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MICROSCOPIC THEORY OF DILUTE He3—He II SOLUTIONS. II.
LINEARIZED HYDRODYNAMIC EQUATIONS AND GREEN
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After solving the linearized hydrodynamic equations the expressions for the ‘retarded
thermodynamic Green functions for He® — He II solutions are obtained in the long-wavelength
low-frequency domain. Thed ensity-density Green functions have singularities only for the
energies of the first sound quanta.

Introduction

In paper [1], referred to here as Part I, the hydrodynamic equations for dilute He3—Hell
solutions were obtained on the basis of microscopic theory. The theory was proposed by
Bogolyubov [2] for He II. From the full hydrodynamic equations it is easy to obtain linearized
equations in the so-called acoustic approximation. These equations can be solved exactly,
what enables us to consider the propagation of sound in a superfluid.

1. Linearization of hydrodynamic equations

Consider, by means of Eqs (55)—(59), (I), an infinitesimal deviation from thermody-
namic equilibrium. The deviation is caused by infinitesimal scalar potential 8U(¢, r) and
infinitesimal “‘sources of particles” d7(¢, r) and d#4*(z, r) introduced adiabatically into the
basic Hamiltonian.

We put into the hydrodynamic equations ((55)—(59), I) the following:

0 =00t 1), 60=0°+00(t,r), S=S°+685@,r), 1)
O, = 0v(t, 1), v, =0, 1), ¥ =02=0,
C~dn,rn, Ut r)=oU,n.
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The terms with products of two variations are neglected, what gives the linearized hydro-
dynamic equations

o™

= +0'V 80,0V 0, = imp Yo, (09* —087), (2)
| é’a‘i e 95: +gmel 60, = 0, ' B
S e

af;vgan . _,9_ (ﬂ_z)‘__ _n%; aaérU (5b)
w895 | 900" . msyop, =0 (6)

ot ot

(the superscript 07, referring to thermodynamic equilibrium, is omitted; see also (40), I).
‘Thus far it makes no difference what three independent parameters, (™, 0,c)or (£,0,¢),
are chosen. For the calculation of the Green functions it is more convenient to take (0™,
0, ¢), but we shall express our formulae also in terms of the (&, 6, ¢) parameters.
We have the following equations:
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From (7) it follows that
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The second term in (5b) has the form

(1 92 c P =
{1 — = —_ — — — —— L P
AR, (@’” 5" @ ac) Sk
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The variations 6v(* and v can be eliminated from (2)—(6), and we get
L 55 Sl7266——cl726z _ims e g
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+ ZE TR 26U, An = Yeo(dn*—én), (12)
mpmg
do™— 202 = g 28U +imgAy, 13)
Séc—cdS = 0. (14)

We express now all variations in (12) —(14) in terms of independent variations g™, 60
and dc, e. g.,
aS ... 98 . S

2 P a5 m 2 9_9 2 2
Vﬁ.@—ag 260 +90|7(50+9 V2 = 2. (15)
Eqs (12) —(14) are linear, therefore, all variations can be written in the form
5f(13, r) — e—i(ul+et+ikrat(k)+e?wt+st—ik76f(_k), '(16)

w+ice=FE, &> 0,8 0.

They vanish when & — —oo,i. e. at equilibrium.
The Fourier components 60(k), dp™(k) and dc(k) can be found from the following
algebraic equations
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2. The velocity of the first and second sound
The determinant of the system of Eqs (17)—(19) is

Det = 22 95 pey (),
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In order to express the thermodynamic derivatives in (£, 8, c)-parameters we have the

following formulae
B2 (2, (5L, (2022
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Thus, the determinant (20) can be written in the form
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in agreement with Khalatnikov’s results [3].
We are interesied now in the roots of the equation

P(E?) = 0. (23)

For pure He II they are of the form
B k2, Bl =R, 24)

oP m | S m
= 20 e Y520 /—éﬁ on, 3Ll



161

We start from the values

w52 o S
17 9om” 2 9S L7
20°"
and calculate the corrections to E? and EZ (arising from the additional dependence on concen-
tration ¢) as follows
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From (22) we have
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So for the velocity of the first and second sound we have
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From these considerations we see that the additional term in Khalatnikov’s formula for c,
can be omitied.

) :
In order to calculate S and ¢? 9—2 it is necessary to know the (8, c)—dependence of
¢

up and pp. Fortunately, dilute solutions can be treated assideal ones and we can put

kgf
uB = ppo+ e In (1-C), (30)

kgl
1r = pro-+ mLF In C,

where pgg is the chemical potential of pure He II, ypo of pure He® and C is the molar con-
centration of Ie3. We have the general formula connecting C with ¢,

i .
i (— _1>. 1)

C=—c (32)

Wilks [4] remarks that Khalatnikov writes in (30) the mass concentration c¢ instead of the
molar concentration €. But all final Khalatnikov’s resulis are correct. With the help of (30)
and (32) we find

. kB mpg ]ﬁg mp
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where Mp is the molar mass of He% Hence,
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3. Solution of the linearized hydrodynamic equations and calculation of the Green
. functions

The solution of Eqs (17)—(19) has the form

1 P gs mB mg
m e = 2__ 2 2 277 e s — = 2 .

. P
-3 (22) [(Ez (c2k)2)+k2ca— @—] EmgsAn(, (35)
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where ¢;, are given by (29), (34).
We see that the numerator of 69’"(76) is for I = ¢k vanishingly small. Hence, the
density amplitude in the second sound wave is very small in comparison to that in the first

sound wave.

On the other hand, the numerator of 66(k) is vanishingly small for E == ¢;k. Therefore,
the temperature amplitude is significant in the second sound wave.

In [5] it was demonstrated that

oS
de(k) = —gﬁ 80(k). (38)

From (38) we see that the excitation of the standing temperature waves leads automatically
to the appearance of standing concentraction waves in the He3—He II solutions. A source
with periodically varying temperature can excite not only temperature but also concentra-
tion waves. The same conclusion follows from the formula in [6] and remark in [7].
We hope that this effect, however small, may be observed during ultrasound attenuation
or optical experiments.

If the variation of the Hamiltonian &, (see [2]) is adiabatically introduced we have
for dp™(k), 8]

8™ (k) = 2m {<oy; O 1 p iy 1O (—h) + €07 15 G E gy :0N(E) + (39)
+<é;en;é—k>E=m+iea U(k)

where a, and af afe the Bose annihilation and creation operators, and ¢ the Fourier com-
ponents of the mass density operator (see [8]), < ;> are the Fourier components of the
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retarded temperature Greenfunctions

<A(t); B@)>" = G (t—1) =— i O(—1) (A(), B)])eq (40)

_JLt>0
@(t):{o t<0

where (...)., denotes averaging for thermodynamic equilibrium.

From (35) and (39) we have

Som(k .
5%-((15)) = 27 {0k 3 O—kY DE—w+tis -
_1 QngmB mg
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do™(k e E
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Analysis of (41) and (42) shows that the Green functions <€o¥; ¢_,>p and <¢” AR
have poles only for the energies of the first sound quanta.
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