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The influence of an external magnetic field of arbitrary direction on the zero-temperature
magnetic phases of a two-sublattice uniaxial Néel-type antiferromagnet is studied in the nearest-
-neighbours spin-coupling approximation. In Part I, the approximate ground states (spin wave
reference states) for the different magnetic phases are determined, and a critical-field diagram
for the phase transitions is given. Strict solutions for the field-dependence of the direction of
spin alignment in the sublattice reference states are obtained and discussed, and the magnetiza-
tions and ground state energies are calculated as functions of the external field. Tn Part II, the
longitudinal and transversal magnetic susceptibilities in the different magnetic phases are derived,
and the influence of the magnetic field sirength and direction on those quantities is examined.
The results are compared with experimental data and shown to justify the approximations of
standard theories only in limiting cases.

1. Introduction

The problem of field-induced magnetic phases in uniaxial two-sublattice antiferro-
magnets is still subject to intensive theoretical and experimental investigations [1-4]. Earlier
theoretical treatments [5-7], carried out within the framework of the molecular-field ap-
proximation (MFA), established the general features of these magnetic phases. More re-
cently, magnetic phases in antiferromagnets have been treated using more sophisticated
theoretical techniques [8-12]. However, the influence of a (homogeneous) external magnetic
field of arbitrary direction on the magnetic phases has been studied in [7, 13] only, and then
without determining the strict solutions for the field-dependence of the direction of spin-
alignment in the sublattices. We shall show that for zero temperature (1" = 0) such strict
solutions can be obtained, and that in limiting cases they correspond to the approximate
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results of the MFA theory [7, 13]. Apast from the fact that our solutions permit us to extend
the MFA considerations of the whole magnetic-field interval 0 < H < oo, they also enable
us to apply the spin wave theory to all the magnetic phases, as the dependence of the
spin wave energy spectrum on the external magnetic field can be effectively deter-
mined.

When employing the spin wave formalism to the Heisenberg model of ferro- or antiferro-
magnetism, there is usually the problem of choosing a suitable reference state (spin deviation
vacuum) if the spin wave interactions are to be sufficiently small to justify the standard
long-wavelength low-temperature approximations [14-18]. A typical example is the case
when the (homogeneous) exlernal magnetic field is not parallel to a direction of easiest
magnetization, in which case the reference state depends on the field strength and direction.
In [14, 17, 18], two different methods of determining the reference state for magnetic crys-
tals have been studied quite generally: method A, which is preferably used in the theory of
ferromagnetism [2], aims at determining the approximate ground state of the spin Hamilto-
nian, by minimizing its expectation value in a class of trial states generated by spatial rota-
tions from the state of complete spin-alignment (saturation state); and method B, which
resides in eliminating the terms linear with respect to the spin wave creation and annihila-
tion operators appearing in the transformed Hamiltonian (see, e. g. [10, 11]). In [14, 17,
18], the methods A and B were shown to be equivalent, in a limited sensel.

In determining the reference state of the two-sublattice uniaxial antiferromagnet with
an external magnetic field of arbitrary direction, we apply the method A with the following
restrictions:

a) the class of reference states is confined to ‘‘homogeneous” states corresponding to
complete spin alignment in the sublattices (sublattice saturation state);

b) the antiferromagnet is assumed to be of Néel type, and the (exchange) interaction
is restricted to nearest neighbours only;

¢) uniaxial nearest-neighbour exchange anisotropy is assumed;

d) intra-atomic interaction (crystal-field anisotropy) is excluded.
Within these limitations, in Part I, strict solutions for the field-dependence of the direction
of spin-alignment in the sublattice reference states are obtained and discussed for the different
magnetic phases of the system. On this basis, the ground state energies and the longitudinal
and transversal magnetizations are determined as functions of the field strenghts and di-
rection. In Part I, the longitudinal and transversal magnetic susceptibility for each magnetic
phase is derived and the influence of the field strength and direction on these quantities is
examined. The results are compared with experimental data and are shown to justify the
approximations of standard theories in limiting cases.

Our considerations are confined to T'= 0, the case T > 0 will be examined in a subse-
quent paper.

1 A third method of determining the reference state in the spin wave theory was introduced in [11] and
shown to be equivalent to method B in the non-interacting-spin-waves approximation. The method A has recently
been applied in examining the stability of homogeneous spin deviation reference states in uniaxial ferri- and
antiferrimagnets with field parallel or perpendicular to the anisotropy axis [19,20].
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2. Determination of reference states and stability regions.

We consider a spin Hamiltonian of the form

# =] > (X88+5p8y +28:55)—
{frey ' ‘
—MHZ{;: SE+3 S;}—MH*{; S+2 83 1)
g : g

where X = 14|K,/J|, Z=1+|K_[J], (Z> X). The subscripts f, g denote respectively
the sites of the first and second sublattice (each of them having NJ2 sites); { f, g) denotes
the summation over nearest neighbours; K, K, are the exchange anisotropy constants
in the x and z directions, respectively, and J is the nearest-neighbour exchange integral
between atoms belonging to different sublattices; p is the effective magnetic moment per
lattice atom; H, = H cos &, H, = H sin & (0 <& < z/2) denote the components of the
homogeneous external magnetic ficld respectively in the x and z direction.

| (51=5"25)

Fig. 1
Similarly as in [14, 19], we perform the following rotations of the spins in the plane
20z
Sf=Sfcos @ +SEsin@, 5= S%cos @,—S sin O,
S — Sy =8 2

Sf = —S7 sin @, +5F cos @, Sz = 5% sin 0,452 cos O,

(This actually corresponds to introducing two different coordinate systems, (', ¥, 2’) and
(", 5, 2"), in the respective sublattices, as illustrated in Fig. 1. For simplicity, however,
we omit the primes and double-primes in Eq. (2) and in the following.)
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Furthermore, we define the sublattice saturation states |0); and |0), (homogeneous
spin-deviation reference states; cp. [14]) as follows:

SflO) = S‘O)z Sf]O) =0
Sf,[O) = —38|0), S;|0) =0 (3)
where
Sgg =57, +i57 0 = [0 >t [0>g’f<0i0>f = g<0[0>g =1

Subsequently, the stable reference state (i. e., the aproximate ground state of the system)
is determined by minimizing the mean value of the transformed Hamiltonian in the state
[0) with respect to the parameters @; and 0,,

min (0|H|0) = min E, (0,, 0,). 4)
By taking into account Eqs (1)—(4) we obtain for E, the expression
Ey(0,, 0,) = —a{Z cos O, cos Oy— X sin @, sin Oy +h sin (0;+&) +h sin (0;—&)} (5)

where @ = 1/2 S2 N|J|, b = uH]y,S|J|, and y, is the number of nearest neighbours.

We obtain the stable reference states and the stability regions by solving the necessary
and examining the sufficient conditions for the existence of a minimum of E as a function
of two variables @,, @, and four parameters X, Z, h, §&:

2
=== at o) 70 F=e @
The necessary conditions can be written in the form
Z sin @, cos O, + X cos O, sin O, = h cos (0,—§), W)
Z cos O, sin O, +X sin O, cos @, = k cos (O +£). ®)

Multiplying Eqs (7) and (8) by Z and X, respectively, and subtracting (7) from (8) we ob-

tain:
(Z22—X?) sin @, cos O, = h Z cos (0,—&)—hX cos (Oy+§). - )
The same procedure, with Z and X interchanged, leads to
(Z2—X?) cos O, sin Oy = hZ cos (0, +E)—hX cos (0,—§). (10)
Upon squaring and subtracting again the above equations, one obtains
sin @, (a sin ©,—b cos O,) = sin 6, (a sin O, + b cos O)) (11)

where

a=Z2—X%{h%cos 2§, b = h2sin2¢. (12)
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Adding Eqgs (7) and (8) we obtain a second equation,

cos 92;—& [(Z—I—X) sin @2—_;@1 — h cos (5— @L‘;@l)] =0 (13)

which, together with Eq. (11), permits us to obtain easily an explicit form for the dependence
of the angles @; and @, on the strength (#) and direction (§) of the magnetic field.
Indeed, it can readily be seen from Eq. (11) that, in the case @ > 0, one has

cos (20,—8) = cos (20, +9), tg ¥ = % (14)

with the condition
h¥cos26+72—X2 =F(h, & >0 (15)

which restricts the field strength A according to its direction & (or vice versa). (Note that
¢ is a function of % and &, cp. Eq. (12).) Taking into account that Eq. (14) implies

Oy = O, ++k (16)
or
Oy = —0O,+zk (17
where k=0, &1, 2, ..., we obtain from Eq. (13) two possible solutions:
&4k
cos (@1+ = )=0 (18)
. 4ok _ O+mk
sin (@1 +—3 ) = Z—I—XCOS (S 3 ) (19)
for the case (16), and the solution
cos (@1 TR EZE) = (20)

in the case (17).
The inequivalent solutions (for @ > 0) following from (16)—(20) are g ven in Table I.
As indicated in Table I, there are only three stable solutions, and even these are con-
fined to certain stability regions (apart from the restriction (15)) that follow from the mi-
nimum conditions (6).
For the first solution,

@lz-”zz— U 1)

e i
2 2°

;@gzg_{'

the inequalities in (6) have the form .

A = g? {h cos (5— g) +(Z—X) cos 0} {h cos (5 _;Z) —(Z+X)} >0, (22

92F, - L9 9
562 ~—o¢{Zsm —2—+Xcos E—hcos E—E >0 (23)
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TABLE I
a>0 k Solution ' Stability
7 9 7 9
@lz_.é___?;@2= _2__|__§_ ‘ stable
0
3n O 3 O
19’ k == — = e = e
cos (@1+ R ) = 6, 2 27 ©: 2 +‘2
0, = O+-9+-k 6, = — % 3 Oy=m+ ——;1 unstable
1 o
O=7x— —; @2= 2 —
. Otk . i - h r 2
sin (@1+ 2 ) = . sin <@1+ 3 ) 77X cos (E 7]’ stable
ok 0, — O+
75 i
P ot & h £ &
0 = —_——
X oS (E— ——2—71—) 1 T 2 X - 2/’ unstable
O, = OO+ ik OSSR ,
Or= o =& O= — —+§
i 0 = —— stable
Yo 3 3
cos (@1+‘5 B )“0 @1=2—n—§; @2=“—;f+5
Oy = —0,+ 7k . =
@1 = g—§; @2 =§
| 1 i — unstable
| O =2n—&;0y=—n+&
and lead to the (additional) field restriction (cp. (15))
h cos (E — %) —(Z+X)=F'(h, & >0. (24)
For the second solution,
. 9 h o
sin (@1 - —2-> =71x cos (_E— ~2—) ; Oy = 6,+9, (25)
one obtains the stability conditions
A = &? cos? (@1 + g) ]/(ZZ—X2+h2 cos 2£)2+(h? sin 28)2 > 0, (26)

J 2E0 2 0 s '19' o 19' ( 19' }
9@% — {Z CcOos 2 -+ X sin 2 -+ h sin E 2 CcOos @1 + 2

27)
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and the field restriction

Fi(h, & <0 29)
with F’ as defined by Eq. (24). The third solution,
0, =" & 0,——Z 1for®, =T 6,— — % ¢ 2
1= —& Y= 9 oYL= » Tg— ’2_‘}‘a (29)
is stable if
A = a?{—(Z2—X?) cos 26—h3% > 0, (30)
92K, '
W=a{Z51n2§+Xcosz§+h}>O, (31)
1

which implies
(X2—Z% cos2&—h2=F"'(h, §) >0,
7fd < & <mf2. (32)

To obtain the solutions for @ < 0, le us note that in this case Eq. (12) implies instead of (15)
the restriction

F(h, &) <0, (n/d <& <af2) (33)
in which case Eq. (11) leads to the equation

cos (20, +9') = cos (20,—), tg ¥ = — —i—'. (34)
One easily verifies that the only stable solutions of Eqgs (13) and (34) have the form (21)

and (25), with the substitution

B —>mg—9 (35)

and the additional field restrictions (apart from (33))
h sin (5 + %) —(Z+X)=F"(h, & >0 (36)
F'(h, &) <0 (37)

corresponding respectively to the cases (21) and (25).

3. Critical-field diagram and stable spin configurations

The stability regions in the (%, &) -plane of the five solutions given above are schemati-
cally shown in Fig. 2. The boundaries of these regions follow from the equations

F(h, &) = F'(h, §) = F"(h, &) = F"'(h, &) =0 (38)

and are respectively denoted by % (£)), ~(€), h.'(€) and h.”(£). Thus, the solutions (21)
and (29), with & as defined by Eqs (14) and (12), correspond respectively to the regions 2



340

and 3 in Fig. 2, while the solution (25) extends over the regions I and 3. The solutions (21)
and (25), but with the substitution (35) and ¢ as defined by (34), are respectively ascribed

to the regions 2' and I’
One easily verifies that the solutions in the regions I and 1’ describe a canted-spin
configuration (CS), whereas those in the regions 2 ans 2’ correspond to a ferromagnetic

7+X

spin-alignment (F); i.e., the spins are parallel to each other but not to the external magnetic
field, except in the extreme cases when & = 0 (field perpendicular to anisotropy axis), or
& = @2 (field parallel to anisotropy axis), or A = oo for arbitrary £, as in this case

9,9 =28 for h— oo (39)

according to Eqgs (12), (14) and (34). Hence, it is only in the extreme cases &£ = 0 and & = 7/2
when paramagnetism at finite fields occurs (in the conventional sense). Note that in the
CS-regions 1 and 1’ the spins belonging to different sublattices form the same angle with
the field-direction only in the extreme cases &§ = 0 (0; = 6,) and & = 72 (— O = 7—0O,;
standard spin-flop phase). In the region 3, we actually have two stable solutions, (25) and
(29), of which the former is simply the CS-solution of region I, whereas the latter corresponds
to an antiferromagnetic configuration (AF) along the field-direction and, as will be shown
below, represents a metastable phase. For & == /2, these two solutions coincide. The above
discussed spin configurations in the respective stability regions are indicated in Figs 2 and 3.
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One easily proves that, except for (25) and (29) on the boundaries & = 0 and 4.”(£),
the solutions of neighbouring regions coincide at the boundaries % (&), A (&) and &'(£),
and that for & << Z+4X in the CS configuration the spins belonging to different sublattices
lie on opposite sides of the field, while for 2 > Z+X and 0 < & < 7/2 they lie on the
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same side but, surprisingly, at larger angles to the anisotropy direction than the field itself
(in the CS as well as in the F configuration). Indeed, it is readily seen from (25) that

0, =n2—&, Oy = m2+9—& (40)

for h = Z-+X, which means that at this field strength the sublattice spins " in Fig. 1 pass
through the field direction (the same holds for the case (35)).

The field strengths # = Z--X for £ =0 and & = #/2, and h = l/Zz—X2 for & = mj2
correspond respectively to the standard critical fields for the CS«»> P and AF <> CS phase
transitions [3, 4, 10-12, 19, 20]. It is seen from Fig. 2 that, if these phase transitions exist
for 0 << & < 72, they should respectively correspond to a CS<> F phase transition at the
boundaries %.(£) and A,'(), and to some kind of CS<«> CS phase transition at the boundary
hc(f) between the CS regions I and I'. In either case, the corresponding critical field strengths
should increase with increasing field-declination from the directions £ = 0 and & = n/2,

reaching its maximum value

=)/ 10 L (£ o
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at the angle (cp. Fig. 2)

1 Z——X)
. (42)

&y = mw/b+arctg (——2— 71X
Beyond that, there is the boundary %."(&) between the AF (metastable) and CS (stable)
configuration, and A,(&€) between the regions 2 and 2’ which also might correspond to some
kind of F«» F phase transition.

We shall show below and in Part II of this paper that, for 0 < & < #/2 and T'=0,
there is no (magnetic) phase transition whatever on the whole curve A (£), that the boundaries
k(&) and h.'(&) correspond to a second-order CS<«> F phase transition, and that a first-
-order AF«> CS phase transition occurs at the boundary A,”(£). (Note that, instead of
hi(&), h.'(£) and h.''(£) one can use as well the inverse functions &), &,'(k) and &,"(h)
which determine the critical field direction for each phase transition as a function of the

field strength.)

4. Ground state energies and magnetizations

In order to determine what kind of phase transitions — if any — take place at the
boundaries A (&), h(£), k. (&) and h.'(£), we examine the ground state energy E,, the
magnetization and, in Part II, the susceptibility of the system in the particular stability
regions. Upon inserting the solutions (25), (21) and (29) for @ > 0 into (5) we obtain for
the spin configurations CS, F' and AF respectively the ground state energies

) . h? A
Egs=—oc{Z0052§ +X51n2—2— + Z_i_XCOS2 (E""z_)}’ (43)
L, s o4
Ef,’:—a{——Zsmz—z——XcoszE - 2k cos (E_E)}’ (44)

E4F — — % {Z+X—(Z—X) cos 2&}. (45)

For the case a < 0 (regions 1’ and 2’ in Fig. 2), Eqs (43) and (44) are valid when replacing
? by ¢ according to Eq. (35).

With the components of the sublattice magnetizations in the (approximate) ground
state (3) defined as follows

Mi=p fz 0|50y, Mg =p ; (0}510 (46)
Mg =p Y 018210y, Mg =p X (0|5;(0) (47)

the zero-temperature components of the total (reduced) magnetization in the direction
perpendicular (ml) and parallel (m!) to the external magnetic field, and its length m have
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the form:
m+ = m? cos E—m* sin £ = — sin @2;@1 sin (f— @2—;&> (48)
ml = m# sin £ +m* cos € = sin %—;Qi cos (E — 025—@1) (49)
m = l/(mJ_)2+(m||)2 = sin @i_;r@l (50)

where m® = (M5 + M) /uNS, m* = (Mj+ M)/ uNS.
From (48)-(50) and (21), (25) and (29) we obtain for the respective stability regions

the magnetizations

m#:—sin(g—g—);m}’izcos (S—g);mp=l (51)
Lo LY b o gyl P o B,
mgs == A sin (2 ﬁ),mCS_Z_I_X cos? | & E
h o
mes = m COS (f“" —2“) (52)
mZLF:mlqu:mAF:‘O' (53)

For the case a < 0 the respective quantities follow from Egs (51), (52) upon substituting (35).

The above formulae permit us to obtain analytical expressions for the values of the
quantities Ey, mll, mL and m at the boundaries of the stability regions, by inserting the
respective critical-field curves h,(£), h(&), A.'(£) and A."(£) following from Eq. (38). The
results are given in Appendix A. As is seen from Eqs (A16)—(A18), there is a first-order
phase transition between the phases AF and CS along the boundary A."'(&). Since E{F > ESS
in the whole region 3 (except for £ = 7/2), the AF phase is to be regarded as metastable.
One easily proves that Eff = ES for & = #/2, as in this case ¥ = 0.

- As regards the remaining boundaries, it is seen from Appendix A that all the examined
quantities are continuous and hence no first-order magnetic phase transitions occur in this
case. It will be shown in Part II that no magnetic phase transitions of any order take place
along the whole boundary %,(£), and that the boundaries k(&) and A.(&) correspond to
second-order phase transitions.

5. Discussion of results

To illustrate quantitatively the dependence of the system’s ground state energy and
magnetization in the different magnetic phases on the strength and direction of the external
magnetic field, schematic numerical curves for X = 1 (K, =0) and Z = 1.1 (K, = 0.1)J))
are given in Figs 4-11, for four values of the external-field strength (h = hy, hy, hg, hy)
and five different field directions (£ = 0°, 15°, 45°, 75°, 90°), as indicated in Fig. 3 (dashed
straight lines).
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The ferromagnetic solution (21) and the canted-spin solution (25) (regions 2 and I
in Figs 2, 3), as well as their counterparts following from the substitution (35) (regions 2’
and 1’ in Figs 2, 3) are shown in Fig. 4 as functions of the field direction & for four fixed
field strengths, and in Fig. 5 as functions of the field strength for five fixed field directions.
The antiferromagnetic (metastable) solution (20) (region 3 in Figs 2, 3) is not illustrated,
as it is a linear function of the field direction & and independent of the field strength. The
curves for Az in Fig. 4 differ only slightly from those for A, (which is not indicated on the
plot), namely, for field angles & corresponding in Fig. 3 to the canted-spin configuration
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interval between the critical-field curves A (€) and A, '(&). In Fig. 5, the dashed vertical line
indicates the discontinuity of the solution for the longitudinal-field case (§ = 7/2) correspond-
ing to the first-order antiferromagnetic-spin-flop phase transition at the critical field strength
k. (w[2). Also, the curve in Fig. 5 flatten off in the ferromagnetic regions 2 and 2’ (for



346

h> B or k> (), respectively), approaching for & — co and 0 <& <@/2 the-
asymptotic values ©; = 7/2—& and @, = 7/2 & (complete spin-alignment in field direction).

It is plainly seen from Fig. 5 that the first derivatives of the solutions are discontinuous at

the critical-field curves A.(E) and A.'(£), which indicates the existence of a second-order

CS«> F phase transition (cp. Part II of this paper).

It is worth-while noting that for fields inclined to the anisotropy axis, the spin S’ which
forms a smaller angle with the field direction (cp. Fig. 1) undergoes within the CS-phase
a swing-back motion similar to that in antiferrimagnets (see [19, 20]). This effect does not
vanish until the external field is almost perpendicular to the anisotropy axis (cp. the curves @,
in Fig. 5).
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The ground-state-energy and the components of the total magnetization along (m!l)
and perpendicular (m1) to the external magnetic field, correspon(iing respectively to the
curves in Figs 4 and 5, are shown in Figs 6-11. In Figs 6 and 7, besides the energy curves A4
corresponding to the solutions in Figs 4 and 5 there are in addition the curves B corresponding
to the metastable AF-solution (29) plotted respectively for fixed h = h, and £ = 512
(cp. dashed lines in regfon 3 in Fig. 3).

It is seen from Figs 6 and 7 that the energy curves A are continuous and practically
independent of the field direction & (regardless of the magnetic phase), as the slight increase
with increasing & of the curves 4 in Fig. 6 is hardly discernible (with increasing £ the curve A
in Fig. 7 shifts slightly upwards, its AF-part in the interval 0 < A <A (7/2) being constant
for £ = 90°). A possible first-order AF—CS phase transition is also visible in Figs 6 and 7.

Fig. 10

From Figs 10 and 11 the (negative) transversal magnetization component is clearly
seen to have a maximum for a specific field direction at constant field strength (Fig. 10),
and for b = h,(7/2) at constant field direction (Fig. 11). The maximum of —m< in Fig. 10
evidently shifts to & = /2 and tends to zero as b — oo. From Eq. (52) it is readily seen that
the same holds for 4 — 0. In the case of fixed field direction, Fig. 10, the maximum of —m+
at (7/2) vanishes, too, for £ — 0 and tends to V(Z—X)/4(Z+X) for & = 7/2 while mt —0
for h s hy(m[2), & —nf2 (discontinuity). Note, however, that mt =0 for & = #/2 and
h — h (7/2), according to Eq. (52).

The influence of the field direction and field strength on the longitudinal magnetization
is shown in Figs 8 and 9, of which the latter illustrates perhaps best the transition of the system
from the double-phase to the triple-phase case while changing the field direction from that
of the hardest (§ = 0) to that of the easiest (£ = 7/2) magnetization. Since for small declina-
tions of the field from these extreme directions the longitudinal component m!l is practically
equal to the length m of the total magnetization as defined by Eq. (50) (note the difference
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of the units in Figs 9 and 11), the experimental results reported in [21] agree quite reasonably
with the curves in Fig. 9. Our results permit us also easily extend the molecular-field calcu-
lations given in [5, 6] beyond the restrictions assumed by those authors.

It should be noted that the curves m!l for 0 < & < @2 and & > h(n/2) lie actually
somewhat below the uppermost straight curves for & = 0 and 7/2, which is not indicated
in Fig. 9 (except for A (7/2) <h < 0.8). For h — oo, these curves approach gradually their
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Fig. 11
asymptotic value mlt = 1 which coincides with the saturation value for £ =0 and z/2

in the paramagnetic region h > h(0) = h,'(#[2) = Z +X (cp. Figs 2 and 11).

No magnetization curves are provided for the 4F-solution from region 3 (Fig. 2) as
in this case mL = mll = m = 0 according to Eq. (53).

Numerical curves of the components of the magnetic susceptibility tensor, corresponding
to those given here for the ground state energy and magnetization, will be presented and
discussed in Part IL

The author wishes to thank Dr W. J. Zietek for helpful discussions concerning this
work and for reading the manuscript.

APPENDIX A

From Eqs (43)-(45), (51) and (52) one easily obtains the limiting values of the respective
quantities when approaching the boundaries %,(¢), hi(&), h.'(&) and &.'(£) of the stability
regions following from Eq. (38). Hence, for the critical-field curves (&) and A.'(€) between
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the CS (I, 1') and F(2, 2') spin configuration regions (cp. Figs 2 and 3) we get

v ot P
Egslh=h€c(§) == Eglh':hic(é) = — {Z+X+Z COS2 ? + X SlIl2 7}, (A].)
61
mibs|h—sicey = mplusice) = cos (f - —2—)» (A2)
. Jt
ms|ietie) = Milaeiiiey = — sin < £E— 7) ) (A3)
Meslhapbey = Melhanie =1 (A4)

where the superfix ¢ stands for the prime or double-prime mark, and

i [P for K=
T for K =R(). (A5)

(Note that, according to Eqs (12), (14) and (34), the angles & and &' are themselves functions
of the external magnetic field.)

Similarly, we obtain for the lower part of the (&) boundary (between the CS-regions 1
and I1') the values

EG(D) lh=netey = EGS(1) pmtetey = — %{ZJFX—(Z—X) ctg (% N 5) } o

mgs(Dlamnotey = M) hmtoey = —R/2, (A7)

A
mis (Dlr=netey = ms(I) h=ney = — R ctg (Z - 5) / 2, (A8)
mes(1) |h=hc(E) = mgs(1') Ih=hc(£) = —R/2 sin (n/4—$), (A9)

and for the upper part of this boundary (between the F-regions 2 and 2') the values

Bty = BE@ ey = —0—(Z+X)2+V2(X2—2?) ctg (mfd—E)},  (A10)

ME) hmnoey = MF @)yt = sin (w/4—8), (A11)
M) hmneiey = M) hpoiey = cos (/4—E), (A12)
mg(2) !h=hc(5) = mgp(2) lh:h,,(é) =1 (A13)

where

o o SX—Z
R—-‘E/mCOSZS.

Finally, for the 4.”(£) boundary of the AF-region 3 we have

EdFpeny @y = — % {Z+X—(Z—X) cos 2&} (Al4)
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and Eq. (53), while on the same curve A, () the respective quantities corresponding to the
CS spin configuration (regions I and 3 in Figs 2 and 3) are continuous and assume the values

E§Slumiy o = — 5 {Z+X— V2 (Z—X) sin (w]4—28)}, (Al5)
mZ‘:'s!h=h;"(5) = —R/2, (Al6)
mgs|h=h;”(e) = R/2, (A17)
mcs|h=h;"(5) = R/ l/i- (A18)
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