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DEPENDENCE OF MAGNON RELAXATION ON DISLOCATION
DENSITY
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Ferromagnetics Laboratory, Institute of Physics of the Polish Academy of Sciences, Poznafh™*
(Received March 29, 1971)

The relaxation time for uniform magnons scattered on a system of parallel dislocation
lines with concordant Burgers vectors is calculated. A discussion for high and low concentration
of the dislocations shows the reciprocal relaxation time to be proportional, respectively, to the
first power and square of the dislocation density in the crystal.

1. Introduction

First, we have to define low and, respectively, high dislocation densities in our case.
By low density we understand cases when 1/K <€ d; here, K is the “mean” wave vector of
a magnon arising by scattering of a uniform mode on the dislocations, distant by d on the
average; the resulting magnon wavelength is much smaller than the mean distance between
dislocations. On the other hand, cases when 1/K > d will be understood to imply high dislo-
cation densities.

For low densities, results are in agreement with Ref. [1], i. e. 1/z ~ n (n — dislocation
density, 7 — relaxation time). For high densities, however, results differ from those of [1].
This is due to the circumstance that Baryakhtar had assumed the dimensions of dislo-
cation loops as proportional to the distance between the dislocations. With growing
density, the loops went over into point defects. In the present paper, however,
calculations will be performed for dislocation lines assumed to have dimensions inde-
pendent of the dislocation density in the crystal and large as compared to the wavelength
of non-uniform magnons (thus, L> 1/k, r> 1/k, with L —the length of a dislocation
line, r — the dislocation radius, and % — the magnon wave vector). The individual disloca-
tion loops at high dislocation density, in Baryakhtar’s paper, were “‘seen” by the
magnons as point defects; this led to the result 1/v ~ n~2/2, The result proposed, here for
high density, namely 1/7 ~ n2, is derived on the assumption of parallel, large-sized disloca-
tion lines, with uniformly directed Burgers vectors.
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For dislocation dipoles (parallel dislocation lines with anti-parallel Burgers vectors),
the contributions from the different dislocations cancel out (¢f. Ref. [3]). This complicates
the 1/t vs. n dependence for real crystals.

2. Relaxation time of scattering of the uniform mode into a spectrum of non-uniform
magnons

We restrict our present considerations to crystals of cubic symmetry; the crystallo-
graphical axes are assumed to coincide with the ellipsoidal axes of the specimen. Magnon-
-dislocation coupling is described by a magneto-elastic energy. The relaxation time 7 of
uniform magnons (k = 0) scatiered by the dislocations into magnons with k # 0 (taking
two-magnon processes into account only) is given by the expression [2]:

1z = 2nfh) 3] 1W[*d(e0 24, 1)
EZ0 ,
where the matrix element W, is equal:
W, = By M) [ dir {6, (1) + 2, (1) —2e,, (1)} exp ik - 7) @
&, is the energy of a non-uniform magnon (k # 0):
&, = 2up{(H —4nN M+ ak?) (H—AnN,M+ak?+47M sin® 0,)}, 3)
whereas the energy g, of the uniform magnon (k= 0) is:
e0 = 2u{[H+Aex( N, —N) M [H-+4ex( N, —N) MI}"; @

other notationis are: M — saturation magnetization, ¥ — volume of the specimen, B; —
magneto-elastic coupling constant, « — exchange parameter, @, — azimuth angle of the
wave vector k&, N, N,, N, — demagnetisation factors, H — external magnetic field applied
along the z-axis.

The strain tensor e () is the sum of the strain tensors of all dislocations in the crystal:

e(r) = gj ei(R, 7). (5)

The strain field of the R-th dislocation, whose axis makes an angle ¢ with its Burgers vector
is given by:

e (R, r) = ;™" cos 1/)+ef}ige sin v, 6)

where ef*" and e?fge are the strain fields of pure-screw and pure-edge dislocations with
the same axis. The vector R labelling the dislocation connects its centre and the origin of

the co-ordinate axes «, 7y, z.

3. Matriz element of scattering of uniform magnons by the dislocation system

Caleulations will be performed for a system of parallel dislocation lines with uniformly
directed Burgers vectors. The lines subtend the angle ¢ with the z-axis, the Burgers vector
of the pure-edge dislocation being parallel to the x-axis. It is of advantage to introduce co-
ordinate systems (25, 4%, 2%) attached to the dislocations, with the origin at the centre of the
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R-th dislocation, the xf-axis coinciding with the dislocation line, and the xf-axis parallel
to x. The strain tensor field of the R-th dislocation. is non-zero for |xf| < L2, (xF)2+
+(o5)? <12,

By Egs (2) and (5), and with regard to the preceding considerations, the matrix ele-
ment W, for scattering of uniform magnons by a system of parallel dislocations with identic-

ally directed Burgers vectors, takes the form:

Wy, = QugBy/MV) 3 exp (il - R) [ dryexp (ik - vy) X
R Vg

x{en (B, rg) +(1 =3 sin® J) epy(B, ) +(1 =3 cos? ) egy (R, 1) —

—3 sin 20 ey (R, 7)), (7)
where integration extends over the volume of the cylinder inside which the strain tensor
field of R-th dislocation is nmon-vanishing and #, =r —R.

For the R-th pure screw and, respectively, edge dislocation, the tensor components
are [4]:

ety = —(bf4m) (1/o) sin @,

S = (bjdn) (1fo) cos . ®

estse — —[bjda(l —)] (Lg) sin ¢ (cos? p—sin® @) —(f2) (1) sin g,

e5* = [b4a(l —)] (1/g) sin g (3 cos®p +sing) —(b/27) (1/o) sin g,

e1s" = [bfAn(1-2)] (1) cos @ (cos®p —sin%p), ©
where g, @ are polar coordinates (p cos ¢ = a%, ¢ sin ¢ = xE), v is Poisson’s constant, and

b —the length of the Burgers vector. All the other tensor components vanish.
On integration, we obtain W, in the form:

Wy, = (W™ cos p+ W5 sin y) ) exp (ik - R). (10)
R
W3 and We%° are matrix elements for scatterings of the uniform mode by a single, pure
screw or edge dislocation (¢f. Ref. [2]):
W™ = i(6ugbB,[MV) sin 20 cos @ sin (k3L/2) {1 —Jy(rke)} (ks ofes), (1)
Wsise = —i[dugbB,[MV(1 —)] sin (k,L[2) (ko) sin @ X

X{(L =2y +3v sin? ¥ —3 sin?) cos? @) [1 —J(rke)] +

+(2/3) sin?d (4 cos?® —1) Jo(ko)}s (12)

ky, k3, @ are cylindrical co-ordinates of the wave vector k (ky cos @ = k,, kg sin @ = ky;
the %y, ky, k3 — components of the wave vector lie in the directions of the axes &%, x&, aX).

4. Relaxation time of the uniform mode scattered on a system of parallel dislocations

By Eqgs (1) and (10), the relaxation time is:
Lw = @afh) 2 1W cos -+ Wi siny|? 7 > cos {k - (R—R')} 6(g,—5).  (13)
k R’

R
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We replace the sum ) (...) by the integral (¥]87%) f dk(...), and approximate the factor
%

{sin (k3 L/2)[k;}2 in | W5 cos y+ W5 sin y|2 by (7/2) L(ky) (cf- Ref. [2]). On integration,

the expression for the relaxation time becomes:

2n

1o = upb2BiL [ O(u?) ]
1672 h{1—»)2 M3V y u2)/14-y2(1—sin2 § sin? )2

0

X{3(1 —) sin 28 cos D cos y [1 —Jy(Aw)] —3 sin? & sin 3D sin p Jy(lw) —

X

—2(1 —2y+ 3y sin® ¥ —3 sin® & cos? @) sin D sin pll —J(Au)]}2 X
X% 3 cos {VonMjo ulBy—Ryfcos (D —0)}, (14)
where
u = {sin® 9 sin® G- [1/y2+ (1 —sin? & sin? B)2]% —N, —[(N, —N,)2—1/32%}%,  (15)
1 = 2] (sof2115), (16)
A = r(2nM]e)*. (17
R, is the projection if R on the plane perpendicular to the dislocation lines, £ is the angle

between the x-axis and the vector (Ry—R,), and O(x) is the step function equal to unity
for x >0 and to zero for x < 0.

For our further discussion, we transform equation (14) by resorting to the mean value
theorem of integral calculus

1= (1) 33 3] cos (KRG ~Ry) cos (@0, (18)

where 7 is the relaxation time for scattering of the uniform mode, by a single dislocation
line, into a specirum of non-uniform magnons (see [2]):

2n

_ usb®BiL i O(u?)
Yo = 1672k (1—v)2MPV cl u? /14 y2(1—sin? & sin? )2

¢
X{3(1 —») sin2d cos D cos p [1 —Jo(Au)] —3 sin? & sin 3D sin p Jo(Au) —
—2(1 —2y+3y sin2 & —3 sin? & cos? @) sin D sin y [1 —J(Au)]}?, (19)

where we understand K = (2nM]e)”u(® = P,) as the mean wave vector of a magnon
arising by scattering of the uniform mode on the dislocations; @, is a parameter fulfilling
the condition 0 < @, < 7.

We now proceed to consider two particular cases:

(?) Low dislocation density, d > l/K.‘ The dislocations are assumed to be uniformly
distributed throughout the crystal. With regard to the identity

exp {iKd cos (P, —{)} = % i exp {in (P —0)} J(Kd) (20)

p=—co
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and the asymptotic behaviour of Bessel’s functions of large argument (Kd > 1), we obtain
in a first approximation for low concentrations of dislocations in the crystal:

> ; cos {K|Ry—R;|cos (Py—L{)} ~ N (1)
o &

N denotes the number of dislocation lines in the crystal. From the preceding and the shape
of 17y, we draw the conclusion: 1/t = (1/t) N ~ n. In this instance each dislocation scat-
ters magnons independenily (cf. [2]).

(ii) High dislocation density in the specimen, d < 1[K. We replace the sum X(...)
by the integral (1/S) [ [dxdy (...) (this is not permitted for low densities); .S is the area per
dislocation line of the plane perpendicular to the lines;

Z Z cos {K|Ry—Ry|cos (Dy—{)}~
R F

~ n?f [dxdy [ [dx'dy’ cos {K(x—2') cos @y-+K(y —y') sin Dy} (22)

For the present configuration of the dislocations, .S is expressed in terms of the dislocation
density as follows: 1/S = n. We perform integration for the case of circular cross-section
of the lines, leading to the simplest result:

; ; cos {K|Ry—Ry|cos (Py—0)} = 4n2n2L3J3(KLy)| K2 (23)

Lg is a parameter equal to the radius of the specimen. From Eqgs (18) and (23), we obtain
the result 1/t ~ n? —a conclusion meaningful, provided that the mean wave vector K
of magnons arising by the scattering of the uniform mode on dislocations does not vary
strongly with the dislocation density through the parameter @,. Such a simple result may
be obtained only for the dislocation configuration which we have discussed. For the disloca-
tion configuration existing in real crystals we should take into account: dislocation dipoles
and nodes, and the magnon scaitering cross-section dependence on dislocation dimensions.
The author thanks Dr. J. Morkowski for discussions and critical remarks.
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