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TRANSPORT PROPERTIES OF NOBLE METALS
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The temperature variations of the electrical and thermal resistivities of noble metals: copper,
silver and gold have been investigated in the free electron approximation using Bhatia and Hor-
ton’s model for the phonon spectrum. The normal and Umklapp contributions are considered
separately from the geometry of the reciprocal space. From the computed resistivities, the Lorentz
numbers of these metals are obtained. The calculated resistivities and Lorentz numbers are
compared with avajlable experimental data. The nature of the theoretical and experimental
resistivity curves is found to be similar, though the agreement is not detailed.

1. Introduction

~ A knowledge of the vibrations of constituent atoms of metals is of considerable impor-

tance in the study of their thermal and transport properties. Early theoretical work [1]
on lattice vibrations in metals using central interactions between ions turn out to be inade-
quate. It is now well known that electrons in metals influence considerably their lattice
dynamical properties. Bhatia [2], and Bhatia and Horton [3] have proposed an elastic force
model for the lattice dynamics of monovalent metals by considering the electronic effect
vig the screening of long-range Coulomb interaction between the ions and have applied
it to sodium and silver to obtain their phonon spectra and lattice specific heats with satisfac-
tory results. Joshi and Hemkar [4] have used this model to other alkali and noble metals
and have obtained a fairly reasonable description of the gross features of their phonon
specira. Recently Sangal and Sharma[5-7] have utilised this model to explain many other
solid state phenomena in alkali, noble and transition metals. )

In this paper, we have studied the temperature &ependence of the electrical and thermal
resistivities of noble metals; copper, silver and gold in the free electron approximation using
Bhatia and Horton’s model [3] for the phonon spectrum. The normal and Umklapp contri-
butions to the resistivities are considered separately from the conservation laws of wave
vectors and the geometry of the reciprocal space. From the computed resistivities, the
Lorentz numbers of these metals are obtained and compared with the values derived from
experimental resistivity data.
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2. Theory

The transport properties of metals depend in a complicated way on the nature of phonon
spectrum and the electronic band structure. The crux of the problem lies in the determi-
nation of the scattering probability of conduction electrons. Ziman [8] has obtained expressions
for the electrical and thermal resistivities of pure metals considering a first order trial
function in the variational solution of the Boltzmann equation. For cubic metals, the ideal
electrical and thermal resistivities due to phonon scattering can be written as
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Here, m, e, kg and T are the ionic mass, electronic charge, Boltzmann constant and absolute
temperature, respectively. v is the velocity of an electron in the state k on the Fermi surface,
K =K’ —k the momentum transfer vector, &z the Fermi momentum, C(K) the matrix element
describing the transition of an electron from state k& to k' and L, the free electron Lorentz
number. o, ; is the angular frequency of phonon of wave vector q and polarization j, €,
the polarlzatlon vector, n the number of ions per unit volume and f = #/kgT. The angular
brackets <---> represent the double average over the Fermi surface.

The polarization factor (K - e, )? and the frequency wg; vary with the direction of
the momentum transfer vector. ThlS situation complicates the evaluation of the double
average in Eqs (1) and (2). Here we use Bailyn’s [9] averaging procedure as elaborated by
Sangal and Sharma [6] to simplify the double average. For a function F(K) having cubic
‘symmetry, this method leads to the following expression for the double average over
a spherical Fermi surface:

KB = 557~ % f e f dKF(K) (1—-u?)*, ®)

where u = K2k and Q is the solid angle in K-space. Using Eq. (3) into Eqs (1) and (2),
the expressions for.the electrical and thermal resistivities may be written as
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3. Results and discussion

We have used the modified Houston’s method to calculate the electrical and thermal
resistivities of noble metals: copper, silver and gold from Eqs (4) and (5). The integration
over K was performed numerically and the integration over £ was carried out by a spherical
six term integration procedure es elaborated by Betis et al. [10] The six directions for K
used are: [100], [110], [111], [210], [211] and [221]. The phonon frequencies o, ;and the
polarization vectors €, ; were obtained from solutions of Bhatia and Horton’s secular
equation [3] for a face-centred cubic lattice. For C(K) we used the free electron expression
given by Ziman [8]. While integrating over K, we split the integrals in (4) and (5) into two
parts corresponding to normal and Umklapp processes from the conservation Jaws of wave
vectors. For the normal processes, K = ¢, where the phonon wave vector q is restricted
to lie within the first Brillouin zone. The limiting values of K along the above six directions
are given by the intersections of the corresponding K vectors with the planes of the first
Brillouin zone. In the Umklapp processes, the wave vectors satisfy the conservation law

K =q+6G,

where G is a vector of the reciprocal lattice. The minimum values of K at which Umklapp
processes show up, can be obtained from the knowledge of reciprocal lattice vectors of
a face-centred cubic lattice. To study the effect of temperature dependence of elastic con-
stants on the resistivities, two sets of elasti¢ data referring to 0°K and 300°K were used
in calculation of the phonon spectrum. The numerical values of these elastic constants

TABLE I
Elastic constants and other parameters for noble metals used in the calculation
Elastic constants T - 7 ) £ | Fermi
(10 dynes/em?) em}lera ure r)—E, 'ermi energy
Metal (°K) (V) V)
G | G |
Copper 17.620 12.494 8.177 0 1.361 7.04
16.839 12.142 7.539 300 1.361 7.04
Silver 13.149 9.733 5.109 0 1.10 5.51
12.399 9.367 4.612 300 1.10 5.51
Gold 20.163 16.967 4.544 -0 3.70 5.51
19.234 16.314 4.195 300 . 3.0 5.51

and other relevant parameters of noble metals needed in the present study are given in
Table I. The elastic constants for copper are taken from the work of Overton and Gaffney
[11], while those for silver and gold are due to the measurements of N eighbours and Alers [12].

Figures 1-3 give the calculated values of electrical resistivities of copper, silver and
gold as a function of temperature, while the results of calculations for thermal resistivities
are shown in Figs 4-6. In these figures, curve labelled A is obtained from 0°K elastic constant



272

SPOOA\ PuB ONYA —
O ‘“ysutseg pue opEpSng — X :sjutod [eruRuIIodxy] *SOAIND [BO19I09Y] MOTYS SIUL] PI[OS “IOA[lS IO armjeroduo) jsureSe AITAIISISAI [BOLIIOA]A oY, °G S

spooy\ pue oy — @ ‘oaqp — L[]

‘pleuooEly pue uewiieg — X :sjuiod [BJUOWIIIOAXY ‘SPAINO EOLISIONY MOYS SAUL[ PO -xoddoo 10§ ormjeredurel JsureSe KIATISISAT [ROLIIOR[R YT, T “BL
| 18
[Mo] 34njpsadway [Mo] aJnipsadway
00 00¢ 0oL -0S (4 oL ) 00¢ 002 0oL 0§ 0z oL
i T o R S A [ T 7 m.& i T T 4.0
a0 3,0
o m i
@ o 2
- - )
] 3 . 2
= 8 ER
.0 T H.00 2
£~ 2 £- -
- 4 - 3
_ ) | &
] s o e
3 < =
2% 5 .0t IS
. 0 . S
- 3 N 9
. ~ - W
7.0 H,0t
3, e
Jg -




= N
TTTTIT

0’

TTTTI T TTTTITT

T

T

Electrical resistivity [uf2cm]
T T TTTTIT

T TTTITIT

T

S ! !

|

273

o B b bl | J

70 20

50 700 200 300
Temperature [°K]

Fig. 3. The electrical resistivity against temperature for gold. Solid lines show theoretical curves. Experimental
points: O — White and Woods

TABLE II

References for electrical and thermal resistivity data for noble metals

Metal

Electrical resistivity

Thermal resistivity

Copper

Silver

Gold

Berman and MacDonald?
Whiteb
White and Woods®

‘White and Woods¢
Dugdale and Basinskid

White and Woods®

Berman and MacDonald?
Whiteb

White®

Whitef

2 R. Berman, D. K. C. MacDonald, Proc. Roy. Soc., A211, 122 (1952).
b G. K. White, Austr. J. Phys., 6, 397 (1953).
¢ G. K. White, S. B. Woods, Phil. Trans. Roy. Soc. (London), A251, 373 (1959).
d J. S. Dugdale, Z. S. Basinski, unpublished.

e G. K. White, Proc. Phys. Soc., A66, 844 (1953).

t G. K. White, Proc. Phys. Soc., A66, 559 (1953).
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Fig. 4. The thermal resistivity versus temperature curve for copper. Solid lines show theoretical curves. Experi-
mental points: X — Berman and MacDonald, O — White
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Fig. 5. The thermal resistivity versus temperature curve for silver. Solid lines show theoretical curves. Experi-
mental points: O — White

data and curve labelled B is based on 300°K elastic constant data. For comparison, the
available experimental data on resistivities have also been plotted in these figures. The
sources of the experimental resistivity data are summarized in Table II. In Fig. 7, we have
displayed the Lorentz number L = o/TW obtained from the calculated and observed tempe-
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Fig. 6. The thermal resistivity versus temperature curve for gold. Solid lines show theoretical curves. Experi-
mental points: O — White
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Fig. 7. Theoretical (full lines) and experimental (broken lines) Lorentz numbers of noble metals

rature dependence of electrical and thermal resistivities. It is seen from Figs 1-6 that the
general shape of the theoretical and experimental resistivity curves is similar, though the
agreement is not detailed. The experimental electrical resistivity values are throughout
higher than the calculated values and the divergence between them increases with the
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rise of temperature. In the case of thermal resistivity, the theoretical values are higher than
the experimental values at low temperatures, but lie below the experimental curves in the
high temperature region. The disagreement is more pronounced in gold. Further, the theoreti-
cal results do not seem to be very sensitive to the temperature dependence of elastic constants.
The marked variation of Lorentz number with temperature shows in adequacy of the
Wiedemann-Franz law.

The discrepancies between theory and experiment are attributable to the use of the
free electron model for the electron-phonon matrix element C(K), which ignores the exchange
and correlation effects. It is known that transport coefficients of metals are very sensitive
to the form of electron-ion matrix element used. The expressions (1) and (2) used in the
present work are based on first-order trial function in the variational solution of the Boltz-
mann equation. This results in a certain overestimation of the resistivities. The poorer agree-
ment obtained at higher temperatures may be partly due to the neglect of multiphonon
processes and small change in C(K) brought about by volume changes through the thermal
expansions. '

One of the authors (J. P.) is thankful to the State C.S.LR., Lucknow for the award of
a Research Fellowship. The work was supported by the Department of Atomic Energy,
Bombay.
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