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ON THE REAL SPIN WAVE THEORY OF FERROMAGNETISM.
CORRECTIONS TO THE MAGNETIZATION

By J. SzAnieck:

Tustitute of Physics of the Polish Academy of Sciences, Ferromagnetics Laboratory, Poznan*
(Received December 18, 1970)

A way of deriving corrections to.the free energy and magnetization of a cubic Heisenberg
ferromagnet due to kinematical and dynamical interactions of real spin waves is shown. The
results obtajned are valid within the entire range of temperatures from absolute zero up to the
Curie point.

The thermodynamical perturbation calculus and diagrammatical representation of pertur-
batjon terms are applied throughout this investigation.

1. Introduction

In an earlier paper by this author (1970b) there has been calculated the contribution
to the sum-over-states and thereupon to the free energy of a cubic Heisenberg ferromagnet
from one type-of dynamical interaction graphs, namely from those without energy denomina-
tors. We were thus able to renormalize the spin wave energy. A .matter of course, this
renormalization deviated from the one obiained by the Green function, as both methods
are-quite different.

We have called the approach that we apply hereinafter the real spin wave theory of
ferromagnetism. It is well known that the usual spin wave theory works efficiently at low
temperatures, i.e. for spin waves very long compared with the lattice constant. For this
case, magnons are well defined quasi-particles and their life-times prove to be almost infinite.
Things change when the temperature increases. Near the Curie point magnons are no longer
quasi-particles and their life-times become finite. Computation of them requires resorting
to the Green function method and calculating the mass operator, what is by no means easy.

Nevertheless, we assume that the spin wave theory holds for temperatures up to the
Curie point. Of course, we have to stipulate that ‘‘bare”, i.e. free, magnons must feel their
dynamical and kinematical interactions, that is, they have to become “‘dressed”. Along these
lines we shall get some new corrections to the sum-over-states and thereupon to the free

energy and magnetization.
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The procedure followed here, although exact, is very tedious, so that at present we
can only solve this problem in its theoretical aspect. Numerical results including feasible
computer calculations will appear in a subsequent paper.

2. Graphs due to dynamical interaction

The ‘theory proposed here is a continuation of the investigation carried out in our
previous paper (1970b), denoted henceforth by I; the reader is referred thereto for necessary
details.

Dyson’s Hamiltonian of a cubic Heisenberg ferromagnet (1956), expressed in modes
of ideal spin waves, has the form

H = Eg+Hg+H ), (2.1)
Ey= —LSN— 3INS%p,, (2.2)
=0 (L+e)a;a,, (2.3)
7
’ &= JS(VO—'J’A)a 3 (2.4)
= D expil- o, (2.5)
F;

%1': — %JN_I Z Figa:}ga:_zaeag, (26)

Ago
1“3,6 = Vi tViro—oe Vito Yimer @7
[ags @6l = Oy g (2.8)

where L is the magnetic field sirength multiplied by Bohr’s magneton and Lande’s factor, S
is the atomic spin quantum number, N is the number of lattice points, J is the exchange
integral between nearest neighbours, 4 is the reciprocal lattice vector, and g, is spin wave
energy. Summation over & covers all nearest neighbours and a}, @, stand for creation and
anmhﬂatmn “operators of ideal magnons.

" Recurring to Eqs (2.5-(2.7), (14.8)-(14.14), (14.18), (1B.4), (IB. 5) and (IB.7), and
restrlctmg computation to graphs containing terms ~Djp n=1,2,3, ..., where D,y 18
the energy denominator, we get the followlng diagrams:

22
t? 1 272 A—-2 A A -1
— 3 ﬂ] N- J,Z Fg,crc+l,g—lDlgc X
06
5'1 .
¢ (o s3-+ 1) (g L)igTo— T 70—s(e + D+ D), (29)

B = (kT), . (2.10)
i ' Do D, = s, s 2.11)
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3/2%

é 2J3y0m1N—2 Z Fgo’ _Z-’g_f_j_,e 1 ]_ xa)x

x{ﬁ2 }.ea a n +1) u+2+1)(ng l+]') (n +1)no-+lng l]+
+ﬁD};u[(ng+1)(na'+1)no+ln9—l_ngna(na+}.+1)(ng—z+1)]}7 (212)

© 4127

%
T =} J4yimym,N—2 % Too+ Taso-s(l—2) X
Ls
4

xwﬂmﬁaﬁ+hﬁohw+hﬁgﬁ4%4%+D%H%4H—
+/32ng6[(’7' +1)(n +1)n6+lng i o(;l'o'-{—l_%_l)(;ig—l_l—l)]}’ (2.13)

4127

<g3 = TN 2 Too - Tase—s(1—%0)2x
oo

X{ﬁ‘"’ngan (6 +1)@n, + D) [1g(10g.4 2+ 1) (1 3+ 1) — (m,+ 1)1y, 7,5+
+2/32Dlgun’o’(n’ +1)[(n +1)na+lnq—l—n’g(no'+l+1)(ng—l+1)]
+ 2033 (B 4+ D)3+ Dty =Ty 47 a(y+ D, + DI}, (2.14)

412°

'C'4

€ =} Jiyl ?N‘2§ Tooltsei(1—xg)(1—xs) X
0o

(T3

f,

X {B2Dion, (”' +1)n,(n, +1)[(nd+1+1)(ng i th— na+zng A+
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+2ﬁ2Dl_937_7‘0'(E’6 + 1) [(ﬁg + 1);Lo'+lﬁg——ﬂ— ﬁg(ﬁd—i-l -+ 1)(77’9-,1 -+ 1)] -+

+2BD5: 31 (1 3+ 1) (g s+ Dgn, g a1y s + 1)+ 1)1 (2.15)
4127
T
T3 = 1 Jiy2m2N-2 ; T, Tty ae a(1=xg-2)(1—2g) X
T, ¢
t1

X{B3Dputty (g D11y + D (5 2+ D)7ty — 1 4 (me -+ 1)]
+282D520 (1, + 1)y 4 2+ 1) (g s Dt 47056+ 1)] +
+2ﬁDl—gz31[r_Lu+Zr_Le——l(ﬁg + 1)(;1’17 -+ 1) - (;7’0'-{—1 + 1) (ﬁg—l + 1) ﬁgﬁa]} (216)

and so forth. For the derivation of these diagrams see Appendix A. The numbers above
graphs indicate their multiplicity. As easily seen, all these graphs can be summed to yield

2
Gy = _[3]1 g A7 Z T3I%s 1,0-iDis
o Ago g
8 (1 5 Y)
X [(Fioa+1) (Fro—a+ 1) flofto— Mo afle— (i + 1) (Mo +- 1), 2.17)
with
1 )1
. {exp 8 [L%—ez (1— = Y)]—l} . (14.25)
1 ~

= N1 — ) g = . 1.4.26
Y=N Z_“ (1—)s = gy ‘; s (L.4.26)

The genuineness of (2.17) becomes evident if we take into account that

Ny = Z exp {— ﬁn [L—}—SZ (1— %Y)]} = 75+ Tl‘—x(l——xa)ﬁz (ﬁa-{—l)Y—{—

n=1

b o 2l )@ ) VO, ¥ =BT (2.18)
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whence
BN Y ThoT? 1o iDrs (o 1+ 1) (Fom i+ 1) Agfio— o a7t (o + 1) (o +1)]
Ago
=ipEN2 Y Dol 51 30-Drgox
Qo

X {34+ 1) (g —a+ Dnghty =7, 4105y +1) (5 +1)] +
+4xm1(1 %) 115 (1,+ 1) [ (s F D (s +1)— (n, +1)n, T ATt 2] +
+4'x2m1m2(1_xo')ﬁa(ﬁa+1)[nq(na+ﬂ,+1)(ng—~l+1)_(ng_I—]')na—l-).n’g-—-l] +
- 22m (L2 oy + D)@+ D)7 G5+ Dy 31— (g + Dt ] +
+2x2my(1—x,)(1—x,)n oMo D)1y +D)[(ng 4 1 + D) (1 + 1)1, 31,1+
+HAa?mi(1—2,_ ) (1= )1, (g3 D)1y, + DI 1+ D Be— 11514 (m6+ )] +
0@} (2.19)

We then have the sum of first parts of graphs (2.9)~(2.16). Second parts ~Dj.> result from
the expression

~3BI o YN 2 I g i (1 —) Do
Q0

X [(7564-1 +1) (ﬁe—l +1) ﬁeﬁa“‘ﬁd+lﬁe—l(’~’e +1) (;La +1)] (2-20)

which with the help of the factor (1—=x,) can be transformed to the term "’nga Quite
similarly,

~HBTRYEAN 2 33 Iy s l{(1 =)+ (=) (1—0) —
oled

—2(1 50— ) (L~ )| Digol (-4 + 1) (o 2+ ) Figfio— oy sfig—a(Fg + V(i + )] (2.21)

reduces to the function ~D;g§. Thus, we obtain (2.17).

Let us call (2.9) the basic graph and diagrams (2.12)~(2.16) plus similar ones in higher
orders — its branch. Ii is clear that such a branch arises due to the proliferation of the basic
graph. In mathematical terms this means that renormalization of the spin wave energy has
to occur, i.e. ‘

&1—>¢; (1— % Y) . (2.22)
We have thus procuréd the general rule for deriving diagrams contributing to the sum-
-over-states. Namely, we only want to find basic graphs and by renormalization of the
energy to render appropriate corrections to them at all temperatures between absolute zero
and the Curie point.
Assuming that
(NS > 7, (2.23)
7
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and restricting computation to terms proportional to the double product of renormalized
spin wave population numbers, we can obtain all basic graphs due to the dynamical
interaction. They are:

Tk
e gl PN S
) (1-— 5 Y), 00 Audgy... e
X P aih  Fotth, Tt T X
X (Eg42, 81, — 80— 80) s 2, €1, —8—E) X
€ T X (Bt ot 1o o) HEo i p € €8N X
“ X g B =1,2,3, ..., . (2.24)
37

Graphs (2.24) have been derived in the paper (1962a) by this author. The renormalized
diagram (2.17) proves to be a special case of (2.24) for k = 1.

As the graphs G, do not easily submit to further calculations, we leave their analysis
to a subsequent paper.

3. Graphs due to kinematical interaction

In the previous paper (1970b) we established a set of kinematical operators which
fascilitate finding arbitrary average thermodynamical quantities of the spin wave system
without always having to remember that spin deviations are limited to 25+1 values. Such
kinematical operators were defined by

Tr (6P () yp0n = Tr (e P#TKy), (3.1)

with € being an arbitrary operator quantity. The trace on the left-hand side of (3.1) admits
the physical states only, whereas on the right-hand side of (3.1) all possible states may con-
tribute. Thus, K has to be the operator projecting the Hilbert space of state vectors on the
subspace of physical states. Just as every projection operator, it is bound to satisfy the relation

K2 =K. (3.2)
Let us examine the matrix elements of K. Recurring to Eqs (IA.10), (IA.13) and (IA.16),
we get

Tr [eP#(1—Kg)]egpog = 0 = Tr [e P (1—K) K] (3.3)

We suppose the Hamiltonian to be Hermitian, what can be achieved by using the Holstein-
Primakoff (1940) relations between the spin components and the oscillatory operators, whence

H|m) = E,,|m) (34)
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and

Tr [e P# K5(1—Kg)]) = D (mle P*Kg(1—K)|m)

m

== Z e_ﬁEm(I%S)m,n[(Sm,n_ (Ks)n,m] = O (35)

Since according to (IA.li), (IA.14), (IA.15) etec. Ks proves to have diagonal matrix elements
only, :
(K1~ (Kg)yp] = 0 (3.6)

for every m and S. We finally obtain

Ky, — 1 if m € physical states,
S/msm 1 0 otherwise, . (3.7

g.ed.

Let us now proceed to a derivation of basic kinematical graphs. As in the case of diagrams
due to dynamical interaction, we only allow for graphs proportional to N7, This approxi-
mation just necessitates the use of the first term of the operator K, —1, i.e.

Ky—1=—3 2 (@)%af+... = —3N"* DX Supvoroaiatagas+..., (IA1L)
f

Hveo

as the remaining ones denoted by dots contribute as ~ ﬁzﬁ(ﬁa and in the form of higher
order products. The same refers to Ky, S =1, 3/2, 2. etc. We then have to deal with the
spin S = 1/2 only.

Rewriting the expression for kinematical graphs from our earlier paper (1970b)

B 8
Cu(1/2) =% f dr, f dr,... f del TIH f(x)H1(Ty). .. 1(T) (K, — D] (3.8)
0 0 0

and inserting (IA.11) in (3.8), we obtain

n+1
Callj2) = =N Y Sutnato f drye f dry ... f drn(Plai(0)ai(0) X

©veo
X ao(0)ac(0)H# () H 1(7y) ... 1(T) ). _ (3.9
We interchanged the order of operators in (3.9), what under the sign of Wick’s (1950) ordering

symbol is permissible.
The lowest order basic graph is now

2
0 8 = —IN-1 X Spmero{ T1(a(0)ad (0)a(0)an(0)])e = —N-1 @Z fiots  (3.10)

urgo
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and by renormalizing the energy,

N s
I'y= —N-13] n,n,.
oo

Indeed, introducing the quantities

oo
0; = N1 2 Z i (1—x,) T le e 21,23, ..., o,
A n=1 '

we easily prove the graph (3.10) to proliferate in the following forms:

£}
0

}

7124

o

2126

o

2126

= —2Nxmy0,04,

. E
= —2Nx2m,m,0,0,,

— - Na2m?2
= X71M104035

2 2
= — Nx2mjo;,

= —2Nx®m m30,04,

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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3

T, : = — Nadmimg0,0,,
T, . 3
0

32°
t,
T, = — 2Nx3mimy0,0,,
L]
0
3:28
1t
12 = — § Na®mioo,,
t"
0
= :3!29 :
%
)
= — 2Nx3mim,03,
t.1 ;
0 . '
3128

]

T, = — Nx m30,04
z.7
0
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(3.18)

(3.19)

(3.50)

(3.21)

(3.22)
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etc., see Appendix B. Taking into consideration that

1 :
Y = my+xmymy+22 (mlmg + 5 51 m%m3) +

+ 3 (mlmz—l— 5

3 1
mimgmg+ —— = m1m4) +-O(x4), (IB.14)
whereupon, by Eq. (2.18),

- ; 1
Nt Z fia = 0y +xmy0q+ 3 (m1m202 + 57 m;zlo3) o
- !

1 1
57 m%m302+m1m2o3 i T 31 m104) +0(xY), (3.23)

+a3 (mlmzo2 + =

we get (3.11).
The next basic graph is
4

Z',
, @ = — 3N X TooDieol (ot 2+ D e+ Ditgiio— o ate—a(fg+1) (1 + 1),
00

(3.24)
wherefrom, by renormalization,
r,= LI Y D
& 2(1 2Y) 4 ey
00
X [(Fog a4 1) (o 24 1) igho— o4 14— Trg— a(fig -+ 1) (Fia+1)]. (3.25)
Quite generally,
k’ 2 k+?
Tk
B ]kN—(k+’1)
Tt Thrr=— 2K(1—2Y)* Z ; Z L7
T, . ; . 5 s 5
k-2 XF Zijal—?‘llp o— ll:,-al—?-lz . F l;fk 1_',—0'1-{"-2.,; 1F —l;fk,o+lk]><
; X(86+Zl+69—/11_ a) (30'+/1,+89 A )—1><
vz'z X "'(80+lk_1 +Sg—lk-_1 “89—80)—1(86+;k+89—lk_8g—~80')—1 X
. XM k=123, ..., o, (3.26)
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with
DI LA e e B s s PRI s i S i AN (3:27)
being the sum of products. In each of them the first, the second, the third, etc. term must be
replaced by unity, e. g., for £ =2
2 T T ) = T T+
S N S TR Y o s s PR

The proof of (3.26) is very tedious and we refrain from adducing it here.

In contradistinction to (2.24), at low temperatures the graphs.(3.26) do not affect the
sum-over-states up to the term ~ T4 The problem of their behaviour near the Curie point
is extremely intricate and will not be considered here.

4. Free energy and magnetization

Collecting the results obtained hitherto, we get by virtue of (14.22), (14.24), (2.24),
(3.11) and (3.26)

1 =
— = | —1 ~ o~ 1 ~ =N
F=FE,+ Z (L+epn, m2f52y0 N Z EeEollollg -3 }_' [7221n 72,

eo

- e O (JN-Lp+1 b el Ay
——(1"‘77/1) In (1—'—”1)]— kZI ) ( li)k Z Z f'g,a]"g_z,,aulx
=1 9 +1 1— ? Y 00 Apydgs...s Ak

—Aat 2y — A= 1+ Ak —g —g )1
Xre—lz,a+lz"' I'e—lk—1,a+lk—1Fe—lk,a+lk(6cr+ll+8e—ll & 80) X

o s
X(3a+za+€g—12—89 £,) ---(3a+/1k+39—/1k &g 8s) tnng+

+6 05N Y e |1+ Y - e N
0o k=1 2k(1_ ? Y)

’ 2 — A+ 4, —Me— 1+ — e k
X p AZ 0 Z [PQ,IGPQ*M,G-T-L Pg~lk—1,0+lk—1rq—ﬂk,a+2k X
1542300 0K

1

X(80'+11+89—11_Sg—65)_1(80+}.2+sg—lz_sg_eo')n1 ser (€u+lk+89—lk~eg_8a)—l M (41)

This is the free energy of a system of real spin waves in a cubic Heisenberg ferromagnet.
Thus, we have formulated the spin wave theory of ferromagnetism for temperatures
between absolute zero and the Curie point. Evidently, such theory will hold within the entire
interval if the condition (2.23) is satisfied.
Actually, apart from the third and fourth terms in (4.1), the form of real spin wave
theory resembles the conventional spin wave approach, only the energy of non-interacting
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magnons must be replaced by the renormalized one according to (2.22), what is equivalent to
“‘dressing” the particles. |
Combination of (I14.25) and (I4.26) yields

—ﬂN_l Z (1——%1)5,1(51—!—1)
or _ a
AL 1—aN1Y (1—xi)2na(ni+1)
A

(4.2)

Neglecting the products ~7~zl(ﬁl+1)r~zeﬁg and similar higher-order terms, we get from (14.27)
and (4.1) the relative magnetization

=1 N $— N cven S 3 rari

p k=1 9kG 1—-Y 00 Aushgrinnsh
S
— A+ Ag — Ak =1+ Ak — 1
XL e L 5 o e Lo Ak,o'+lk(ga+ll+eg 1€ &) X

><(1’3¢1—)—A2 7 89—12—89—~86)”1 (86+Ak+8e—zk*39—86) lngno(ng+1)+
. o k
+205,, 57N Z Rgfio(fie+1) |1+ Z I an e,
- Qo k=1 2k(1—%~Y>

4 A=At 1A Mo
XN > L L e e L et X

0— - 1,0+ Ae—1" 0— ey
PETY Y

>< .

X (86+ A + 8@— AT 89_86)_1(80'-1-1, + 89- A 89—80)_1 (e (80+Ak + eg—ﬂk _39 i 80-)_1 o (4‘3)

The first two terms in (4.3) have been derived by Bloch (1962). They are partially due to
dynamical interaction between magnons. The third term complements the effect of the
dynamical interaction and the third one allows for kinematical restrictions for spins.

APPENDIX A
Let us derive (2.16). We get

§ : A
@4 — 7 JaN—4 1
G ) — 4“2 JN ]191,0'1]_’9230'2 Qa>°’s 94:‘74

710101

2,020,

450305

4,004

8 f 8 8
X f dry f dy f dry f vy [, 1,(71)%a,(70)°] [ag. —1,(71) %t (7)®] X

X [491(71)0 =i (75)°] [a’o A, (72)0053(73).] [0'62(72)@ A, (Ta)®1X
X [%g_z (2)%, 94(74).] [Cbga('fs)O =2 (74)9 [aantz (r)°%, a,("4) (A.1)

wherein the integrations must be carried out over propagation functions (I4.8)—(14.14).
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With their help we have
CP =1 JaN-4 DI o KGR ) Oy, 0,42, X

01,01 04,04 7 41,07 01,0,
710104
004
. 8 8
X 02, —1,00,.00— 104,04 02,,07%, T, of dz ... f dry exp (To—7T3) (&5 15, 80,22, €0,E5,) X
0

X [y, Oa,1(rg, + D116y 5025, 1) + 03 47m,,] X
X [62,37_Laﬂ%,(ﬁa2 +1) "“63,2(’“%24-/12 +1) ﬁo'z] X
X [0 47, 3, +045(r,, 5 +1)] [03.4(n5, 5, +1)+ 0437, 1]
=N I AT, 5 x

oK @—Ay" g,0" ohAe—
Auvoo

8 § ¢
X f dzy ... f Ay exp (Ty—T3)(8,4 1160 1—€—E,) X
0 0
X [0y57+05, (g + D][0y5(m + 1) + 05 17| [0 571, 412 +1) +05 (76, 1+ 1)1 ] X
X [02,4;%—/1 + 04,2(’;@—1 + 1)](63,4@@-1 +1)+ 64,37_59—1] . (A.2)
Using the auxiliary relations
N2 Tgﬂfg_mﬁ”ﬁy = ya(l—x,_») 1—x, ) N-2 ] (I1—x,)n,x
uv v

X (=)0, = ygmi (1—=,_;) (1—x,), (A.3)

ﬁ — — — e
[ a0, m,+ 051 (r, +D1[0y 5(2,+1) +05372,]

= Ag;lg(;l’g +1) +(zy—73) [92,3@@ +1)+ 03,2_’_%]9 (A.4)

B . _ i _
f arylOyam,_;+ 64,2(”9—/1 +1)] [63,4(%—/1 +1)+ 04,375.]
o .

= By (g2t 1)—(Ta—75) [0p3m,_3+ 035 (m,_, +1)], (A.5)

we obtain (2.16). _
Equations (2.9), (2.12), (2.13), (2.14) and (2.15) can be found in the same way.

APPENDIX B

In order to exemplify the derivation of the diagrams (3.13) —(3.22), let us first compute
(3.20). We have

@ 3128 snia N PR R
C4 i 2. 3126] N 5M+V,w+C'FQ161P92,52F@:»°'3><
' wwl
Ao101
230502

450503



392

X f dry f dz f dy [0,(0)%a,,(0)°] [a;(0)%a,,(7)°] [a;(0)%a, 5, (7)*] X

X[aa,+/11(71) (7)) [a 91(71)' _1(73)*] ([aaz+12("72) g (T2)| X

- X g 1,(72)°,,(T)°] [0, 5,(Ta) 2, (7)°] = —2J°N-4x

2, 1A
X ZC 6M+v,w+CF91 d;Fe: GsFe: 616” w0y ,9165 91692 0.%1,0%
)
210101
720405
230403
X 593)91612’0613’0714 (n +].) n n sX

B B B _ _ _
X,f dry f dv, f A0, 5(ng, + 1) + 051 1, ] (055 1y, +03,5(12,, +1)]
0 0 0

= "ZJW—:,%UFO Iy Ty, mny(f,+1) ngn,n,x

B 8 B
x [ dvy [ dzy [ dsl05(n,+1)0537,] (05 1+ 05,5(n0+1)]- (B.1)
0 0 0
Because of

f dr, f dr, f 7303 (72 -+ 1) + Oy 70} [Ds,570 + Oa g +1)] = 3636707 +1)11,  (B.2)

we get
CP = —IF2PYN=* 25 (1 —10)°[675(7 +1)* + Too(Tie + 1)1 X
Auveo
X (1—%0) {1 — 2 ) u(1—2) 70 = —2x3Nmioy0,. (B.3)
Let us now coordinate graphical and mathematical symbols in the following way:
(4
O k) = m;, Q = 69
0 T 0 .
Z, 7, 3
1 452 1 52
O @Bmg T, = 500, Te = 310 My
t7 0 - r1
T,
Ty 4
T T3 1 3
z _ _Z_ 3 = =7 m .
z, = 3 @ 04 5 T, 3/ (3 4 (B.4)
0 Ty

etc. Resorting to this coordination and multiplying each graph by [— (Jyo) ¥ 1/2(k—1) 1451,
where k is the number of vertices, we can compute all diagrams (3.13)—(3.22).
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