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MICROSCOPIC THEORY OF DILUTE He®*—He II SOLUTIONS. I.
DERIVATION OF HYDRODYNAMIC EQUATIONS WITHOUT VISCOUS
TERMS
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The Khalatnikov hydrodynamic equations for dilute He® — He II solutions are obtained
on the basis of microscopic theory proposed by Bogolyubov.

Introduction

In the paper by Hohenberg and Martin [1] the development of the theory of liquid
helium is divided into three levels. The first one begins with the unique macroscopic aspects
of the superfluid state. To this level belongs, among others, the paper by Landau [2], giving
the two-fluid hydrodynamic equations.

The second level is named semiphenomenological. This level is based on the theory
of Landau [2], [3] which treates liquid helium as a gas of weakly interacting elementary
excitations: phonons and rotons.

The third level is a totally microscopic one. Very important contributions to this level
are papers by Bogolyubov [4] and Hohenberg and Martin [1] published in 1964-65 and based
on similar ideas.

In 1952 Khalatnikov [5] obtained hydrodynamic equations for dilute solutions of He?
in He II. This was accomplished, according to the Hohenberg and Martin classification, on
the first macroscopic level. The aim. of the present paper is to give the derivation of these
equations in the schema proposed by Bogolyubov [4], i.e. on the microscopic level.

1. Preliminary identities

Consider a system composed of Bose and Fermi particles. The Bose field operators
are denoted by w(t,7) and w*(t, 1), and Fermi field operators by %(t, x) and ¢t(¢, %),

with x =r, s, where s is a spin index.
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The Hamiltonian of our system has the form
B = Hy+Hp+ A5+ 0H,, M

where

ﬁB = i- [V¢+(t’ r)Vl‘/)(ta r)d’l”——}‘B féB(t’ r)d’l‘—}-
sz o

aF % f f V(r—r')yp*(t, )op(t; r')p(, rydrdr, @

~

1 W 0 A
Hp = —2_;n—F Z fV'QP'F(t, x)|71/)(t, x)dr'_zFfQF(t, Adr+
+ %ffV(r—r') Z "/~)+(t, x)ép(t, ”)'l;(t, x)d”'d’l" (3)

Srind 1 T N l ~ ’ A nA : ’
Hpp = =i j j Vir—r') [65(, 1)6r(t, 1) +8(t, r')0r(t, 1)ldrdr’, (4)

OH, = [{n(t, N, N +u*(t, Ny, }dre +
+ [ U, N, rydr, (5)

éB(t9 1) = yt(t, n)y(t, 1), éF(t’ r = Z ;/"_I_(t’ x)z'])(t, %),

8(t, 1) = dplt 1) +8s(ts ) - ©

here Az and A are constants, U(z, r) is an external scalar potential, and #(z, r) and %*(t, r)
are so called ‘‘sources of particles” [4]. They are given time and space dependent functions.
We write r instead of 7 in the argument of the functional dependence and put h = 1.

The assumption about the relatively small number of the Fermi particles enables us
to consider interactions only between the He*—He? and He®—He? atoms, represented by
the same function ¥V{r—r') [6]. Now we take also into account the interactions between the’
He®—He? dtoms described, too, by the function V{r—r') (see [7]).

The Bose and Fermi field operators obey the following commutations relations

p(t, Nyt ') =yt r)y(t, 1) = 8¢r—r'), 0]
P(t, D)p*(t, &) +pH(t, 2)p(t, %) = S(n—x). @)

Now we are interested in the time derivatives of the following local quantities
o™(t, 1) = (mg@a(t, 1) +mrQr(t, 1)) = (&), ©)

Jt. 1) = (Jult, D +Je(t, 1)) = jolt, ) +jr(s, 7),

ot ) = = (P 7)les )=y ) (Tt D), (10)
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Jolto 1) =Y ) A =00 ) (P,
o elts ) = — e (TR Dl )+ ) (P2 7))
R
— e 2 (T D) )54 ) (25, 20))+ an
T f Vi—r) Y. (G e 1), x))dr +

1 p " . .
TR f Vir—1") {es(t, )or(t, 1) +a8(e, )or(t, ))dr’,

@(ta r) = <"/)(t’ T)), ¢*(t’ r) - <1p+(t’ r) >’ (12)

o) = ., = (mede) = o1, "), 13

0" denotes the mean mass density of the solution, j the mean current, ¢ the energy per unit
mass, and ¢ the mass concentration of Fermi liquid (He®). The brackets (...) denote the
nonequilibrium expectation values of the field operators.

In the paper of Bogolyubov [4] the mean density of particles, and the mean energy,
entropy, free energy and chemical potential per particle were considered. Now. we consider
a mixture of particles with two different masses my and mg. Hence, we must introduce the
mean mass density and thermodynamic functions per unit mass. We have now also the
additional local quantity, namely, the mass concentration ¢(t, r) of He3,

In further considerations we shall describe the nonequilibrium expectation values in
terms of the following thermodynamic parameters: ¢”, 6, v, v, and c, where  is temperature,
v, velocity of the superfluid and v, of the normal component. Use is primarily made of
the pair of parameters (P, 6) where P is pressure. Later, we shall demostrate how to express
the suitable thermodynamic derivatives depending on (¢”, 6) in terms od (P, 6).

For calculation of the time derivatives of the quantities defined by (9)-(13) we use
the formula

A - -

id = [4, H]. (14)

The basic equations are

o (e, 1) , . : 4 :
R A *f Vir=r')at, r)dry(, )+U(e, Dipie, )+ 0, ),

.

é)"‘(t,r 17.2+t7r) R ’ ’
WD gy TEED f Ve—r)(e, 1) — UG, (e ) — (e, ),
1)
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i 209 arg,m) — '722’7’;;“) f Vr—r)a(t, 1) ar" (e, )+ Ut, (e, ),

ot
P _ ety PECD ) (gt v~ i, .
With the help of (15) and (11) we have the following equations:
do™ (t ) +|7](t 1) = imp[(t, DD, 1) — y(t, (2, )], (16)
%é(f’ﬂ #ji) =0 XD i = "
9J'ug;v n_ % [}ﬁl‘; V205(t, 1) miF V20g(t, r)] -

_ Z [ <9w+(t Nyl r) | 9yt ) Bl |
drg |Lmp or org org ry,

N Z 1 <9w+(t %) 89(t, ¥) | 9Pt ) 95(, x>>] .

mg e org arg Dy
V(RY =~ ~
| f S (Gir. —R)+Br--R, R)AR + 18)
E I 90t 90 on o
tes Arg (% UH_QF Ay, @ -0+ 5 ( r, s Aty K _.(‘D Qra, e or,,

ét(r, r'—ry= 9,0, 1 —r)+.@fF(r, r'—r) = él(r, —R)
= 9,—R, R)
@t(fﬂ r/—r) =S <1:U+(tv r)éB(tv r')’l/)(t, r)>+
+ 2P, Dp(t, I)p(t, %)) = D,(r, —R) = 9,(r—R, R),
DIE(r, ' —1) = (op(t, Nog(t, ') +0p(t: T)ep(t, 1),
R =r—v
and

dome i 1 T e myom
%:- =3 172{;% (PP py—y (V) + Z P <(V2w+)w—¢+-(l72w)>} +

2 it [yt 2,1 0¥
+;9rﬁ{4 [m%(@rﬁ (Vw)—(Vw)a—rﬁ T
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i Z ( (725) —(7*5%) )
f V(R)EP6, R dR} Z f V(R) 1300, _R)+CPr—R, R)dR—

! ® 9 ram_ LNV 2y aE
—*;JB 5, (U= mF;;F 5, (U4 +

mp

g (V2% — V20D 4 B2 — D 2p) (19
4!771;3
+ % f Vir—r'y [m*(2,7) @(t, r')p(t, 1))+ 0*(2, 1) 0Lt Dyt 1)) —
—1(e, ) 9 (e 1) = 1(e, D Sy (8 DB 1,

G, 1 —1) = 60, ¥ —) + 6O, 1" —1) = GO, — R) = G¢—R, R),

O = — 5o (e 00 7, ) Z«mm 0,03, ),

@ ] 1 o Al !
GFFO;, —R) = — <2~~-~ I8N et ) + —J‘ (¢, 1), r)>~

The equations for @(z,r) = (y(t,r)) = a exp [ix(t, r)] and for D*@,r) = (yt(t, 1))
are obtained after averaging the expressions (15) for dy*/9t. We have no Fermi-pairs con-
densate; therefore, the mean values (yy) do not appear in M,

2. Derivation of the kydroa‘fynamic equations

We define the velocity of the Bose-condensate
Vs == — [7%. (20)

The state of thermodynamic equilibrium (n = #* = U = 0) is characterized by para-
meters 0™, 0, ¢, v{” and v®. The expectation values will be designated only by the velocities,
i.e. they will be written in the form

 Dvson (21)

We can perform the Galilean transformation for Bose and Fermi amplitudes of the form
y(t, 1) — (2, r)e™B"

P(t, x) — P(t, %)e™F", (22)



450
After the transformation we have the expectation wvalues (21) in the form
QEpS—— (23]

We are interested especially in the case when'v =, Hence, the eéxpectation values are
considered in the coordinate system’ with resting normal. component ({ Yos—vm0)e I
we consider the expectation values from the products of p and y* operators (the number
of v is equal to.the number of y*), we then have ¢’ e Yos—ump If we consider
a normal system with one velocity (¢ Yon)» after the Galilean transformation for
v =1, we go to the system at rest ({ Jo)-

.. Since we consider a nermal Fermi system (without the pair condensate and without
‘an additional velocity describing its motion), the expectation values from products of Fermi
operators and their derivatives are of the type ( Yo, and { Yo

After using; the transformation (22) we have for (10) and (11)

J(t: 1) = (o-v; om0+ (M55 +MEQE® = (Pog,up—0-+0™,

o2
0"ét; 1) = (0™)vs—v, vn—v+ 0™ 5 ‘ (24)

where @™ is given by (9). We see that in the case of two kinds of particles with different
masses it is necessary to introduce the mass density @™ instead of the density of particles .
As yet we define only one velocity with help of (20). Hence, let us consuler a system

with one velocity ¥, putting ¥, = 0. In this case we have, e.g.,
o2
a(e™, 0, c,uy = const., F=1F(p, 0,c,u), u= ——25—— (25)
where @ is the amplitude of (p(¢, 7)) and F is free energy per unit mass.

We define the current

Jo=0" 5 = g" o U (26)
and put |
r
Q" S = Qg = 07 (27)

‘Formula (27) is the definition of the mass density of the superfluid component g*. We have
now '

Jo = mpea? = @, (28)

We wish to demonstrate that the definition (26) is equivalent to the usual definition of the
‘current. For thm reason it is conveniert to switch to a new coordinate system movmg with
velocity —w, (v, =0, v, = —v,):

(e, r) = r)e"imB”", (L, x) — p(t, x)e~MFCT, 29)
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Since

oF oH "
" q@(a) 7 <9’U(“)>o, N (30)

(see [4] and [8 ), we are interested in the part of the Hamiltonian H( v) depending on v;:

A i+
H(v) = ! ? (Qtp —fivag“)zp+) (g—;p- —|—im3v§°‘)1/)) dr +
1

2 mp ar, @
N9y . .
L Limpo® P 31
i T ) (B vt
Hence,
LY £ A 9w>
Mo o e | ——— — _— ’ ar:
¢ @ 2V<9(¢ 1/) el vs0 J i
i W . a«;) i !
— : —yt dr 32
+2VZ<ar¢,’”m Y el (32
s .
dyt(t, 1) - PRI (2 r)>
PO t 1, (az)
2< s ()W() e [oso = e
The expectation value { Yo is isotropic because it does not depend on the vector v,
therefore, it must be invariant with respect to the transformation # — —. For this reason
the second term in (32) vanishes. The expectation value { Yus,0 18 Mot isotropic because
the direction of ®, is singlet out. Moreover, the expectation value ( Yo does not .depend

on 7 at equilibrium; therefore, the integration gives a factor V.

For the phase and amplitude of (y) = @ = a exp [iy] we have
KA _ 8. Vg mpv? &+7
ot 2mga 2 2a

+U@E, ) —

o 1 . .o . .
. ﬁf V(R){XPF(r, R)+XFF*(r, R)}dR,

XPE(r v —n) = (. 1)) (¥

o, 1) = (s, e "

and

.

. 30;
ot

o

(o) =1 [ V(R)[XEF(r. R\—XBF*(, R)]dR+i Vg ((*—0), = a*.
| o (34)
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For thermodynamic equilibrium (U =0, % = 0) we have

1
o5 f V(R)[XBE(R|g™, 0, c, v+ XBF*(R|g™, 0, ¢, v)|dR
mev? 1 1 [
= mapa(g™, 0, ¢ )~ —5=— = — VIR)XPFAR = — [ V(R)XPF*dR

where up is chemical potential per unit mass for Bose particles.
The free energy of our system is equal to MF(¢™, 8, ¢, u), where

M = Vimpog+mpep) = V(eg+0F) = Vo™

and F is free energy per unit mass.
Now we derive some equations for the chemical potential. We have

O(MF) _ (a(emF)) i (a@mF)) do" (a(em) 9
(Vog) 0% Jo,c 9™ [o,c 0B dc [oom 0B

o _ ¢ [8(o™F)
— /,lB - lu Qm ( ac e,gm’

J(MF) (a@m) N (a(ng)) do™ " (Q(QMF)) dc
oVer) \ % Jo.e \ 0™ Jo. doF dc  [oqm S0

o 1—c 9(ng))
= UF = WU+ —Qm ( 90 o,g’”.

From (37) and (38) we have

p=cur+(l—c)up = (——

and

= (F) o, o
MF—UB = ¢ g"‘,o—’

pp = p—zc

(in Khalatnikov’s notation 2= Zlo™, see [5]).

(35)

(36)

(37)

(38)

39

(40)

We are interested in the hydrodynamic nonequilibrium processes. In this case the
expectation values can be expanded into a series with respect to the space derivatives of
local variables ¢™(t, 1), O(t,1)s c(t, 1), ¥(t, 1) and v’?(¢, 7). We consider the derivatives

J .. .
—— and - as quantities of the first order of smallness, the derivatives like

ot r

as

Ir,drg

quantities of the second order of smallness, etc. The first term in the series does not depend
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on derivatives (see, e.g., [4] and [8]). Using this procedure, which enables us to keep only
the terms of the same order of smallness, we can write in (18)

f V) 1G,r, —R)+,r—R, R)JIR
jaV(R)[ dr, —R)+ 9, R)— Y 5;‘@‘ Rﬁ++]dR (4
B

. Z - [_ = f agl(f) Rﬂét'dR:I.

Now (18) can be written as

where )
Taple™, 0, ¢, v5) == 271nB <§)1f: g—;/; i ;‘Z: %)m B
HT(ES 28,
T f ) ReG(Rian, 0, , v)dR = el 0,49 (43)

é(R]Q"’, 8, c, v) is the ““zero” term in the expansion of ét(r, R) into a series. Formula (43)
was obtained with the help of the identity

M
Q[MF (7’ - 0)] M 9F

—_— = Ly — my2 _ "
P = oV VzM ( )

Now let us consider a system with two independent Velocmes v, and v,. We notice that
the functions 2 (18) and X (33) remain unchanged after the Galilean transformation. We
perform now the Galilean transformation (22) for v =w,.

The general expression for the current has the form (see (32))

ol Syt ol 91/) 7 Ayt . ~ op

Lo <ar., Y S oo T T Z o VTV Dia /e
+

=5 ((é;i —impviy* ) p—yt (0_1,0 —l—szv(“)q))) +
I v5—n, 0

L 917)-'- o | o mean 917) (@) ~

= gBo -+ Rl + ol (0 —o). (45)

(w4)
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We define now the mass density of the normal component by

o = 0" —¢¢ (46)
and get 5 "
Ja =GP+ (47

This expression was obtained for a constant velomty V. Now we treat equation (47) as a de-
finition of the local velocity v, F
For the stress tensor in the case of two Velocmes we, have the expression

uﬁ(@ 6 ¢ s’ ) = _6%8‘@(9 2 6’ C)—— . (48)
— P — P,

Now we are interested in "equatlon (19). This equétior_l contains a term of the form
considered in (41) (only instead of @ we have now function G). After the same procedure
‘as used in (41) we can write (19) in the form |

%7 _ N0 1 Vi s =
o « e mp Z']B ar_a (UA) Z (U )'F)—l—

i I.‘LnTB (QV2D* — V2 D+ B2y — DV 2yp*) +

+ —2L— f Vie—r') [n*(t, 1) €@(, r)pies 1))+ (8, 1) (@( Dyt 1)) —

— (e, ) (e, 1)8(E, 1)) — (e, 1) (e, el 7)) (49)
where for the energy current I, we have

Ia(va 0,40, Vs, 'Un) = Ia(Qma 6, Cy Vs—Vps 0) -

9 [ mrien 0, oo | +

2
+ ) o Teslo™, 0, ¢, vi—vs, 0)— S Q0 —012),

B
g o, ¥ T >
— <('7"’ Vo, "o VY +

vs—un,0

oV ~
——R 8) m G
; ; f(V(R)lstzﬁ "9k, w) G (Rlg™, 6, ¢, v;—va, 0)dR,

;ﬂ(Qm’ 9 C Vg— ) O) = —gazﬁ'—es (v(cz) (Z)) (’U(ﬁ) —'U(ﬂ)) (50)

©

Iz(@ma 97 év Vs—Un, 0) =

In these calculations the same procedure as in (41) was apphed In order to rewrite the last
‘terms of (49) see (35).
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We assume that (see [4])
16" 0, 0, 0,0, 0) = —ppel 57017, )

use the equation

- g2 . ,
o"e = 0" Eg", 0, ¢, w)+ LE gl wv, (52)

and have finally

J Q ’Un Be J () va% tm AR i
- mE B m o (0 5 )0
3 [Q + 5 +Qs( vn)vn] + Eﬂ 2 {v,f 5 +omE+ P+ g5 (0 —v)v, | +

A s
®— % L ima(E*—0) [7 t gt “’“T)J . (53)
Now we introduce entropy per unit mass
S=— % (54)

Thanks to this formula we can introduce the equation for entropy conservation instead of
the equation for energy conservation (53) (see [4] and [8]).

The full system of hydrodynamic equations for dilute solutions with external potential
and “‘sources” has the form

agm . ..
50 impa(L*—0), (55)
?%Q -+ div (co™v,) = 0, (56)
59? (0" 40"+ (@nv;" O 4 ") — impan®(F— 1) —
w1 . 1\0U
- (DB Ty EALLE 67
av§“> : v —v,,) 1
[E‘ o +up+ m—B Uul, (58)
( ) N
+ div (So™v,) = 0. (59)

Equations (55) —(59), without external potential U and “‘sources” ¢ and £*, were first derived
by Khalatnikov [5] starting out from phenomenological consideration.
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