives of m;or o to be discontinuous on the critical hyper-surface (see, e. g., the results

of [5, 6]).

4. Second-order phase transition in the case of three inequivalent magnetically preferred
directions (0tyy 7 Olgg 7 (gg 7 O0qq, hg =0)

As an example of the general considerations of the preceding Sections, consider the
case of the orthorombic lattice when (8) applies and one of the field components, assume A,
is equal to zero. Then, from (7) two kinds of solutions are obtained such that ng # 0, and
another with ng = 0. For the first one we obtain

ny == hy[#3,6, 1y = hy[nz0, ng = £(1 ~n? __ng)l/z

s+1 =~
P TBy(0) = 0330 (23)

whereas in the latter case ny, ny and o satisfy the system of equations

hotiy —hyny+ %9ynon6 = 0

ni4+ng—1=0
s+l 4 T .
-3 7B{(0) +hyny + hong + oy nfo +aganio = 0. (24)
The solutions (23) are real if
B=(Bi+p)" <o <] (25)
where
B == hyfrgy, Lo == holns. (26)

This implies the solution (23) to be restricted to the temperature interval
0 <7 <7, =3sayf/(s+1) Bs<6) (27)
and, if A; >0, hy >0, the direction cosines to be confined to the intervals
BuB >ma > B, BolB =1y =P
Ing < (12" : (28)

Among the solutions of (24) there is one which is determined for 0 < 7 <00, 0 < fy, hy<Too.
If 2, >0, it satisfies the conditions

0< ny<hyfh, 0<<hyfh<ny, 0< o<1
b= (hE+h3)%. (29)
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Besides, there can exist additional solutions of (24), which divide into two groups. If 4; > 0,
hy >0 and wy, > 0, for one group the direction cosines n,, 7, are confined to the intervals

—hyfh < 1y < 0, —l<ny< —hyh, (30)
and these solutions are admissible for |
hyny+ hong +otgynio +ogyn3o >0 3L
if negative temperatures are to be avoided. The remaining solutions, for which
n >0, ny<O (32)

can occur for sufficiently low values of hy/uy0 >0, hyf2y; 0 >0 (see, e. g., the analysis
of an analogous equation to (24) for the magnetization directions in a uniaxial ferromagnet
given in [10}).

It is easy to notice that the solutions (23) and one of (24) (namely, (29) for hy >0,
hy > 0) coincide if

my =ni=[/f, ny=n5= /B, ny=n5=0
o=0,=p T=r1,. (33)

On the other hand, one can show Eq. (33) to represent the explicit from of the critical hyper-
-surface (19) for the case /i == 0. Let us assume /; > 0, hy > 0; then, according to the prec-
eding Section, a phase transition will occur on the hyper-surface (33) if (i) in the neighbour-
hood of the hyper-surface (33) the solutions (23) andfor (29) of (24) (for 7 > T,0<f
or 0 < 7 < o0, 0 << ¢ < 1) satisfy the conditions for the absolute minimum of the free
energy (3); (i7) there exist discontinuities of the second derivatives of @ with respect to 7
and/or Ay, hy on this surface for the solutions which satisfy the condition (7).

Making use of (16), (17) one can prove that, if xy >0, 5, > 0, the solutions (23)
satisfy the sufficient conditions for a minimum of the free energy (3) in the whole region (25),
(27), (28) (with the exception of the boundary points 7 =0, 7 = 7). From (17), for the
solutions of (24) (n3 = 0) we have a3 = a,3 = 0, and for (29) moreover a3 > 0. In this
case, the conditions for a minimum of the free energy reduce to

11099 *afz >0
s/ g=0 (@273 + ttggns —Otgs) + hyny + hang > 0. (34)

One can easily check that azy = 0 for (33), and that the form of ag3 ensures the positiveness
of (34) for sﬁ]‘.ﬁcwntly high fields. However, the question arises whether (33) is the only
point at which ag3 = 0. According to (24), ag; does not depend explicitly on the temperature
and is a function of ‘g, /iy, &y only (and the parameters a;,, oy, 0533) The dependence of
G33/0 on ¢ is shown in Fig. 1 for different values of Ay, h,.

Ii follows from Fig. 1 that ags >0 for 0 < f(v > 7,) and ags < 0 for o > flr<<t)
if f<1. Inthe case f>1, we have a3 >0 for 0<o<1 (0 <7< 00, 0< hy, hy<< o).
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This indicates the:absence of the minimum for the state (29) if ¢ > 8 (v << 7). If these results
(based on numerical tests) are valid for arbitrary @y, @y, ®s3, and the solution (29) of (24)
is the absolute minimum of the free energy (3), the state with ng # 0, (23), occurs at low
temperatures and fields (v < 7, < 1), and the state with ng = 0, (24), (29), for higher
values of these parameters (v > 17, 8 < 1). If § > 1, the only admissible state is (24).
As the solutions (23) and (29) of (24) coincide for (33), the continuity of the free energy (3)

s

Fig. lq:, b: Aréa 14 of the possible phase transition (restricte& by the solidline — the curve (A, %31)2—{l (hg #3)2 =1)
in the (hy, h'z):plane for ajy = 0.2, tyy = 0.3, %33 = 0.5. The daggers denote the field values for which the cuives
for the solution (29) of Eqs (24) in 1b are plotted :

and the entropy (20) is ensured if § < 1. For # > 1, when the solution (29) of (24) is the
only possible state, a discontinuity of n;, o and/or of the derivatives of these functions could
occur for (33), on the ground that the solutions of (7) and/or of their derivatives may be
discontinuous for (19). However, the same method which was used in showing the possible
existence of discontinuities of the solutions of (7) for the case (19) in the previous Section,
permits now to prove that.there are no discontinuities for the solutions 7,(hy, hg,7),
15(hy» by 7), 0(hys By, T) (and their first and second derivatives with respect 1o Ay, by, 7)
of (24) for (33). Thus, if B >1, hy > 0, hy >0 and agy > agy >y (%5 >0, 235 >0,
% > 0), the state (24), (29) without any phase transition should occur in our system, since
the specific heat (21) and the components of the susceptibility tensor (22) are continuous
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functions of 7 and A, hy. On the other hand, the existence of a second-order phase transi-
tion in the case § < 1 is quite obvious, as

ony ony

0
or 7" o, "
on on :
I olig _ . 3 —
r—_»l-zl—ﬂ QT :FOC, rj%rl;r}—o ahl,g ¥oo (35)
for (23), whilst
ny = dhy _ Iny _ Ing _ Oy —0 (36)

- T?? o ot rc+o— 5711,2 N c")h1,2{rc+0

for (24) which, according to (21), (22), suffices for the existence of a second-order phase
transition for (33).

Incidentally, this phase transition manifests itself also through the discontinuity of the
derivatives of the other two direction cosines, and the magnitude of the magnetization as
well, with respect to field components and temperature. Namely, for (23) on the critical
hyper-surface (33) these derivatives read

Oy | s+l BB my| s+1 B,B(B)
97 lemo 35 B%(B) 7 9T o 3s  f(B)
do s+l Bp)
5 he™ T B B 37
dny — _1* @l — % | =0
dhy — uyP’  dhy  Ohy o
Iny  In, - on, _ 1
Ohy  Ohy lremo T Ohy o #eP
do do
S AR i 38
Mg Fhygiw-o (38)

where the function p(B) in (37) is defined by (13). For (24), the respective derivatives of
1y, Ny, 0 can be obtained as solutions of the three (independent) systems of linear equa-
tions

on
by + 251190, —hy 20y 0, HorTtylg B 51 Ny
on
1 p Ty s T 952 =0 (39)
Ingy

\ hy+2a03m40,  hy+2a4n,0, A o 0»
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- where v=1,2,3, 4= oclln%—l—oczzng—(s—kl) 7B!(0)/3s and
Si=Mh m=n 0=m
Sy=hy Me=mng Q2 =T1y (40)
Es=hy 713=0 gg=0(+]) BS(O')/BS.

One can show that (37) and (38). do not satisfy these equations for the case (33), and that
there exist solutions of (39) for (33) such that each derivative of ny, ng, ¢ with respect to
hy, hy, T differs from those given in (37), (38).

The above results elucidate the behaviour of the magnetization in the case Gtgg > Ggp >0y
and for a field by = 0, by # 0, hy # 0. For (24), the magnitude of the magnetization de-
pends on Ay, he, T, whereas for (23) solely on the temperature, being the same (in the limits
of MFA) as in the field-free case. When introducing spherical coordinates (15), we have
§ = 9T, hy, hy), 9 = p(hy, hy), for the phase (23) ‘while @ = 7/2; 9 = vy (7, hy, hy) for
(24). Furthermore, for (24), (29) it can be proved that

,W(Tu,h_la hy) # vy,

Tim (v, by, hy) = lim (7, by, ho) = (41)

700 h—oo
where ), is the azimuthal angle of the external magnetic field. From that, the behaviour of
the magnetization is rather clear. For sufficiently low fields (f << 1) and - temperatures
(r < 7,), the magnetization vector declines from the easiest direction x5 in such a way that
the magnitude of the magnetization remains the same as in the field-free case at that tempe-
rature, the angle ¢ depending solely on the strength and the direction of the external field,
and 9 on both the field and the temperature. When raising the temperature and/or the
field strength, the projection of the magnetization on the easiest axis decreases, vanishing at
7(hy, hy). The new phase (24) is continued above.this point; the magnetization magnitude
begins now to depend on the field components, the angle p on the femperature, coinciding
with that of the field, v,, in the limit case 7 — oo andfor h — oo.

If the external field is not perpendicular to the easiest magnetization axis, a numerical
analysis of the whole problem is necessary. It seems however that, much like in the uniaxial
case [5-9], the existence of a field component parallel to the easiest axis destroys the second-
-order phase transition in the system.

For hy # 0, hy =0, hy =0 or hy # 0, hy = 0, hy = 0, the solutions of (7) can be
found immediately from (23), (24). Let us assume %, # 0. Then, according to (23) and (24),
four magnetization directions are admissible: two along the axis %, (parallel or antiparallel
to the field) and two others in the planes (x, %5), (%, %), being real for

Iyl < 219] Vlz\ < |otyal, (42)

respectively. If %, 0, %3 > 0 feasiest axis along #,), the solution with the magnetization
parallel to the field satisfies the conditions for the absolute minimum of the free energy for
— 0L T 0, — 00K h, < oo; the one with the magnetization antiparallel to the field
is a relative minimum in a certain field and temperature interval?, and the remaining two
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do not correspond to a minimum. For the field perpendicular to ’the.easiest axis (h; #0,
15 < 0 or 215 << 0), the solution for which the magnet17at10n lies in the plane spanned by
the easiest axis and the field satisfies the condltlons for a minimum in the field interval (42)
if 0 < 7 < 7(hy). Above 7,(h,) the magnetlzatlon is parallel to the field. If the conditions
(42) are not fulfilled, the latter is the minimum in the whole temperature region. The re-
maining solutions never satisfy the minimum conditions. As in the uniaxial case [6], a second-
-order phase transition occurs at 7(h,) if the conditions (42) are met.

5. Concluding remarks

A characteristic feature of second-order phase iransitions is the change of a syminetry
on passing the phase boundary. Our results indicate clea}rly' a relationship between the
magnetic symmetry of the ferromagnetic lattice and the direction of the external magnetic
field, which plays an important role in magnetic phenomena and phase transitions. There is
a basic difference, for instance, between the case when the field lies along a main crystallo-
graphic direction (an axis of our coordinate system) and that when its direction is arbitrary
in the hardest plane, for the case oy # dtgy 7 03 # 063y Section 4). Namely, in the latter
case the magnetization is usually not parallel to the field direction upon passing to the
paramagnetic phase (cp. Eq. (41)). Moreover, one sees that it is not the type of the ani-
sotropic interaction but the lattice symmetry assuch which is responsible for this effect.

One should be careful when applying our method to pseudodipolar interactions in the
hexagonal dense-packed lattice, which leads to magnetic isotropy if there is no lattice de-
formation along the six-fold axis from the 1dea] configuration [13]. This, of course, does not
contradict the conclusion (8) (where a;; = 0tgy = a3 follows only for cubic lattices), which
is a result of symmetry with respect to point groups (it does not distinguish between the
simple and dense-packed hexagonal lattice).

Intra-atomic interactions (crystal-field anisotropy) have been excluded from our consi-
derations, as the model free energy (3) assumes in that case a much more complicated form
(see, e. g., [14, 5]), which causes additional, purely mathematical difficulties. Their influence
on the described effects, however, seems to be much the same as that of other uniaxial
anisotropy forms, for these interactions (assumed, e. g., in the x,-direction) cause the cons-
tant &g to depend merely on the absolute value ‘of the magnetization (but not on its direc-
tion) [5]. Hence, the form of the last equation of (7), describing the dependence o(7), can
be changed, while the remaining ones, G; = G, = 0, describing the magnetization direc-
tion and being essential for the problem, remain unchanged. Incidentally; the equations
G; = G4 = 0 which do not include the temperature explicitly should apperently be valid
in a much wider temperature region than the MFA itself (cp., e.'g., [9]), accordlng to the
rule noticed in [15].

2 The reversal of the field direction along the easiest axis leads to an inversion of the magnetlzatmn direction,
which oceurs in the field interval |y < |hy,(7)| where %y, can be determined like in [6]. From the dynamical
point of view, the system undergoes a first-order phase transition within this interval for 0 < 7 < 7,(0) (where

7,(0) is the ordinary Curie point), since the first derivative of @ with respect to the field component /;, namely oy,
changes its sign. (Note, however, that the entropy (21) is continuous if this phase transjtion occurs for hy=0.)
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The Hamiltonian (1) does not exclude long-range dipolar interactions. However, the
assumptions (2), (5) actually restrict the considerations to-infinite samples (or finite ones
with periodic boundary conditions). None the less, it is known from experiment [16, 17]
and micromagnetic considerations [18, 19] and [20], that the assumption (2) is even in that
case a reasonable approximation for an ellipsoidal sample of sufficiently small size. Thus,
if we assume the validity of (2), (5) for such a ferromagnetic sample with dipolar inter-
actions included and apply the symmeiry conditions of Section 2, we obtain (8) and oty =099
F0tyg for an ellipsoid of revolution (with x; as the revolution axis). On the other hand, phe-
nomenological considerations concerning the thermodyriamical behaviour of an ellipsoid.
uniformly magnetized in an external magnetic field lead to the model free energy (3) with
a;; proportional to the demagnetizing factors.

In the case of nonuniform magnetization, the assumption (2) is clearly no longer valid.
However, the results obtained in [3] show that in this case, too, second-order maguetic phase
trapsition can occur in the presence of an external magnetic field.

The author would like to thank Dr J. Klamut for his constant advice, and Dr W. J.
Zietek for useful discussions and his help in the preparation of the final manuseript.
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