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THE LATTICE DYNAMICS OF ADAMANTANE. I. CUBIC PHASE!
By T. Lury
Laboratory for Chemical Physics, Institute of Organic and Physical Chemistry, Technical University, Wroclaw*
(Received September 29, 1970) ‘

The- paper presents a model of the laitice dynamlcs of the cubic phase of adamantane
Intermolecular interactions are described by the “6-exp” function with theoretically calculated
parameters. Results of computations are compared with the frequency distribution spectrum
“obtained by Stockmeyer and Stiller from inelastic neutron scattering data. - Thegood agreement
received confirms the correctness of the proposéd model.

1. Introduction

Recent years have seen development of experimental methods of investigating the dy-
namics of crystal lattices. At the same time more and more interest is attracted by molecular
crystals — in the main, crystals of organic compounds. There thus is a need for looking
at these crystals from the theoretical point of view, to see what are the possibilities of calculat-
ing the quantities characterizing lattice dynamics accessible from experimental methods.
In this field the studies by Hahn and Biem [1, 2] and Cochran and Pawley [3] are funda-
metal. They dealt with molecular crystals of high symmetry: hexamethylenetetramine
(urotropine) [2, 3] and adamantane [2], the latter treating the lattice dynamics of the crystals
in a general manner, without assuming any specific form for the potential energy function.

The basic assumption made in the case of molecular crystals is that there is no coupling
between internal vibrations of the molecules and lattice vibrations. Assuming the model
of a rigid molecule simplifies problems of computation substantially. It should be noted
that in the majority of cases this assumption is fulfilled well.

The basic problem, on the other hand, is the choice of a proper function for the crystal’s
potential energy. A very interesting proposal in this field is provided by the work of Pawley
[4], where lattice dynamics were analyzed for two typical molecular crystals, naphthalene
and anthracene, with the use of the ‘“‘atom-atom” potential.

It is presumed here that the adamantane crystal may be treated in like manner. Owing
to its very high symmetry, adamantane may be regarded as a model substance in the pro-
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blem of the lattice dynamics of molecular crystals; therefore it is very advisable to consider
it closely. This crystal has two polymorphic forms the structures of which are well known.

The goal of this series of papers on the lattice dynamics of adamantane is

1° to perform complete calculations of the lattice dynamics for both polymorphic
forms,

2° to analyze lattice vibrations basing on group theory,

3° to calculate some of the physical thermodynamic quantities for both crystalline
phases, and

4° to compare the obtained results with experiments.

2. Structure of cubic phase and analysis of latiice vibrations

Adamantane (C;,H,) has two polymorphic forms, cubic and tetragonal. According to
calorimetric experiments [5] the temperature of phase transition is 208.6°K. The crystal
structure of both forms had been examined roentgenographically in studies [6, 7].

The structure of the adamantane molecule can be pictured as an octahedron made up of
CH, groups with a tetrahedron of CH groups built into it. In the cubic phase crystal the mole-
cules are arranged in such a way that all three principal axes of the octahedron are parallel

" Fig. 1. Structure of cubic phase of adamantane as projected on (001‘) plane

to.the crystallographic axes. Fig. 1 presents the projection of the structure on the (001)
plane. The space group of the crystal is Fm3m (0}), and there are four molecules in the cubic
unit cell of constant @ = 9.43 A. The molecules’ centers of gravity form a face-centered
cubic lattice (f. c. c.). Fig. 2 depicts the Brillouin zone for this type of lattice. The figure



Fig. 2. Brillouin zone for f.c.c. lattice
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TABLE I
High symmetry points and directions in the Brillouin zone of the cubic phase of adamantane
Point q Factor-group
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a a a

shows the points (according to Koster symbols [8]) for which the lattice vibration analyses
were made. The coordinates of these points and the corresponding group symbols, isomor-
phic with the given point groups, are given in Table I. As the 0} group is a symmorphic
space group, the irreducible representations of the group and corresponding subgroups
are obtained directly from the representations of the irreducible point groups [8]. The
analysis of lattice vibrations for the points of the Brillouin zone listed in Table I are presented
in Fig. 3 in the form of diagrams.

3. Calculations

A. Potential energy of crystal

It is now assumed that the potential energy of a molecular crystal is additive and may
be written as the sum of interactions-between the individual pairs of atoms,

V=21V 1)

where m and n are indices of the two types of atoms. The potential 7, of the interaction
between atoms m and n usually written in the form of the so-called ‘‘6-exp” function,

. —6 .
an - _Amn Z rp,s +an Z exp (_“mn rp,s)’ (2)
"bys D,
where r, ; is the distance between the atoms. The parameters A,,,, B,,, and «,,, are found

semiempirically [9,10], while a check of the correctness of this determination is conformity
with such physical quantities of the crystals as heat of sublimation and unit cell parameters.



41

A very interesting attempt of describing the potential energy of a molecular crystal
is given in-the paper by Poltev and Sukhorukov [11]. The potential energy ¥ is treated as
the sum of potentials of various kinds of interaction:

V= Z in L+ F). 3)

Here, E,, is the energy of electrostatic interactions between‘ the atoms m and n, H,,, is the
energy of interactions determined by induction effects, I,,, is the energy of dispersion inter-
actions (van der Waals interactions), F,,, is the energy of repulsion due to overlapping of
electron shells of the atoms m and n. ' C

It happens that the first two terms contribute very little to the total energy of the crystal
in the case of hydrocarbons (about three per cent) [11]. We assume, therefore, that the
potential energy of a crystal of hydrocarbon is satisfactorily described by the latter two
terms of Eq. (3). Hence,

V= 2 (4, +Fm,,) 4)

what in the ‘““6-exp” function form is written as
V= 2 [ Amn Z p,s +an Z exp ( “ rp,s)]' (5)
D55 P:S

The parameters 4,,,, B, and ocmn are not ﬁtted as in the case of formula (2), but calculated
theoretically. In order to find the constant of gispersion interactions use is made of the
approximate London formula
_?L_am'an'-]‘m"«]-n (6)
2 Jn+Jn
where a,, and a,, are the atomic polarizabilities, and J,, and J, are the ionization potentials
of the atoms in the given configuration. The parameter «,,, is found from the graph of the
dependence of ¢/, on atomic number, which was obtamed on the basm of scattering data
for noble gas atoms [12].

Using .the condition.

MNlun+Fual 8
Irp.s =0 (@
determining the minimum of function (5), we get parameter B,
The parameters obtained in this way for crystals of hydrocarbons are given in Table II.

TABLE IF
Parameters of the “'é-exp” function
A, B o,
mn mn mn mn
[erg. A-9] [erg] [A-1
H..H 2.88x.10-12 . -7.65%10-10 4.54
C..H 8.85x 10-12 75.51x 10-10 4.56-
C...C 27.2 x10-12 903.89x 10-10 4.58
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B. Dynamical matrix

The equations of motion of the k-th’particle in the I-th elementary cell are in the har-
monic approximation the following: '

(k) = Z} (lk VE) uU'K)
Liglh) = — ) @(Ik, UK) u (LK) ®)
Uk,

where u,(lk) i one of the six components of the molecule’s displacement vector, m is the
mass of the molecule, and I is its moment of inertia along the x-axis. The force constants
in Eq. (8) are defined in the expression for the crystal’s potential energy,

%V

ditj’(lk, l k ) = W. (9)
Substitution of the plane wave equation into Eq. (8) yields
maX(q) Uk, q) = Z Uik, q) - Mk, ¥, 9) (10)
LoXQ) Uk, q) = kZ Uk', ) - Mk, K, q) .
where
Mk, K, q) = 3 Dyi(lk, UK') exp ig - [F(1k)—T(I'K)] (11)
N

is an element of the dynamical matrix.

The tensors of the force constants @ (lk, I'k') were calculated in the reference frame
of the crystal axes. The program for the computer in the ““ODRA-ALGOL” language was
written with use being made on the formula®

o2 S o) 225 )
ui(lk)du; (UK o rps | \ Qui(lk)dupl'k’) o ) \ow(k) ] \ o (') | I

(12)

The derivatives of the atomic spacings (r) with respect to molecule displacements are for
the translation-translation force constants as follows:

( or )( or )_ 1
duh) ) \ou @Ry | T @

o%r 1 \
(Qui(lkW) = T (0 r2—r;rj)

2 Calculations were performed on the ODRA 1204 computer at the Computation Center of the Institute
of Physics of the Jagellonian University.
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i,j =1, 2, 3. Here, r; and T a‘re‘the components of the interatomic distahqe vector, and J;
is the Kronecker delta function.

In the case of libration-libration force constants the formulae become more involved
[13], and the time of computation longer several times.

The partial derivatives for libration-libration couplings are:-

é?r Qr: ;—i--r-r-P
(k) \ oKy |~ = e

Cadi W A
(WW)_ ) (éub’ rare) * P

where

P = A, () Agg(I'R) + 8+ 83" 0(IE) - 0, (UK

cle
for a,b,c,d, e, f=1,2,3and i,j =4, 5, 6. A, is the direction cosine between the a-axis
of the crysfal and the c-axis of the molecule, g,(lk) is the coordinate of an atom in the molecule
(Ik) in the reference frame of the molecule, and §,,, is the antisymmetric Levi-Civita tensor.

Formulae for the derivatives in the case of transition-libration (1 = 1,2, 3;j=14,5, 6)
and libration-translation (i =4, 5, 6;j =1, 2, 3) can be readily derived now.

For the cubic phase of adamantane the tensors of force constants between the (0, 0, 0)
and (%, 3, 0) mole:ules and the (0, 0, 0) and (1, 0, 0) molecules were computed. Force cons-
tants for the remaining pairs of molecules were obtained from the @(3, %, 0) and @(1, 0, 0)
tensors by means of relevant relationships stemming from crystal symmetry. The symme-
tries of the individual tensors and general formulae for the dynamic' matrix elements are
given in Ref. [2].

Generally speaking, the dynamical matrix for the cubic phase of adamantane is a Hermi-
tian matrix of sixth order. For each value of wave vector it was resolved by the method
given in Ref. [14], i. e. by forming each time a real matrix of 12-th order.

4. Dispersion curves and frequency distribution functions

Computations for the adamantane crystal were made for two temperatures, 298°K and
209°K. The values of the lattice constant at 209°K were calculated with the use of the known
value of expansion coefficient 4.4%10~4 degree=? [15]. At each temperature the dispersion
curves were calculated for three directions of the Brillouin zone, viz., [100], [110] and [111].
In Figs 4-9, representing the dispersion curves, the vibrational modes resulting from an
analysis based on group theory are indicated.

Unifortunately, there are no data in the literature on the values of the frequency of
three-fold degenerate optical vibration at g = 0. The performed lattice-dynamical calcula-
tions with the assumed model of interactions in the crystal may be compared with
experiment only for the frequency distribution function. Figures 10 and 11 depict the
functions g(w) obtained experimentally and via calculations in the form of a histogram.
The theoretical g(w) functions were calculated from 4000 points of the Brillouin zone.
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Fig. 6. Dispersion curves for. (111) direction at 298°K
Fig. 7. Dispersion curves for (100) direction at 209°K
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Measurements were made by the.method of incoherent inelastic neutron scé‘itering
by Stockmeyer and Stiller [16]. For the comparison use was made of the measured g(w)
functions for a neutron scattering angle of 60° at temperatures of 293°K and 253°K [16].

5. Discussion and conclusions

The lattice dynamics of adamantane was the subject of considerations in three papers
[2,16, 17]. In our discussion we shall limit ourselves to experimental studies [16, 17], where
the authors propounded a model of lattice dynamics fitted to the observed frequency distri-
bution functions. '

In the model proposed here, on the oiher hand, a concrete type of interaction between
the molecules of adamantane is assurned;’ and the parameters of the function of the crystal’s
potential energy are treated as characteristic quantities for the given pair of atoms. This
model does not make use of any selectable parameter. The comparison between the computed
frequency distribution functions with those found experimentally (Figs 10 and 11) allow
us to state that the proposed general model of the lattice dynamics of adamantane is accurate.
Moreover, it describes the effect of temperature on the frequency distribution spectrum
well. The found values of the frequencies of three-fold. degenerate optical vibration at ¢ = 0
are rather low, 26 cm™! (208°K) and 29.5 cm™! (209°K), and are compatible with the libra-
tional frequencies of the adamantane molecule estimated in Ref. [17].

However, the value of 26 cmi~* can be compared with the frequency calculated according
to the formula

- kT
v= 4n? T-O2- 2
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if the amplitude @ of the molecule’s thermal vibrations is known. According to Ref. [6] this
value is equal to 8 degrees. The frequency of librational vibration calculated according to
the above formula equals 29 cm™ and agrees well with the expected frequency of 26 cm™2.

In conclusion, it is possible to establish that

1° in the adamantane crystal the dispersion interactions and those due to overlapping
of the atomic electronic shells are decisive, and

2° the harmonic approximation is valid, despite large amplitudes of oscillations (usually,
an increase in amplitude causes enhanced anharmonicity of vibrations).

The author sincerely expresses his gratitude to the Technical University in Wroclaw
for the fellowship which enabled his stay at the Institute of Physics of the Jagellonian Uni-
versity, and to Professor J. Janik for ensuring conditions which made the performance of

this work possible.
Thanks are also due to Dr hab. H. Chojnacki for letting me use the program he elaborated
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