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BLOCH WALLS IN ITINERANT MODEL OF FERROMAGNETISM
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The distribution of magnetization directions in ferromagnetic domain walls is obtained
from the itinerant electron model of ferromagnetism. The Bloch wall width and the wall energy
is calculated in this model. It is shown that some local decrease of magnetization value in a Bloch
wall is to be expected.There appears a possibility of a spontaneous appearance of domain structure.

1. Introduction

Distribution of magnetization directions in ferromagnetic domain wall has been mainly
treated by means of phenomenological theory [1-3]. This problem has been also considered
for the Heisenberg model of ferromagnetism [4, 5]. However, no calculations have been made
in this field for the band model of ferromagnetism, in which electrons are not localised but
are considered as waves propagating in a periodical potential of a crystallographic lattice.
Some conclusions regarding Bloch walls were also obtained for the last model [6-10];
however, they concerned the so-called “‘stiffness parameter” [6-9] and the change of mag-
netization value in Bloch walls [10] rather than the distribution of magnetization directions.
As a common point of all these papers [6-10] a linear rotation of magnetization in Bloch
wall was assumed. It is known, however, that this rotation is certainly nonlinear. The distri-
bution of magnetization directions in Bloch wall can be obtained only if anisotropy energy
is taken into account; this anisotropy was neglected in all the papers [6-10].

The purpose of this paper is to calculate the distribution of magnetization directions
in Bloch wall from the point of view of the itinerant electron model of ferromagnetism by
means of methods analogous to that used in the paper [6].

2. Domain structure

We consider an uniaxial ferromagnetic crystal. We assume that some domain structure
exists in this crystal, but we are not interested in the origin of this structure (tendency to
reduce a demagnetizing field energy). If uniaxial anisotropy is large enough, as is assumed
in the following, we expect that domains have the form of slabs magnetized antiparallelly and
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separated by 180° Bloch walls (Fig. 1). For smaller anisotropy energy, the so-called closure
domains appear; we neglect this possibility.

We assume the Z-axis of the coordinate system perpendicular to the Bloch walls and
the X-axis along the easy axis of the crystal. Then, the macroscopic magnetization M rotates
in Bloch walls constituting an angle ¢ with the X-axis; this angle depends on one variable
z only. In every point of the walls the macroscopic magnetization remains in the XY plane.

3. Energy of the crystal with the domain structure

We assume that the electron wave function in the crystal can be considered as a deter-
minant constructed from one-electron wave functions. Crystal energy is calculated as a sum
of the Hartree-Fock energy [6] and the phenomenological anisotropy energy, without any
considerations concerning the origin of this anisotropy.
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Fig. 1. Domain structure in uniaxial crystal

The ferromagnetic state of a crystal i. e. the state in which quantization axes of all
electrons are parallel to the X-axis, is described by a determinant constructed from one-
-electron wave functions of the form

1
. T
Yi = ykgh = 1k exp (*L vl Uy) (0)- 1)

The energy E, of this state in the Hartree-Fock approximation is equal to
hz 1 ’ 7 1 ’ !
By=—5— Y <k|V2|k>o+ -Z—Z Ch' |G RE o~ ?g ek |G Ko (2)
k s K s i

where the subscript 0 means that matrix elements are calculated by means of the states
995 G is the interaction potential between electrons. We introduce a rotation operator O,
of the quantization axis of electron with the wave vector k in the following way

Oy = exp [— —ZL (pko‘z] exp [—;— (% — I )ay] . 3)
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This means, that in a state with the domain structure, the quantization axis of this electron
is described by spherical angles 9, ¢, with respect to the Z-axis as the polar axis. The
wave function of this state is the determinant from one-electron wave functions of the
form

Ye = Xk 8r = O8h (4)
where y, and the angles &, @, are chosen so as to make the crystal energy
h2 b 1 1
_—— 2 —_ ’ N 7 ’ X
E= g 2 IV + 5 D, Gk = PIRCICR

reach the minimum value. The anisotropy energy is introduced here in a phenomenological
manner; the density of this energy is equal to

1 .
€anis = N ; K sin? Pk (6)

where IV denotes the number of electrons in the crystal (we assume the single occupation
of each one of the electron states); K is the uniaxial anisotropy constant assumed the same
for all electrons.

By means of (1), (3) the formula (4) leads to
) 1 '
exp [—z g@] €08 - Ou(1)

exp_[i —(B'éi):l sin % Og(1)

where w,(r) is a periodical function with the crystallographic lattice period.
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P(r) = eru(r)
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Fig. 2. Quantization axis Sy of electron with the wave vector %, and macroscopical magnetization M with respect
to the coordinate system
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The distribution of electron quantization axes is given by the angles ¥,, ¢, or by
the angles (Fig. 2)

Eul) = Bur)— - . ®

771_;(””) = () —(), ©

where @(r) is the angle between the macroscopic magnetization (lying in the XY plane)
in the point  and the X-axis. In the following we consider one-dimensional Bloch walls,
i. e. walls in which all the angles are functions of the one variable z only. It is clear from the
definitions that the angles &,, 1, constitute the deviation of quantization axis of the electron
with wave vector & from the macroscopical magnetization direction which is given by spher-

ical angles %, ¢. Therefore, mean values of &, 7, taken with weights [u,(r)[? over ele-

mentary cells must be equal to zero if corresponding sums over all occupied electron states

are taken:
> [ ErefumpE=0, (10)
k e.c.
/ d3rm|ug ()2 = 0. (11)

We assume in the following that &,, #,, are small and we take into account terms up to the
second order with respect to &, 7.

The calculation of the energy terms in the formula (5) by means of methods similar
to those in the paper [6] leads to

hz
T =— 5— <kIP2[Ie>

he : .
=5 {fdsr}kalz_ %j d%r2 Re yiV ynéul ou+ Zfds"lxreP [IthkI”‘HVE"F]}’

(12)
I |GIII> = [ d3rd3 | [2G(Ir— D e () 2, (13)
I |GIE) = [ d3rd%' G(r—1' )5 (0) 13, (1) (g, (1), 8(1)) X
X 2w ) 1) (g, (), g, (1)), (14)
o= Y Bk, Eda= - f %K sin® gu., (15)

k

where

(gr(1), gu(r)) = 1— % (1 — 1) (51 +Ew)— % (1 — 1) ®— —é— (Ew—Ew?  (16)
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The total energy (5) is a function of y,(¥), &,(r), ¢,(¥), which have to be chosen so that
the total energy takes the minimum value. It is easy to show in the lowest approximation
that for this minimum y,, = ¥}, because each change of y, causes an increase of energy.
On the other hand, &,() and ¢,(*) have to be obtained by means of a variational procedure
with the additional condition (10). Next, we can obtain ¢(#) from the formula (11) changed
to the form

2 [ )l —g@)1dPr = 0. (17)

k e.c.

Our problem is a very complicated one in the general case. We solve it in the most
crude approximations, in which electrons in a crystal are treated as: (1) gas of electrons
interacting by means of screened interactions of delta function type (vanishing range of
interaction), (2) gas of electrons with pure Coulomb interactions (long range of interactions).
Moreover, some general conclusions will be obtained for electrons in a periodical potential

of a crystal.
The so-called correlation effects [8] between electrons are neglected here.

The principal assumption enabling us to obtain analytical results is:

&, = const, 1, = const. (18)

4. Electrons with delta function interactions

In this case u,(r) = const. Interaction energy is introduced in the form

Gr—')) = V' s(r—w). (19)
The total energy is equal to
24 2/51
E = E(&., q) = ;—zf% [ls2+szk ! fd(i’“ dz -+ %i] (%ﬁ—")zdz} +
) 24
NSy [1_ g’ (srsk)ZJ ek fsinz e, (20)
kB k, & 3

where V= V’[Q, Q = L L2/ is the period volume, 24 is the width of two antiparallelly
magnetized domains. We minimalize the energy (20) with respect to £, @,(2) with the addi-
tional condition

Z gkz =0, (21)

which we obtain from the formula (10). Next, we find ¢ = @(z) from the formula (17).
Taking into account (21), minimalization of (20) with respect to &, leads to
24
h2 1 d(pk

5 b5 [ 2 d+_2(§k &) +1 =0, ;&g:o, (22)
0
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where 4 is the Lagrange factor. Minimalization with respect to @,(z) leads to the Eulér-
Lagrange equations of the form

1 h% g2 v Q .
—— __d;i';k - Z (pe—w) + 37 K sin 295 = 0. (23)
e
The set of equations (22), (23) can be solved separately due to the assumption (18). We
have % = @ In this case the Fermi surface is a sphere so that Zkz = 0; therefore
dz dz - K

A =0 from (21). We obtain

om e (24)

=2 pNA

Using (9) we can write the equations (23) in the form

1 h2d2p 7V Q .. '
St L o —2—;(nk—nk')+7V~K51n2(<p+17k)—0 (25)

and from (17) we have
; 7, = 0. (26)

Writing sin 2(¢+%,) as a power series of 7, substituting it into the equation (25) and
using (26), we have

1 42 d2p
—?%d—zi _K[l——z k]s1n2(p—0 27

This equation gives @ = @¢(z, n,). We can see thus, that the exchange energy influences
the distribution of ¢ through' ,, only. The solution of the equation (27) with a periodical
condition corresponding to the domains of the width 4 is [3]

cos @ =— sn[z—j/—z—%], (28)
where

nf2

,%f:f I o
K -
. l/l— K ds °n p
2
PEENLY S S

4 2m 0 2 . (30)

Substituting (28) into (27) and using the assumption that 7, are small we obtain after some
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manipulations the set of equations for #,. The solution not depending on z is

=0 ,_ B )
We find from (30} that
1Rk N
A= pacroR (32)

As a result of the minimalization procedure for this case we obtain the distribution
of-macroscopic magnetization directions i in Bloch walls ¢ = ¢(z) given by (28), (29), (32)
which has the same character as the magnetization distribution obtained in phenomeno-
logical theory [3] and‘in the Heisenberg model [5]. We can see that ¢, = @ (because 7, =0),
i.e. projections of spins onto the XY plane lie along the macroscopical magnetization for
all electrons; however; spins of different electrons deviate from the XY plane (the deviations
are given by &), so they do not lie along the macroscopical magnetization! As a result,
the macroscopical magnetization value in Bloch wall must be somewhat lower than that
in the case of the ferromagnetic state with completely aligned spins. This result has been
obtained earlier by means of the band model in the paper [10] and it is confirmed by exper-
iments [11]. It may be expected in general that there may exist a state with a lower energy
than that obiained in this paper. In such a state the assumption (18) would be not realized.
Moreover, the value of macroscopical magnetization would not be constant in Bloch walls
but it would be a continuous function of the variable z. This result has been obtained earlier
by means of the Heisenberg model in papers [12] and [13]. In the paper [12] it was a result
of spin wave excitations in domains and wall excitations in walls. In the.paper [13] it was
a result of lowering the value of exchange coupling between localised spins in Bloch walls
caused by difference of directions of nearest neighbour spins. On the other hand, in our
model the dependence of the macroscopical magnetizationi value on the position in walls
is a result of deviations of electron quantization axes from the direction of magnetization
even without the appearance of spin waves.

Using (28), we can obtain the Bloch wall width and the wall energy for the unit of wall
surface. Defining the Bloch wall width 6 by

- CZ : -
where the subscript z, denotes that the derivative _ZEZL i to be taken' at the middlé of thé
wall, we obtain

R 4__21?__%. : : (34)

For 1y = 2.5 (where r, is the mean radius of the volume corresponding.to one electron
in the Bohr units) and for K ~ 106 erg/cm® we obtain § == 1.1 - 105 cm. This result seems
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to be plausible in comparison with the phenomenological theory and it indicates that the
quantity 4 given by (32) plays the role of the “‘stiffness parameter”.
The wall energy (for unit of wall surface) defined by

__ E—E,
= 2L,

(35)

is in the state with minimalized energy equal to

(,:4]/(_1_ fi,f\i)K_ztfﬁ/ﬂ_?r;ac, 36
4 2m £ 20m2 V' A

where k_,, denotes the wave vector at the Fermi level. The second term in the equation
(36), originating from exchange energy and nonvanishing only if &, are different from zero,
shows that the total energy is actually reduced if electron spins can deviate from the XY plane
in the proper way (24).

The formula (36) shows also that the ferromagnetic state is nonstable with respect to
the spontaneous appearance of domain structure if the electron density becomes higher
than the critical density for which both terms in (36) are equal. We would have some kind
of a helical structure with a nonlinear distribution of magnetization directions!

5. Electrons with Coulomb interactions

In this case we proceed in a manner similar to that in the Section 4. The total energy
is now equal to

24

24
o -h2 2' 1 der, 1 1 doy, 2
E—;%[k+kzgk‘2dfdzd+424! (dz s
0

1 .| €l dme? (E—E&w)®  (pn—gw)?
Ty »<"’kl1r—r'] > 2@2\k k']z[ 4 4 ]+

kK
24

Q. 1 (.,
+ ; S Ko | dn? gude. (37)
0

The minimalization in respect to &, gives

24
1 dop, g2 4ar B B

We can solve the equations (38) by means of the procedure presented in the paper [6].
We introduce '

h: :
Y= meE A (89)
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and we can show that 1 = 0 exactly as in the Section 4; equation (38) gives then

1 4
+ Kol ; ‘fm (bx—&x) =0, ; & =0. (40)
The solution is [6]
&y) = % R(y), (41)
where
243 9
R(y) = 4my [— o610 “1-259’3] > (42)
Y = Kk, (43)

The minimalization of (37) with respect to @,(2) gives the Euler-Lagrange equation of the
form

1 h2 d2¢ 4ire? Q
S tmd T mZue o (o) G Ksin 21 = 0. (44)

The same procedure as in the Section 4 gives the solution (28), (29), and (34). For the wall
energy (35) we obtain, however, another expression

(1 h® N N hip?
U:ZLV(-Z%E)I{ Q o 2 2A 0.7217 %kmax, (4!5)

because the angles &, are now given by (41), (42), (43) rather than by (24), as in the previous
section.

In this case the ferromagnetic state becomes also unstable with respect to the sponta-
neous appearance of domain structure if the electron density is high enough. On the other
hand, however, it is known [8] that the ferromagnetic state is unstable with respect to a par-
amagnetic state if this density is not low enough. It would be very interesting to verify
whether both instability conditions are the same and which the state has a lower energy,
or whether there exist stability regions for these three states. Unfortunately, no investigations
of stability of the ferromagnetic state with respect to the paramagnetic one have been made
up to now for the gas electrons in a crystal if anisotropic interactions between them are
taken into account.

6. Electrons in o periodical potential of a crystal

A similar procedure can be applied in principle for elecironsin a crystal if a periodical
potential of a crystallographic lattice is taken into account. For example, in a nearly free
electron approximation, it is possible to introduce

uy(¥) = 14+, 3 e . (46)

instead of u,(r) = const, where l, are the vectors to nearest neighbours in a reciprocal
lattice. The calculation of the total energy can be made on the same lines as in the previous



260

sections. However, the minimalizing procedure gives now a set of nonlinear equations which
cannot be solved separately for &, and ¢(z) even if only a very weak modulation of plane
wave due to a periodical potential of a crystallographic lattice (b, <€1) is taken into account.
In this case one expects that the solution must be given by (28) with a small modulation from
the lattice.

The situation of electrons in a crystal in a tight binding approximation is still more
complicated. It is possible to consider one-band model with short range interactions different
from zero only if electrons are in the same Wannier state. It is possible also to approximate
Wannier states by atomic functions for calculations of total energy as in the previous sections.
The minimalization procedure in this case gives a set of equations which can only be solved
numerically.

7. Conclusions

We see that it is possible to obtain the distribution of magnetization directions in the
Bloch walls and the wall width from the itinerant electron model of ferromagnetism if
anisotropy energy is taken into account. In the most crude model, in which electrons in
a crystal are treated as free electron gas, the solution is the same as in the phenomenological
theory or in the Heisenberg model. In real crystals, this distribution must be modulated
by a periodical potential of a crystallographic lattice.

We have found that the magnetization in Bloch walls must be a litile lower than in
domains or, more precisely, than in the strictly aligned ferromagnetic state. One can expect,
that it is plausible in general to speak about local values of magnetization as a function
of a position.

We have shown that the parameter 4 given roughly by (32) plays the role of the “stiff-
ness parameter” of the phenomenological theory. It is an interesting fact that in our model
this stiffness stems from kinetic electron energy, which ““prevents” the change of the magne-
tization direction. One can expect, that if the problem is solved more strictly, some depend-
ence of the angles &, 1, on z is possible, and that exchange interaction gives also some
contribution to the stiffness in a similar way as in the papers [6] and [7].

We have found that in some conditions concerning electron density an instability of the
ferromagnetic state with respect to the spontaneous appearance of assumed domain structure
(or “‘helical structure”)is to be expected. However, it is not certain whether instability with
respect to the paramagnetic state is not more important. The elucidation of the last question
requires further investigations.

We wish to express our sincere thanks to Professor S. Szezeniowski for valuable remarks
and for the critical reading of the manuscript.
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