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The simplest infinite subset of graphs (consisting of polygons only) describing the Ursell-
-Mayer cluster expansion of the pressure and actual density in powers of the active density (fuga-
city) is resummed to a closed formula (SC approximation). It is shown that this approximation
is sufﬁ(;ieni: for the illustration of the existence of phase transitions in macroscopic systems.

1. Introduction

One of the important, and still not completely solved, problems of statistical mechanics
is the theory of condensed phases and first-order phase transitions (¢f. [1-10]). It is now
known that in order to describe a phase transition it is necessary to take into account the
intermolecular interactions of infinite range in some way [3, 11-16]. Among other things,
we have shown that summation of the simplest (topologically) infinite subset of diagrams
representing the Ursell-Mayer virial expansion (the expansion of pressure in powers of the
systems density [1, 17]) leads to a relatively simple closed approximate equation of statel
which enables the explicit prediction of two first-order phase lransitions [18, 19]. In this
approximation the phase transition is obtained for the short-range two-particle interaction
potential, whereas the long-rangeness of the interactions is incorporated into the resulting
equation of state by retaining the terms which describe, although indirectly, the successive
interactions of chains of particles of any length (up to infinity). The important point here
is, perhaps, that consideration of the simplest class of such terms (in the formalism of the
virial expansion) was sufficient to get these results.

The virial expansion, i.e. the expansion in powers of a system’s density g is certainly —
from the physical point of view — one of the most natural expansions of the macroscopic
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Poland.

! This form of the equation of state, henceforth called the OC (one chain) approximation, may be also
considered as the approximate solution of the hypernetted chain [20, 21] and Percus-Yevick [21-23] approxi-
mations.
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propertfes of the system, because density is one of the most natural (and most fundamental)
parameters of state. However, it is by no means the most natural expansion from the formal
point of view. Indeed, when calculating thermodynamic quantities on the basis of statistical
mechanics it is found that the first natural expansion encountered is in powers of fugacity
z (the cluster expansion), which must be further rearranged in order to get the virial expan-
sion in powers of ¢ [17]. In the Yang-Lee formal theory of phase transitions [2, 5, 24-27],
also, one looks for the analytic properties of the grand-canonical partition function considered
as a function of the (complex) fugacity z.

It thus seems that it could be interesting, at least from the point of view of formal
theory, to examine the partial summations of the cluster expansion, similar to those [18,
19] of the virial expansion. In this paper the simplest (topologically) subset of graphs of the
cluster expansion of the pressure will be discussed; it is to be noted that the simplest subset
of biconnected graphs of the virial expansion, giving rise to the OC approximation [18, 19],
corresponds to a fairly complex (and by no means simplest) subset of connected graphs of
the cluster expansion. Thus the approximation (called hereafter the SC — simple chain —
approximation) which will be discussed in this paper is — in a sense — poorer than the
OC approximation of the virial expansion. The second part of this work will be devoted
to the summations of further, more complex, subsets of graphs, leading eventually to the
formulas for the pressure and density of the system as functions of the fugacity z, equivalent.
to those in the OC approximation.

2. Summation of simple chains

Consider a system of IV identical particles contained in volume (2, kept at temperature:
T, and interacting with each other through the pair potential V{(r), which is assumed to.
have spherical symmeiry. It is also assumed that quantum effects are negligible, and the:
thermodynamic limit,

1
N—> o0, £ — oo, % == finite, (1)
is considered. In this case, the thermodynamics of the system may be obtained from the
function y(T, z), related to the grand-canonical Z, and canonical Z, partition functions.

and to the Helmholiz free energy per particle, A, through the relations?:

1 1
21T, z2y=lm—1InZ(Q, T, z) = lim —In Z(Nv, T, N)+In (z4)3, 2)
Q- L0 ° N0 Nv '
1
A(w, T) = — kT 'lim i In Z,(Nv, T, N) = —kT[vy(T,2)—In(z43)]. 3)
N-oo

The fugacity z (ireated here as an independent variable) is defined by

z == A 3 exp (G/kT), (4)

2 We follow here the formalism of Ref. [17].
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where G is the Gibbs free energy (free enthalpy) per particle, £ the Boltzmann constant,

and

A= (hz/Zyzka)l/z,

m denoting the mass of the particle. :
The equation of state in this formalism is obtained by expressing the pressure P and
the number density o of the system as functions of T and z:

B (%)T:ATX(T, 2 5)
9:%22(%)T @

the latter relation resulting from the derivation of Eq. (2) (it defines the proper value of
the independent variable z in Eq. (2) [17]).

Now, the Ursell-Mayer cluster expansion leads to the following general result for the
function (T, z):

1(T2) lel by(T)7, (7)
.11
b(T) =lim 5 7 j f dry..drUiry, ..., 7o), @®)
Q

where U, is the Ursell cluster function. The latter may be expressed in terms of finite sets
of connected graphs: U, is equal to the sum of contributions from all possible I-point
labeled connected linear graphs, each contribution being written in such a way that every
line joining two points labeled 7 and j imparts a factor equal to the Mayer function f;:

i = flry) = exp {—V{r)[kT}—1, r;= |7'_i—7’j| <

{¢f Ref. [17] for more details). The expansion (7) is thus represented by an infinite set of
labeled linear connected graphs.

The simplest interesting infinite subset of graphs representing the éluster expansion
(7) is perhaps that composed of simple polygons® (including the first two-point one-line
graph of b,) topologically identical with, but physically not equivalent to%, the simplest
subset of graphs of the virial expansion, which forms the OC approximation. In this simple
chain (SC) approximation, the Ursell cluster functions are:

U1:1a Uz :f12’

k!
Up = ﬂflzfzs oS, k=3,4, (10)

3 The still simpler subset, that composed of pure Cayley Trees only [17], is equivalent to the second virial
coefficient alone, and thus the contribution from it is uninteresting from the point of view of phase transitions.
This subset will be considered in a subsequent part of this work.

4 because of non-linear relations between the expansion variables, z and g, of these two formalisms.
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and thus (the technique used here is identical with that from Refs [18] and [19]),

=1, b= g [ et = 5331 70 ey

1
by = —2—1k— CF fdQ[V(Q)]k» k>3,

‘where
. 4ot ;
y(g) = f dreia-r(r) = 2% f dr r sin (grA(0) (12)
75

for the spherically symmetrical potential 7(r). Inserting (11) into (7), we get
2(T.2) = z—B22+ R(T'2), (13)
with B = —b,(T) being the second.virial coefficient of the gas under consideration, and
RA(T, 2) =— 55 | da{In [1=(@)| 571 + + ep(@)] (19

- 2(2m)3 2 ’

Equations (13) and (14) determine the pressure of the system as the function of the fugacity
2. The density is calculated from the relation (6):

0(T,2) = z2—2Bz%+2zR,(T\z), (15)
with
Ry(T, z>~[9 Ry(T. z>] (16)
z2 73(q)
se ) Mg

For comparison, the pressure in the OC approximation (with g == 1/v as ihe indepen-
-dent variable) reads [18]:

(16a)

i et Be— s [ aa i i-engl+ {2240 S

3. Numerical results and conclusions

The computation of the integrals Ry(7,z) and R,(T,2) (as well as of the integral invol-
ved in Eq. (17)) calls for some additional remarks. These integrals represent the sums of
some parts (SC approximations) of the cluster series (7). The radius of convergence of the
latter in this approximation is determined by the condition (the geometrical series):

Il < zmax = 1Max[y(g)]- (18)
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Thus, for |2| > Zyae Ro and Ry may be treated as analytical continuations of the SC ap-
proximation to the cluster series. However, in this region of z the integrands in (14) and (16a)
are singular at some values of the integration variable ¢ (this reflects the divergence of the
original series). We interpret these singular integrals as their Cauchy principal values;
this interpretation seems to be the simplest one.? Besides, the same interpretation was
ascribed to the integral in Eq. (17) in our earlier work {18, 19]. At the point |2| = Zpaq the
function R, is divergent and thus the density of the system is indefinite at this point. The
value of z,,,, being connected with the maximum of the function y(q) = ¢(T; ¢g), Eq.
(12), depends on the temperature of the sysiem and on the form of the intermolecular
potential V(r).

The numerical calculations were performed on the ODRA 1204 computer, for the
Lennard-Jones 12-6 potential function:

Vi) = 4el(ofr)2—(a/r)°]. (19)
All computed quantities presented below are written in terms of the reduced parameters:

1o+ = V+=Qb,N, T+ =FkTJe, P*=Pbyfe, z*= zby, by = 2m0%/3.  (20)

9
T*=7 T%:Z
2.0 |-
,f"z
iad
7.0 /,// T*=3
/"//-.f

0.5 7.0 2"

Fig. 1. Density gt as a function of activity z¥ in the SC approximation for three values of temperature T+. The
straight line denoted id. shows the ideal gas relation g+ = z*

Values of g+(z*) and P+(z*), as given by the SC approximation, Eqs (13)-(16a), were
computed for three values of the reduced temperature, T+ =1, 2, 3, and are presented
in Figs 1 and 2. For T+ = 3, ¢™ and Pt are very near to the ideal ‘gas values, oj; = z%,
P} = T+zt. For T+ =1, both ¢* and P+ are indefinite at 2zt == 0.202. The derivative

5 A better interpretation of the function Ry(7, 2) is given by Eq. (16) — the integral R(T, 7) is conver-
gent; however, the integral form (16a) is more convenient for numerical computations.
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(1/T*)(9P+[9z%) 1 is plotted against z+ in Fig. 3, for T+ = 1 and 2 (for T+ = 3, this deriva-
tive is very near 1). For higher temperatures, T > 2, no singularity is found in o (z") and
P(zt).

It seemed that a comparison between the SC (cluster) and OC (virial) approximations
-would be interesting. For this purpose, P* was calculated as a function of J~ *+(z*) by com-
bining the results presented in Figs 1 and 2 (SC approximation), whereas P+(V), as given

p*

3.0

2.0

1.0

0.5 7.0 z*

Fig. 2. Pressure P+ as a function of activity z+ in the SC approximation for three values of temperature 7',
Note that for z+ > 1 the SC approximation predicts an inversion of the temperature dependence of the pressure

by Eq. (17) (OC approximation), was computed directly. The results for 7% = 1 are shown
in Fig. 4. It is seen that the OC approximation predicts, in general, lower values of P+than
those obtained from SC formulas. Moreover, the isotherm calculated from the OC approxi-
mation possesses two discontinuities, whereas that from SC formulas only one, and the SC
singularity appears at much lower values of V** (greater density) than the first OC discon-
tinuity (proved to correspond to a gas-liquid transition [18, 19]). Note that the singularities
in both OC and SC formulas are connected with the same value of the maximum of the
function p(7T; g). However, in the OC approximation it is the value of v = p___ which
determines the location of the singular point at the isotherm P = P(v), whereas in the SC
approximation this location is given by the value z = l/ymax, which in turn determines the
corresponding value of v = o(z).
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Tig. 3. Derivative of the pressure, | —— vs. activity zt
C/’)Z+ T+

P)t

0.8 S.C.: P*=P*(V*(2*)

0.4

0.4 0.8 y*

Fig. 4. Comparison of isotherms Pt = P*(F*) calculated from OC and SC approximations. The high-density
portion of the OC isotherm is omitted

The results presented above seem to lead to the conclusion that SC approximation,
which takes into account the simplest infinite subset of terms of the cluster ‘expansion,
is able to predict the singular character of macroscopic properties (of a many-body system)
considered as functions of temperature and activity (fugacity, active density), or of tempe-
rature and actual density of the system. It should be stressed that the SC approximation
takes into account a much smaller number of terms (graphs) of the cluster expansion than
does the virial OC approximation. From the point of view of formal theory, the cluster
SC approximation may thus be considered as being simpler than the virial OC approxima-
tion. Nevertheless, it is sufficient for illustrating the existence of phase transitions.

Let us note, however, thai the results predicted by the SC approximation seem to look
rather similar to the characteristics of the second-order phase transition® (A-point; cf. especially

6 This remark is due to Dr hab. K. Zalewski, to whom I am very indebted for the critical reading of the

manuscript.
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Figs 3 and 4), whereas those of the OC approximation adhere closer to the description of
the first-order phase transition. A better understanding of the ““mechanism” of the phase
transitions described by these approximations may perhaps be gotten from comprehensive
computations of other thermodynamic quantities (especially of heat capacity), or on the
basis of the Yang-Lee theory [24-27].
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