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In the present work the method of retarded Green functions is used. The system of self-
consistent equation for radial distribution functions and excitation spectrum of two-component
mixture is found. The simple approximation we use is the one without damping of elementary
excitations. Here for two-component liquid, the two branches of elementary excitation spectrum
are obtained. For large wave vector &, they tend to the excitation energy of each compound itself.
The energy spectrum is described by an expression slightly modified as compared to the expression
of Parlifiski or earlier expression of Hubbard-Beeby or Prezzhev. The properties of quantum
and classical liquids are described qualitatively. For example the two branches of self energy
excitation spectrum, for the mixture of Neon isotopes, are computed with the aid of an experimen-
tally measured radial distribution function.

1. The basic problem of many body theory is to calculate properties of gases, liquids
and solids from intermolecular potential energy. We shall consider the homogeneous and
isotropic systems in thermal equilibrium. Spinless particles with pair intermolecular poten-
tial are assumed. Hence the many particles potential is neglected. If the phase transitions
are not taken into account we may apply a method which is rather useful for one phase only.
Here the system is described with the aid of the density operators in the formalism of retard-
ed Green function. This method permits the spectrum of excitation energy and structure
factors to be found. The method is applicable for dense gases. Application to one component
classical quantum liquids gives satisfactory results as well. OQur approximation consists in the
decoupling of Green functions based on the comparison of first non zero moments of spectral
densities.

The results for one component liquids were obtained by Parlinski (1970 a). The cor-
rect self-energy excitation spectrum for argon and helium encourages one to apply a similar
method to gaseous and liquid two-component mixtures. The generalization to more nume-
rous component mixtures is quite simple.
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2. Let us consider a homogeneous system of Ny particles, each of mass M;, and N,
particles of mass M, in the volume V. Densities of two components are g,, o, respectively,
where g = NJ/V. Assume that the particle interaction potential can be described as a sum
of pair potentials:

@,,(r) for particles of first kind

@oo(¥) for particles of second kind

- @,5(*) between particles of first and second kind.
The Hamiltonian of the system has the following form:

H= Hl +H2 +H12
N,
H, = ﬂzl P ?1)1/2M1 ‘|‘% Zl: §l¢11(R(1.)1*R(1)m)

N,
H, = I/Zl P (22)1/ 2M,+3% ; él(ﬁzz(R(z)z —R,,)

Hm = IZ ¢12(R(1)z _R(2)m) = IZ @21(R(1)1—R(2)m). (1)
Assume also that pair potentials have Fourier transforms
0(g) = = [ v exp (—igm @
14
D) = 2] D(q) exp (iqr). ®3)
a
We may also wrile:
2 exp (igr) = V(q) (4
q
[ @3 exp (k1) = Ve (5)

Our Hamiltonian does not contain external fields. Thus the coordinate system can be chosen
in such a way that the centre-of-mass of the system is stationary i. e. 37 P, =0, (a) is 1 or 2
and shows the type of the [-th particle. o

If we take into account the isotropy of system, we see that in the sense of the average over
a cononical ensemble we have:

<Zl] Payy = <ZI:P o = 0. (6)
The operators B and P follow commutation relations

[R?a)l; P(ﬂb)m] . ialmauﬁa(a),(b); (@,0) =12 af=uxyz M

The chosen units system is this: & =% = 1. Here k is Boltzmann’s constant and % is Planck’s
constant (h = h/2m). Introduce the collective coordinates

g, 1) = ; exp (kR ()5 (@) = 1,2
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which are Fourier transforms of particle density operators Y3 6(r =R ,(?)). The Hamiltonian
7

may be written in collective coordinates.
Hoo= D Pf2M,+3 3 Pul@) @) N3 () = 1,2
q

Hyp =% ; D1 @){n(@)n2(—q) +12(@) 11 (— @)} ©®)
3. Now we will specify the radial distribution functions. They are defined as:

gulr) = VNy 2<Zz: 2#15(’” —Ry+R),)>

8ao(r) = VN7 X3, > o(r ~Ry+Ry),)>

7 mtl

812(r) = gu(r) = V(NlNz)_1<IZ: o(r —R,y+R,)> )

The value olgy,(r —r')d®rd” is the probability that one particle of type 1 will be found
at ¢ in d° and another of the same type in d®r’ at 7". The value 02g,(F —#')d3rd® has the °
same meaning but for particles of the second type. The value 0,0,81,(1 —7)d®rd3r" is the
probability for one particle of type 1 and other particle of type 2.

Radial distribution functions fulfill relations:

for # — 0, values gy, gop and gy, — 0
this region is called the hard core radius
for ¥ — oo, values g5, gos and gy, — 1.

If there is no correlation in the mixture then gy, = gy5 = g1, = 1. Let us perform the Fourier
transform of radial distribution functions. Using the density-density correlation function:

(e, tng(—k, 0)> = <l§ {exp ikR(a)l(t)}{GXP kR, (0)}> (10
we have:
() (—q)>—Ny = @V [ gn(r) exp (—ign)d®r;  ny(q) = ny(q. 0)
o @no( —q)> =Ny = 03V [ s(0) exp (—igqr)dor
Uy @ —@)> = 0105V [ g15(0) exp (—iqr)dor. an
In connection with relations (11) and (4) we may define the structure factors:
Sk = Ny "ny(Re)ny( —) —N70,, 0> = 140, [ d¥r{gyy (@) —1} exp (—ifer)
Spa(l) = Ny K ny(l)nao( —F) N8y 0> = 1+0, [ d¥r{gy(r) —1} exp (—iker)
Sia(e) = Sy (k) = {NNo}™ <y (R)ng( —I) — Ny Ny, 0>
= 0102 [ d¥r{gy,(r) —1} exp (—ikr). (12)

Of course if there is no correlation, for example in dilute gases then Sp=S5,p=1

and S;, = 0.
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4. Using the method of retarded Green functions:
Gk, 1) = <<n(a)(’€7 t)m(b)(*k)» = —iO(t){nyk, t); ngy(—k)]> (13)

the equation of motion for G, can be obtained by taking the second time-derivatives. In
order to write clearly this equation we must specify the following functions:

T(a)(k7 t) = {2M }* ; {hP (a)l(t); {EP (1) ; exp PhR (1) 113+ (14)

where { }. denotes an anticommutator

Vi, ty = — @M1 Y, Pyy(q)kqin,(k-+q, )n(—q. t) —ny(q, )ny(k —q. 1)}
Viglle, 1) = —(@2My~ X} @12(@1)"@‘(”1:(16 +4, )ns(—q; 1) —ny(q, )ny (ke —q, 1)} (15)

We must also specify functions V, and. V. They may be written by replacement in (15)
of 1 by 2 and of 2 by 1." Now we have:

(i %) Gulle, t) = S(t) 2Ny My +(( Ty (R, 1) + Vi (e, ) + Via(K, 1) [ny(—K) D)

o d )\ ; .
(z %> Grolle, t) = ((Ty(le, 1) + V(B 0) -+ Vil £) [ng(—K))) ete. (16)
In order to solve equations (16) we demand the following proportionality:
[<< Ty + Vi + Vaalma( —k)>>; KT+ Vi + Vil 'k)>>]
LT+ Vag+ Vg (—K) >3 KT+ Voo +Vanlno( =)D

~ [‘Q%l(k); le(k)j « [G113 G12] .
Qh(Fe); 5,(F) G5 Gag (17)
The proportionality coefficients, functions £ are found by the comparison of first non zero

rmioments at both sides of equation (17). The n-th moment g, of operator Og (in the Schrodin-
ger picture) is defined as:

(exp (iH)Os exp (—iHr)Os) =Y (Z?" [H..[H0s]..105) = Y| (‘n‘)‘ e (18)

nl0 nl0

For example the first moment of Gy is —k2N; /My, and of Gy, is 0. With the aid of relations
(6) we obtain:

Q% (k) = {2k2M,} 2+ <T\f— }’TJ (T\I;) >— ﬁz%ﬂ{}; D,,(q)(kq)?X

X (2 (@) ny(—g) —ny (B +q) ny(—k—q)—ny(k—@ny(—k+q))+
+ Zq: Do(q) (Feq) (@) o — 1) -Fnz(q)nl(—q»}

) = gy 7 2 Pul@) DX rala Kl =)+l (k=) (19
q

ete.
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3 EP )\
We need the other approximation to calculate < Z ( ()l) > It follows readily
l 1

N, M
that:
3 (EPa\?\ a2 , )
T1<Z (W) = didi Z {ER ()RR ay(t') e (20)
Using the Fourier transform in e-space and the spectral theorem we obtain:
3 kPgy 2> -3 f 0% Im d (0 -+id)
= = == 21
N, <Z M, ) Nw exp @91 % )
where ¢ is the temperature and
du(t) = ZI: <<kR(1)z(t)lkR(1)z(O)>>§ din(w) = f dyy(t) exp (—itw)dt. g22)

We shall calculate ““d” using the same approximation as Parlifiski (1970a):

. d\?
(7' E) dyy(k, t) ~ O(t)kAN, /M, "‘a%l)(k)dn(k» t); dyy(k, t) = dyy(2)

( i %)2%2(16, t) & 8(e)le2 N,y My + oy (k) dyy(ke, 1)
where
dop(t) = dgy(ke, 1) = 2 SRR 5, () [ER 5),(0) > > (23)
The value « is obtained by the following comparison of the first moments: |
2 ac?l)(k)<[H, kR(l),][kR(l)l> = IZ <HH; [[ER,; HI; HIER ). (24)
Converting (24) into 7-space:
(k) = (Mo, [ g1,(r)(kev,) 2Py, (r)d%r + 0, [ &u@)(kv,)20@)dr;
(k) = (MK o, [ 251 (ley,) 2 Pog()dPr -+, [ &) Eev,)2 Gy (25)

Green functions ““d” are:
d,(k, w) = kzNa/{MaX(wz——oc(za)(k))} a=1,2. (26)

The expressions, we have looked for, are:

3 (¥ (#Pey 2) - kg am(k) | _ K2 7
N, <Z < M, ) = 3L, 3ae)(k) cth % = EEM{“' (27)
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Tt is easily seen that for & = oo we get: Ky = Ky = ¢ For ® —0, Ky = 0.5Xa;y(k) and
K; = 0.5 X05(k). To write clearly our expressions we ought to convert” (19) and (20)
in #-space. Knowing that: ‘

—V % (kq)*D(g) = [ d*r exp (—iqr)(kv,)> () (28)
and using (2), (4), (11) we obtain our expressions in shorter form:

K+ k2 01
on T o %t e

b e [ suaaa

Oh(k) = | gu®){1— cos kr}[kV.,)2®;,(r)dr+

—0, |
) = ap | ) cos (k) (V. Do)y = L X Ohl)
- ‘

01V
2 _l—kzl ' »_k? Q2 o )
' 922(":) = 4M22 + M. 6I<2+ W g22(1”){1——cos k”'} (kvr)z(ng(’r)ds’r—l—
2 2
+ i%@ f 81a) (RV)2 Py (r)dPr, (29)

: g\
If we Fourier transform G, into w-space then (i ~d—) — w? and (16) may be written in
t

following form:

' 21\
w?—Q%(k); —Qh(Fk) Gk, w); Gy, ®) E]‘—é\-l ;0
N R B ' k2N, (30)
— Q%K) ; w?—25(k) Gy (I, 0); Gas(ke, @) 0 ;-M—z
- 2
The self-energy of the system can be obtained by solving the equation:
w2 —0%; —0% 1;00
det {[—Qiz;wzﬂﬂiz] —A 0:1 =0
and from the condition Z; X4, = 0.
Finally we have:
03() = B2 () -+ Q%) F Y {03 () — Q1)) +405 ()25, (R)} (31)

We see that here two solutions exist — we call them w* and &~ in correspondence to the
choice of the sign in the expression (31). Conventionally we will call one branch of excitation
spectrum “‘acoustic” and other “optical”. From the analysis of (31) we can see that for
k — o the potential part of (31) is negligible, only the kinetic part is large. Both branches
at large K are almost equal O, or 02, For illustration (31) a computation is given for the
mixture of 9%, 22Ne and 91%, 2°Ne (see Figs 1 and 2). This composition of Neon.isotopes
is almost like the composition of natural existing Neon. The only difference is that: in natural

Neon 0.2579%, admixture of the #!Ne isotope is present.
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Experiinental data for computations are taken from the article of Jong (1967 a). The
potential is (6,12):
Dy = Py = Dy = 4e X (212 —x% here x = ofr

e =35.8°K, 6 = 2.75 A (Rowlison’s data).
The radial distribution function is g(¥) = {VJ(N;+Np)2}K D} o(r —R+Ry,)>. Tt

Lm,a,b

is certainly a rather good assumption that g = gy, = gy = &y The proof is that the sole not
very large difference between the atoms of 22Ne and 20Ne, is their mass. Admixture of

2 2
w wi
571 [}
2.

21

V=4s2°K
/ 0, +0,=2x 107287

V=331 s
Q) +0,=3.251x10"4

b by v e by v |

Y ST Y S W Y S =
7 2 3 sikixG 1 2 3 s=/k/~6
Fig. 1 ’ Fig. 2

Fig. 1 and Fig. 2. Self-energy excitation spectrum of the mixture of 9% *Ne and 919, *Ne

0.2579, of 2!Ne seems not to be important. We will use, experimentally measured g(¥) for
our computations (Strirpe and Tomson’s datd). For each k there exist two vibrations,
one acoustic and other “‘optical” in disagreement with the results of Prezzhev (1970 a)
who used the quasi-crystalline approximation. In the case of our results the energy of the
acoustic branch is zero for e = 0. Next with k& the energy increases. Very small oscillations
appear on both curves. Their period is smaller than the value [k| = 270,

5. Equation (30) helps us to calculate the structure factors. The first step is to obtain
the G, functions.

Gralle, ) = K2Ny{o? —Q2,(F)} x {M, X D(k)}
Conlle, ©) = K2Ny{w? — 0% (Fe)} x {M, x D(Je) -
Gralk, ©0) = Gy (e, @) = KN, Q% () (M, x D(R)}* (33)
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where
D(k) = {0? — Q8 (k) Ho? — Q5,(k)} —25,(k) 25,(K).

The spectral theorem gives the result we need. For example:

1 Im Gy (k, w+19)
NySp(k) =~ — f oxp (@)1 dw; & — 0%, (34)
Finally:
22,02 A(E) [cth (0¥/29) | cth (0 /219}
Sualk) = 1;—7‘21 {w+(w __O 1) i (w2 —0% (35
 Q0%AK) [cth (@4/20) | cth (@_[26) A
Sualk) = M, {w+(w 2—0%) o (0 —932} (30
= 2255 cth (@4/28)  cth (@_[29) .
Sull) = Sk = "zl gy (RGP0 REPOL
where

A(k) = 0.5 xK{(QF —05)? +405,Q5}'".

It is easy to see from (35)—(37) that if k — oo and e, — £y, then only the first term in (35)
is large. Function “‘cth” tends to 1, and having w_ from (31) we can prove that S;; — 1.
The same follows in the case of S,y. However S;, tends to zero if & — co. A remark should
be made that there is no agreement between S(%) in (34)—(37) and experiment (but only
for & not too large). For large k there is good agreement. The computations for one component
liquids by Parlifiski (1970 a) showed that the computed value of S(k) is smaller than the
experiment.

The reason is the used approximation of the decoupling of Green functions. Taking
into account the life time of excitation one may improve the theoretical results.

6. It is possible to get the equation of state.

From the condition:
. d
(z —%)<ZP(‘Z)ZR(¢),> =0; a=1,2
: lLa

we have:

<Z [Poy; H] ><R(a)l> -+ < Z F(a)lR(a)l> <Z %‘ﬂ> 0 (38)

over surface

the second term is equal —3ipV, where ‘p”” is the pressure. Using the commutation relation
we obtain:

V=3, {<2 Y Ph2My— Y Y Pul@)d a—fl-<na(q)nb<—q>>}- (39)
q

a=12 7 p=12
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This is the equation of state. Converting into #-space we obtain a neater expression:
p = 0:K;+0,Ky—ifol [ Prgy(n) (V) Py (¥) +
+ 08 f AP gaa(1) (V) Dya(¥) +20,0, f d*rgrp(rVa) D7) }. (40)

7. Conclusion. The method of approximation — the decoupling of Green functions
leads to a self-consistent equations for structure factors and self-energy excitation spectrum.
Two branches of excitation spectrum are obtained. They suggest that for each value of k
there are two vibrations in the mixture. The situation is almost identical to that in crystals
which contain two atoms in the elementary cell, of course without taking into account the
transversal phonons in crystals. In the case of the mixture for k — oo potential effects are
small. Expressions for structure factors approach the correct value for k — oo but are
doubtfull for not too large k. This is the reason why no large profit from the self-consistent
equations systems may be obtained. One must hence work with experimental data.

In conclusion the author expresses his gratitude to Professor J. A. Janik and Docent Dr
A. Fulinski for reading the manuseript and to Dr K. P.zlificki for many discussion and help-
ful suggestions.
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