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The role of the Franck-Condon principle in the description of the pressure broadening of
isolated spectral lines is investigated on the basis of the Jablonski theory. Expressions for the
correlation function of this theory are derived both in the semiclassical approximation as well
as in a general way. First it is shown that the quasi-static Margenau-Holtsmark theory of line
broadening follows from that of Jabloniski in the asymptotic case of heavy perturbers when the
classical form of the Franck-Condon principle can be applied. On the other hand, the results of
quantum-mechanical impact theory of line broadening due to electrons are re-derived under
assumptions analogous to those used in the theories of scattering processes. For the non-spheri-
cally symmetrical interactions a general expression for the line shape is given which is in a close
analogy with that derived on the basis of the resolvent operator technique.

1. Introduction

The phenomenon of the broadening of speciral lines due to the interactions with for-
eign gas atoms has been theoretically investigated in many different ways. Frequently used
in practical applications are the impact treatments initiated on the classical ground by Lo-
rentz [1], Lenz [2], Weisskopf [3] and Lindholm [4] and then generalized with the help of
quantum-mechanical methods by Anderson [5], Sobelman [6], Baranger [7], [8], Kolb and
Griem [9] and others. Opposite to them are the so-called statistical or (more appropriately)
quasi-static theories developed for the first time by Holtsmark [10] for the Stark Broadening
caused by interactions with ions and by Kuhn [11] and Margenau [12] for the Van der Waals
interactions. These theories are based on the earlier formulation of the Franck-Condon prin-
ciple (FCP), first introduced to the explanation of the pressure effects on speciral lines by
Jabloriski in 1931 [13]. The most general form of the quasi-static theory has been worked
out by Margenau [14].

The first fully quantum-mechanical theory of pressure broadening of spectral lines was
formulated by Jablonski [15] ,[16], [17] in a close analogy with the treatment of electronic
band spectra in diatomic molecules, . e. by application of the quantum-mechanical version
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of the FCP to calculations of the intensity distribution in the broadened line. Some years
ago Jablonski [18], [19], [20] has modified his theory indicating that the above analogy is
incomplete because in the case of line broadening the shortness of the lifetime of the quasi-
molecule formed by the emitter with perturbers in the state of collision should be taken
into account. An essential feature of this treatment is that an interaction sphere of the emitter
with perturbers is introduced. The radius g4 of this sphere can be determined from the
criterion proposed by Jablonski [18], [20]. This criterion says that only collisions for which
the interaction potential V{(r) fulfil the condition:

+00
| [ V@) de| >
— 00
are considered as leading to the formation of a quasi-molecule. In this formula r(t) = (o2 +
+22)% is the distance of the perturber from the emitter as a function of time ¢, ¢ the impact
parameter and v the relative velocity of colliding particles. This version of Jabloriski’s
theory has been recently used to numerical calculations of the shape of Hg-resonance line
broadened by A and He for densities above 15 Amagat [21], [22]. Although the earlier form
of the FCP was used in these calculations a good agreement between the computed and
experimental intensity distribution was obtained. The radius g, of the interaction sphere
depends on the electronic state of the emitier and on the velocity v. In the case of such
systems as Hg-A and Hg-He this radius is less than 10 A. A somewhat different situation,
however, arises.in the case of line broadening due to charged perturbers in ionized gases
(plasmas). When the emitter is an ion then the above criterion leads to infinite value of the
radius gy, since the interaction potential contains the Coulomb term. For neutral emitters
in a plasma this criterion gives formally the finite value of gq. It should be noted, however,
that in plasmas the characteristic distance is the Debye length, which is a measure of mu-
tual screening of ions and electrons. Thus, it seems to be convenient to assume generally
the radius g, to be equal to the radius R of the macroscopic spherical container (cf. [16]).
The problem of line broadening in a plasma has been solved in two different ways. Namely,
the broadening by ions is usually taken into account on the basis of the quasi-static theory
given by Holtsmark [10]. For electrons, however, this approach cannot be applied because
they are moving too fast to be treated in this way. The theory of line broadening due to
electrons has been proposed by Sobelman [6],‘[23] and Baranger [7]. Their starting point is
similar to that of Jabloniski [16] but they apply the impact approximation analogous to that
used in calssical collision theories. Another form of impact theory based on the assumption
that perturbing electrons are moving along classical path has been given by Kolb and Griem
[9] and Baranger [8] especially for the cases of overlapping lines. Numerous computations
have proves that for plasmas with the density number of electrons N, < 1017 cmi—2 the quan-
tum-mechanical impact theories lead to a very good agreement of the calculated line shapes
with the measured ones (c¢f. [24], [25], [26] and papers quoted there). The connection bet-
ween the Jabloniski theory and quantum-mechanical impact theories has not been suffi-
cinetly established so far, although some proofs were made by Sobelman [23] and Baranger
[7] (¢f. also [27]). Few years ago Fano [28] proposed the pressure broadening theory based
on the resolvent operator technique and showed that in the central part of the line his for-
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malism leads to the same results as those given by impact theories. Fano’s approach has been
recently developed by Fiutak [29], [30], who has shown that in the wings of the line such
a treatment leads to the results of Jabloriski’s theory [31], [32].

The present paper is devoted to the detailed investigation of special cases of the Ja-
blotiski theory in its full quantum-mechanical form; in particular the connections between
this theory and other theories developed from standpoints differing from that of Jabloiski
are discussed. Only the cases of isolated lines will be considered here although the effects of
overlapping lines can be also, in principle, included to the Jablotiski sheme. The main atten-
tion is devoted to the application of the Jabloniski quasi-molecular treatment to the broaden-
ing of spectral lines in plasmas so that all discussion is carried out assuming the radius of the
interaction sphere to be equal to the macroscopic radius of the container. The procedure
applied here is based on the correlation formulation of Jablotiski’s theory given in a pre-
vious paper [34]. It seems that this procedure illustrates well the role of the Franck-Condon
principle in the theoretical description of line broadening phenomena. Mgst of the consider-
ations concern the spherically symmetrical interactions and are based on the WKB semi-
classical approximation. This approximation is fruitful in many cases and has been recently
succesfully adopted by Mies [35] to the explanation of the oscillatory structure of wings of
vacuum-ultraviolet emission lines.

2. The semiclassical correlation function

In a recent paper [34] it was shown that in the case of macroscopic interaction sphere
the Jablonski basic formula for the intensity distribution J{w) in a broadened line can be
written in the form

+00
I
Iw) = %j ds e~ @~ 2)s@(s), 1))

where w, denotes the unperturbed frequency of the line emitted (or absorbed) due to the

transitions from the initial level with energy E? to the final level with energy EP, i.e.

E}—Ep
h

, Ewgc = . The correlation function @(s) is given by
@(S — g~ NV,[1-M(s)] (2)

(¢f. Eq. (26) of paper [34]). Here N denotes the number of perturbers per unit volume and ¥,
the total volume of a gas (container). M(s) is defined as follows:

M{(s) = 7004561'&1{(5), @)

where Ij(€) is the intensity distribution resulting from the interaction with a single perturber.
If the quantum-mechanical version of the FCP is applied, then according to [16] for the case
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of spherically symmetrical interactions the If(£) distribution can be generally presented
in the from

lmax

EO =Y Q0 A o, @
1=0 vr
where
R
Avi;w,l(é) = <in,ll1/Jvf,k> Ef %i,z(’)%f,z(’)dr (5)
0

is the overlap integral, ,, ,(r) and g, _,(r) are the radial wave functions of the relative motion
for the initial (7) and final (f) state of the emitter, respectively. Q(J) denotes the probability
of occurence of a certain value [ of the quantum number of the angular momentum of the
dvf

the density of final translational levels with energies E, . In

relative motion and o

vy
this procedure the continuous levels of the energy of motion of perturbers are treated as

the discrete ones by introducing of the boundary condition ¢, ,(r) = 0 for r = R, R being
the radius of a container. According to [16] the probability distribution function Q(/) and

d
the density of levels dlj}'} can be presented in the form

(4]

3h2(21
00 = Spra ©
dv  uR

dE, 7T pol o0) (7

where p, (o) = VZIuEv is the value of the radial component of the relative momentum for
r— oo and u is the reduced mass. Substituting Eqs (6) and (7) into Eq. (3) one obtains

lmax . + o0
M(s) =a Y, @I+1) [ de*47(%), @8
1=0 —co-
where
3 h2
¢ = T aBypo( )R ©)
and
Al(f) = A‘Ui,‘vf,l(g); hé = E‘vi——E'Uf' (10)

Egs (1) and (2) together with (8) represent a general solution of the line shape problem for
thecase of macroscopic interaction sphere. In general case the exact calculation of overlap
integrals. 4,(§) is very difficult and can be carried out ‘only by numerical methods. In many
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cases however good results can be obtained by using the WKB approximation. In this
approximation the wave function w,,,(r) can be written as

r

oo} | #
st = (2N Lo ([ 2 [y ares o])-

To

r

— &5 (_z [hl f pw(r)dr+a,-(1)])}, (11)

Ta

where 6;(!) is the phase and

i Jr—l)]yz (12)

Puilr) = [2/‘ (Boi— V;(r)) - /2

is the radial component of relative momentum. V(r) is the interaction energy as a function
of the distance r of the perturber from the emitter in the siate li) and ry the classical
turning point for which p, (ry) = 0. For the final state of the emitter the function Vo a(7)
is given by the same expression as Eq. (10) with the replacing of subscript i replaced by f.
This approximation breaks down in the neighbourhood of ry. All effects originated in this
region are neglected here. In order to include such effects it is necessary to use either the
numerical solution of the Schrédinger equation or to apply the Kramers method [36]
expressing the wave functions by means of Airy’s integrals. These questions are not discussed
here.

Substituting Eq. (10) into Eq. (5) and neglecting the terms which are the very rapidly
oscillating functions of r the overlap integral 4,(£) can be written in the form (cf. Eq. (33)
of [16]) :

R r
__ [Pui(00) po,(o0)]% dr i
=T f s 0 (i 10t ars

+ild()—& (D] ) +exp (— —;— f [Poi(r) =Py (r)] dr—i[éi(l)—éf(l)])}- (13)

The overlap integral in this form is still very complicated and cannot be further simplified
without additional assumptions. There are, however, two extremaly different physical condi-
tions for which Eq. (12) leads to the intensity distribution expressed in a clossed form.
It is shown below that these limiting cases of the Jabtonski theory can be identified with two
kinds of pressure broadening theories known as the quasi-siatic and impact theories.

3. Quasi-static case

3
Let us suppose that the average distance between particles is sufficiently small so that
the emitter permanently and strongly interacts with a perturber. Jablonski [16] has pointed
out that the largest contribution to the value of the overlap integral given by Eq. (13) comes
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from the region of 7 in the neighbourhood of 7 =7, for which py,(r) = p,,(r,), because
just in this region the oscillation of the integrand of Eq. (13) becomes slowest. It follows
from the condition p,(r) = p,,(r) that r_is that distance at which, according to the earlier
version of FCP, the transition v; — v, iakes place leading to the shift of frequency equal to

£ = w—0y = 3 Vi)~ VH0): (1)

As the next step Jabloriski has expanded the integrand of Eq. (13) in series in the neigh-
bourhood of 7, and neglected all but the first two nonvanishing terms. Substitution of Eq. (13)
into Eq. (4) and some further simplifications (allowed in the case of sufficiently heavy per-
turbers) lead fo

2 [[_ Vit |* dn.
OWE) RN S (19

¢(€),, should be averaged over all energies E,, occurring in the gas under consideration
although in many cases the substitution E,, = 2 T, as was done by Jabloniski [16], appears
to be a sufficient approximation. This averaging, however, can be easily performed assuming
the Maxwell-Boltzmann distribution function f(E) for energy of perturbers given by
2 VE -&
Ey=— ——3 € kT 16
1) == G (16)

(k is the Boltzmann constant and T the temperature).
The resulting averaged distribution is:

K@ = [ L&uf(Ew) dEu

Vi(re)
_ 677 dr, - _iLI‘: |
T Vm RAETY " dE [Ew—Vir)? e = dEq, a7
Vilre)

where the lower limit of integration is ¥(r,) because Eq. (15) is valid only for E, = V(1)
The integration in Eq. (17) can be performed analytically:

0 Ey, _Vilre)
[ Bu—Vir) Voo™ 7 dEo = (RI)RT@e T (18)
Vi(rc)
and thus, since I'(g) = Kzzt—,
32 - V-——;g’:“) dr,
(£} —= — S e 19
Mo = 7 g 9)
Substituting this formula into Eq. (3) M(s) can be written as
’ b Vitro)
Mis) :% f 2 %’g-e‘ BT gits dE. (20)

- 00
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If, according to Eq. (14), & is expressed as a function of r, (hereafter denoted by r):
& = Aw(r) then M(s) can be rewritten as the integral over r: ’

Vi(r)

R
M(s) = % f r2eidols ¢ RT (. @1
0

With this M{(s) the correlation function (Eq. (2)) becomes

D(s) = e~ 4N, (22)
where
) R iAw(r)s—m
Bls) = [ [1—e L (23)
0

Hence the intensity distribution in the broadened line (Eq. (1)) is

+oo
fle) = - f dse~ilo—ogs—4ms() @)

For V,(r) <kT Eq. (23) becomes approximaiely
R
Bs) = [ [L—ee¥] r2dr. (25)
0

Eq. (24) with f(s) given by Eq. (25) is identical with the most general formula for the line
shape of the quasi-static theory of pressure broadening proposed by Margenau in 1951 [14].

In the case of broadening by ions the frequency shifts, Aw are caused by the electric
fields E produced by particular ions situated at different distances from the emitter. As was
shown by Traving [37] [38] the Hotsmark expression for the intensity distribution in the
line broadened by ions can be formally derived from Eqs (24) and (25) by replacing of
scalar magnitudes Aw and s by vectors E and ¢ (|6| = s), respetively.

It should be noted that for neutral gases and in the case of a Van der Waals potential
(dw(r) = Cy * 1) the integration in Eq. (24) with S(s) given by Eq. (25) can be carried out
analytically and this leads to the well known Margenau’s distribution (¢f. [14] and [12])
with both half-width and shift of the line proportional to the square of perturbers concentra-
tion. Bergeon et al. [39] [40] have applied the Lennard-Jones potential to calculations
of B(s) (Eq. (25)) and have shown that in certain cases the inversion of the direction of the
line shift, as observed for Rb-lines perturbed by heavier atoms at very high pressures,
follows from Eq. (24). Recently, Hindmarsh and Farr [41], [42] (¢f. also [43]) have shown that
for low pressures of perturbing gases Eqs (24) and (25) with the Lennard-Jones potential
do give rise to the occurrence of additional maxima on the long wavelength side of the line
(red satellite bands). The calculated positions of these maxima appeared to be in satis-
factory agreement 'with the measured positions of the maxima of red satellites produced by Kr

on the potassium line 1 4047 A [44].
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4. Scattering case

(Theory of line broadening by electrons)

Now the second asymptotic case of Jablonski’s theory, entirely different from that
discussed above, will be considered. Let us calculate namely the overlap integral given by
Eq. (13) assuming that all the perturbers are at the distances r so large that their motion
can be treated practically as a free motion. First of all let us remark that with the WKB wave
functions the overlap integral 4;(&) in Eq. (13) can be generally rewritten in the form

— [pu(=)pel )% f
AI(E) [Pvi(r)P‘vf(r)

o [ 2in f FaEo i ViO—V0) 4 s
X{ p[h Poilr) +Pyr) A= (l))]+

Ty

ex _EﬁfE —Eo 4+ ViO=VH0) 4 s n ]}
hs P [ h Pw(r) _|_pvf(r) d (5l(l) 6f(l)) 9 (26)

To

where the substitution

2u [
DPoir) +Pog(r)
resulting from Eq. (11) was introduced.

Taking into account only the region of very large r’s so that the perturbers motion
can be practically treated as the free one we assume that: Vi(r) ~ 0, V(r) ~ 0 and p,(r) ~
~ p,(o0). Moreover for real physical situations it can be assumed that

Pulr)—posr) = Eoi—Eoe+ Vi) — V5 ()] 27

PoiT) HP0, (1) = 24, (1) =~ 2p,(00),
PoiDP5, (1) == [ py,(N]? ~ [ py()]2. (28)

The above assumptions are analogous to those applied in the quantum description of
scattering processes. It is obvious that they can be valid only for sufficiently low densities
of perturbing particles. Under these assumptions and for ry = 0 Eq. (26) becomes

R
A0 = 2 jrdr{ (g rro-a0) | i (g o0 W)}, (29)
0

where & = -—( E,) and p,(c0) is denoted simply by p,(0).

Eq. (29) can be easily transformed to the following form

=)

R
[ a5 30
+ | dre (30)

1]

A8 = 2R{ [dre p( > r—i(@i(0)— af(Z))}



Introducing the Heaviside step function fj(r) defined by

one obtains

Az(g) =

) = {f“’“)—éf(l» for 30,

(0D—8.D) for r<O,

R
1 i r—ifi(r)
p,,(oo)
2R [ dre

—R

Hence, the square of the overlap integral A7(§) = A,(€) - A} (8) is given by

R R ¢
1 —i B )il filr) —fil 2)]
A?(S)zﬁ—if f drydrye” 7+ T
- —R —R

Substitution of this expression into Eq. (8) leads in this case to

Since

+o0

f dt JE

—_00

lmax

M(s) = —-—4'(}1'32 @2l+1) f [ drydrye= i) —~filr)] %
=0

—R — R
+00

X fdéeif (s_;:(;;;”),

-

e

) mcooz,;((pv(oo)
"

P s—I—r2—r1) .

where d denotes the Dirac function, Eq. (34) becomes

max

M{(s) :7";-’1){”‘5;) }: @1+1) f dry éifi(ry) f dr, e=if) § (P”( <) s rg—rl)

However,

R

R

-R

£4(c0)
fdrle‘ifl(ﬁ)é\(p”_lf;i) s+r2-——r1> e tft( s+,~)7

—R

so that Eq. (36) yields

Mi(s) =

7apy(0)
2R%u

max

13 7, P’U( ) L)
Z (Zl—l-l)fdz fl(z)‘l'tfl s+ )
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(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38).
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where the function fl(pv(oo)
7

s—l—rz) is defined in the same manner as the function f(r) in

Eq. (31). Using this definition it is easy to show that Eq. (38) can be transformed to the

_ form
Imax

3 h2 ' o (00 .
M) = § I; @0+1) {2R—SPL—) [1—6—2zwi<l>—af(l>>]}. (39)

The factor before the sum results from Eq. (9) if the equality

mapy) _ 3 2
2R%y 4 p%(oo)R_g (40)
is taken into account.
Let us remark that according to Eq. (6)
3 hZ lmax Imax
e 1_20‘ (@I+1)2R = IZO 00 =1, (41)

‘where the value I . must be chosen so as to fulfil this condition. Thus Eq. (39) becomes

lmaX
3h2ps 2
. i — o—2i(0u()— (1)
Ms) =1— AR%Z(o0) ;_0: @l+D)[1—e 70, (42)

where the substitution p,(cc) = uv, v being the relative velocity, was introduced. Let us
also substitute p,(oc) =hk and denote

lmax
il o251
o= ; (21 +1)[1—eRiesth—200], (43)
then Eq. (42) yields
M(s) =1— ;’/—" s, (44)
0

where V, = $ 7R3 is the total volume of the container. According to Eq. (2) the correlation
function @(s) is now given by

D(s) = e N5, (45)

With this @(s) Eq. (1) leads to the Lorenizian intensity distribution

1

I —
(0 —wy—A)2+ (%)

Iio) = 5= (46)
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where the shift A4 and half-width.'y of the line can be written as

1

» = 2Nv Re 6 = 2N k—’: Z 20+ 1)[1—cos 2(8;(1)— 6:(D))]» (47)
I=0
lmax
A=—Nolmo=Nogy Y @1+1) sin 2 (3()— 0(0)- (48)
=0

Eqs (47) and (48) are the basic formulae of the quantum-mechanical impact theory of the
pressure broadening of isolated spectral lines. They were first derived by Sobelman [6], [23]
for interactions having spherical symmetry. Baranger [7] used the modern methods of the
quantum scatiering theory and showed generally that both the half-width and shift
of the line can be expressed in terms of the elements of the S-mairix. For the case of the
spherically symmetrical interactions he obtained Eqs (47) and (48). The analogy between
the scattering of atoms (or electrons on atoms) and this asymptotic case of the pressure
broadening of spectral lines exists in Eqs (47)-(48) because both these phenomena are des-
cribed by the same phases [45].
If the condition V{r) <€kT is fulfilled, the phase 6(f) can be expressed as [45]

s)=— [ - urilr) dr 49
! f hZ{P%(C’O)__ (H—%)ﬂ} .
h2 2
%1
Po(o0)

In the classical limit, i.e. for large [, & l/l(l—]~l) ~ hl = p, (=)o (o being the impact para-
meter) so that J,(I) can be expressed as a function of ¢: §;(l) = 0,(¢) and &) = d(p)-
Assuming that the perturbers are moving along straight lines, the distance r(t) of the per-
turber from the emitter as a function of time ¢ is equal to r(z) = (2 +v%2)%. Under these
assumptions it is easy to show that

400
8() = — glg [‘ V(0?4 v212)%)dt, (50)

where V(r(t)) = V(o2 +022)") is the interaction potential expressed as a function of time.
Hence

400 +-00
206 (N —6i(D) = % fA V(r(ehde = wa(r(.t)) dt = (o), (51)

- — 00

7(g) is the phase shift of the classical oscillator resulting from the collision with a perturber
for the value g of the impact parameter. Moreover, in classical case the summation over {
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in Eqs (47)-(48) can be replaced by the integration over p using the following condition

mh?
72(o0) (21+1) = 2mpdp (52)

resulting from the comparison of the quantum probability distribution Q(!) (Eq. (6)) with
a classical distribution Q(p) for impact parameters o (¢f. [16]). Then Eqs (47)-(48) can be
transformed to the form

y = 2Nv f [1—cos 7(9)] 2modo, (53)
0
A = Nv | sin 4(g) + 2mod. (54)
0

These expressions are the Lindholm-Foley formulae for the half-width and shift of the
line ([4], [27]). Let us further mention that the inelastic collisions can be taken into account
by introducing of the complex phases (/) instead of real ones (6(1) — (1) +iI(])). Then,
in this case Eqs (47)~(48) should be replaced by the following formulae (cf. [23]):

lmax
y = ZNv Z (@1 +1)[1—e 20 O+T0) cos 2(8,(1)— ()], (55)
lmax
A= Nv% Z (21+1)e=2TD+T50) sin 2 (8,(0) — 6;(1). (56)
=0

According to Vainshtein and Sobelman [46] I'j(/) and I’,(I) can be expressed by means of
the total probabilities of transitions from levels i and f, respectively, to other levels of the
emitter induced by the collisions with the perturbing electron (non-adiabatic collisions)

(¢f. also [23]).

5. General remarks

All the considerations given above concern the case of spherically symmetrical fields
and the formalism used there was the same as that applied by Jablonski [16], i.e. the continu-
ous levels of the translational energy were treated as the discrete levels. After multiplying
of the squares of the overlap integrals by the density levels factor and averaging over all /
with the weights Q(J) this procedure leads to Eq. (4) for the distribution I§(¢). However,
for the problems of line broadening due to non-spherically symmetrical internactions it
is convenient to rewrite Eq. (4) in a more general fashion starting from the general quantum-
-mechanical formula for the transition probability between continuous states.

Let £ and EO denote the energies of the isolated emitter in the initial and final states,
respectively. In the Born-Oppenheimer approximation the total energies of the system
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are equal to E; = Ej+¢; and E; = E}’ +&, & and & being the energies of the relative
motion of the perturber for the initial and final states of the emitter. Let us denote

1 1
oy = 5 (Fi—Ep) = 0+ 3 (65, (57)

where wy = —% (E)—E)) is the unperturbed frequency of the line. Applying the Franck-

-Condon principle the I5(&) ““Condon intensity distribution’ can be now written generally as

L(¢) = Z (& +wo— zf)l("/)ilwf)‘z&’i» (58)

where y; and y; are the wave functions of the relative motion of the perturber for the initial
and final electronic state of the emitter, respectively; p; denotes the probability the occurence
of a given iniiial state of the perturber motion (the single perturber density matrix), The
functions 9; and 4 are the solutions of the Schrédinger equations:

Hil‘/’i) = SilwiD and Hfl‘/’f) = 8fl’/’f>v (59)

where H; and H; are the hamiltonians of the relative motion of the perturber and can be
expressed as

H,=K+V, and H=K+V; (60)
where K denotes the kinetic energy hamiltonian and ¥; and ¥V} are the interaction energy
operators for the initatial and final state of the emitter, respectively.

Substituting Eq. (58) into Eq: (3) the M({s) function can be easily transformed to the
following form

Mi(s) = Zf =R ) gy (61)

According to Eqs (57)—(58) this formula can be rewritten as

H;s,\

M(s) =Tr[e FHe ol, (62)

where the trace is to be taken over the states of the relative motion of the perturber, and é
is the perturber density matrix. Using the integral equation (cf. e.g. [7])

T =e 72 FH_ ” [ die” ¥ H—H)eF ", (63)
Eq. (62) yields
M(s) = 1—G(s), (64)
where

6(s) = Tr [(1— ()], (65)
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or

6E) =5 f deTr[e” T (H—H)eR G, (66)
0
T(s) being defined by Eq. (63)
According to Eq. (2) and (64) the correlation function is now given by

D(s) = e~ NVGE) (67)

This form of the correlation funetion is identical with that first derived by Baranger [7].
Substituting this @(s) into (Eq. 1) the intensity distribution I{w) can be written in the form

o

I(w) — %—’Re f dse=Ho=@0)sg—NVG(), (68)

0

In the asymptotic case of large s this formula leads to the Lorentzian line shape with both
half-width and shift proportional to the perturbers density. As was shown by Baranger [7]
in this case the half-width and shift of the line can be expressed in terms of the scattering
amplitudes of the perturber by the emitter in its initial and final state. For the spherically
symmetrical interactions the Baranger formulae become identical with Eqs (47)-(48)
resulting from the WKB approximation discussed in the previous sections. In general case,
however, Eq. (68) cannot be further essentially simplified.

Let us remark that the-T{(s) operator defined by Eq. (63) can be expressed in the following
form

T(s) = e‘?K‘U,@e% “ure), (69)

where

. s
- %b/‘ﬁi(t)dt

Ufs) = Pe (70)
2 being the Dyson chronological operator and ¥(t) is
~V.;(t i 67{ KtV;.e— ;Kt (71)

For the final state of the emitter the Uy(s) and I'N/}(t) operators are defined by the same for-
mulae the subscript i being replaced by f. The above form of the operator T{(s) appear to
be useful for the investigation of the connections of the quantum-mechanical treatment
with the so-called classical path approximation first introduced to the pressure broadening
theory by Anderson [5]. The mathematical foundations of these connections have been
recently studied in detail by Fiutak and Czuchaj [33].

Assuming that the motion of the perturber occurs along straight lines the distance ()
between perturber and emitter can be written as r(f) = (024 (x5, +2t)2)*%, where o is the
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impact parameter, %, the position on the trajectory for the time ¢ = 0 and v the relative
velocity. The trace in Eq. (66) can be now replaced by an averaging over x4, ¢ and . In
the classical case the operator T(s) can be expressed as the following time-dependent
function

LI A
To(s) = e ! °f ) (72)

where AV(r(s)) = Vi(r(2)) =V, (r(2)), Vi(r(2)) and Vi(r(1)) are the classical interaction
potentials for the initial and final state of the emitter. According to Eq. (66)—(67) the classical
correlation function is then given by

Dyls) = e, (73)
where
—l— ; 2 21Y%
g(s) =2n f odp f dxg[l—e ﬁof AlleS Gote g ). (74)

This is the basic formula of the Anderson-Talman method [48] (¢f. also [37]). In the asympto-
tic case in the limit v >0 and N — co Eq. (74) reduces to the quasi-static formula
identical with Eq. (25), whereas for v —>co and N —0 it gives the Lindholm-Foley
expressions of the phase shift theory (Eqs (47)—(48)).

For many purposes it seems worth while to transform the géneral line shape formula
given by Eq. (68) to another equivalent form. Namely, let us denote

F(s) = e "@=*0g(s) (75)

and let us treat, for a moment, @ as a complex magnitude with Im @ > 0. Then Eq. (68)
yields

(e o]

I{w) = %Re f F(s)ds. (76)
0
According to Eqs (67) and (75) the differential equation to be fulfilled by F(s) is
dF
Gor = —ilo—o) F)—NVe=ie=en 20 g @

Integrating this equation over s and using Eq. (76) we obtain (in the limit Im 0 — 0)

1 . dH(s r .
10 = asgram 1+ J e I [ aemieerousgl,
. 0 0

where

H(s) = NV, dgs(s) :

(79)
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Let us remark that according to Eq. (67) we have

D(s) = ¢~ NVoGl) = lim [1——' % G(s)]n= lim [Tr (7(s)0)]" (80)
; 0 7—>00

n—+00

where n = NV is the total number of perturbers. Hence for the finite number n the correla-
tion function D(s) can be accepted in the form

@(s) = (Tr[T(s)a))", (81)
and similarly

B(s+1) = (Te[T(s +0)3])" (82)

In the region of low densities of perturbers the procedure of averaging the operator T for
the time ¢ and s can be made separately so that @(s+t) can be represented by the product

D(s+1) ~ D(s)D(t). (83)
Under this assumption Eq. (78) yields

1

o) = - Re o o THO)—L(@) ° G
where
Lw) = [ dte=i@—)d (t) — dH(t) (85)
and
H(0) = NVy— h Ty [(H—H)al, (86)
or
L (o)
1) = S o a @) @) (87
where
y(@) = Re L(w), (88)
and
A(w) = —Im L(w)—iH(0). (89)

These expressions are identical with those derived by Fiutak and Czuchaj [33] (cf. also [32])
from the theory based on the resolvent operator method [31], [28]. These expressions were
used by them to the extensive discussion of the validity conditions of the classical path



377

approximation. The more general classical path treatment, which includes the effects of
overlapping lines and also, in principle, the non-additivity of interactions has been recently
offered by Smith et al. [49] on the basis of the Zwanzig projection operator technique.
In the case of isolated lines and additive interactions their line shape formula is in close
analogy with Eq. (84).

6. Concluding remarks

As it was shown in the present paper the two different approaches, generally applied
in the investigations of the broadening of spectral lines in plasmas follow directly from the
Jabloniski theory as the two opposite asymptotic cases of this theory. This conclusion was
reached entirely within the framework of Jabloniski’s theory without any changes of the
assumptions of this theory. The only modification made is the replacement of the original
formulation of the theory by the correlation formulation. Depending on the assumptions
introduced to the calculation of the Condon overlap integrals, the different final results
for the intensity distribution, half-width and shift of the line, were obtained. It was shown,
in particular, that in the case when only weak collisions are taken into account in overlap
integrals, the results of the quantum-mechanical impact theory follow from that of Jablosiski.
On the other hand, taking into account strong collisions only and, in addition, assuming the
validity of the earlier version of FCP, the quasi-static theory is obtained. Numerous investi-
gations have proved that the quantum-mechanical impact theory is usually valid for electrons
and the quasi-static one for ions (¢f. e.g. [25], [26], [38], [47]). Hence one can conclude on
the general validity of the Franck-Condon principle as well as the Jabloriski treatment in the
description of the broadening of isolated spectral lines in plasmas.

The author is very grateful to Professor A. Jablonski for reading the manuscript and
critical remarks.
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