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THEORY OF NEGATIVE MAGNETORESISTANCE IN SMALL SAMPLES
AT LOW FIELDS*

By K. DaLton** anp S. Fusita
Department of Physics and Astronomy, State University of New York at Buffalo***
(Received January 5, 1971)

A boundary scattering mechanism is proposed which provides an explanation for low
field negative wagnetoresistance in metals which have at least one small dimension. Explicit
calculations are made for the B field dependence of resistance in thin cylindrical wires and in
thin films. It is found, in each case, that as the B field is increased from zero, the resistance de-
creases in proportion to B2, An order of magnitude calculation indicates that for metallic films
and wires at liquid helium temperature, the change in resistance can be greater than 0.1%,.

1. Introduction

When the linear size of a metallic crystallite is comparable to the mean free path of an
electron in bulk, the electrical conduction becomes distinct from that in a bulk. If a magnetic
field is applied, the size effect on the conductivity becomes more apparent. In 1964, Forsvoll
and Holwech reported a negative transverse magnetoresistance in a thin film of aluminium
subjected to a weak magnetic field directed in the plane of the film [1]. This negative magneto-
resistance at low fields appears to have remained unexplained inspite of the fact that a number
of theoretical investigations have been reported on the galvanomagnetic effects in thin
films and wires [2-6].

Negative magnetoresistance has also been observed in a wide range of carbon (poly-
crystalline graphite) samples [7]. Recently, one of the present authors (S. F.) proposed to
explain this effect by considering the diffuse scattering at crystallite boundaries [8]. A gra-
phite crystal has strong anisotropy, and it is believed that the crystal allows the current to
flow mainly in graphitic planes. This makes it possible to consider a two-dimensional,
rather than three-dimensional, current flow:. The maximum negative magnetoresistance
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due to this mechanism for a carbon is estimated to be 5-109,, which is in agreement with
the observation. If a conducting crystal of a three-dimensional character is considered, the
effect of a magnetic field on the diffuse scattering will still be present, but smaller in magni-
tude. This will be shown in the present article.

2. Diffuse scattering and negative magnetoresistance

The transverse magnetoresistance is defined by

[e(B) —eol/eo = dofeq 2.1)

where o(B) is the electrical resistivity measured in the direction perpendicular to the ma-
gnetic field B, and g, is the resistivity corresponding to the zero magnetic field. The zero-
field resistivity g, is the inverse of the zero-field conductivity and is given approximately by

2o ¢ m*()/(nlell) (2.2)

according to the simple kinetic theory applied to a single-carrier system, where e, m*, n,
(v) and [ are respectively, charge, effective mass, density, average speed, and mean free
path of the carrier. Among these, the four characteristics e, m*, n, and (v); are unlikely to
change appreciably when a weak magnetic field is applied. The change in the mean free
path [ should then roughly determine the behaviour of the magnetoresistance Ag/g, at low
fields. This means that those physical processes which make the mean free path larger for
greater values of B should contribute to the negative magnetoresistance. If the increment
of the mean free path is denoted by Al = I(B)—I, then the magnetoresistance is roughly
given by

Aefoo = —AlL. 2.3)

In ‘most conducting materials the electrons are diffusely scattered at the érystallite
boundaries. That is, once electrons arrive at the boundary surface from any direction within
a crystallite, they may leave the surface in all possible directions within the crystallite with
equal probability. When the linear dimension of a crystallite is of the order 1024, then this
diffuse scattering at the boundary becomes one of the predominant prqcesses that influence
the mean free path of the conduction electrons.

One can show that if this diffuse scattering is the only mechanism which restricts the
free path of a (classical) free electron, the application of a magnetic field B will tend to
lengthen the mean free path and hence cause negative magnetoresistance. Consider for
simplicity, a rectangular thin layer, a two-dimensional model, in which an electron moves
freely. Let’s take an electron, starting from the point A (Fig. 1), proceeding on the siraight.
line AC in the absence of a magnetic field and hitting the wall at C. The length EC may
be defined as the free path of the electron with respect to the charge transport in the upward
direction. If a constant magnetic field of magnitude B is applied in the direction perpendicul-
ar to, and into, the paper, the electron will describe a circular orbit of radius R = mv*[eB.
Thus, the electron starting from the same point A with the same speed v will travel now
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on a circular arc AC’ and hit the wall at C' (OA = OC’ = R). The free path is now EC’
and is shorter than the path EC. 4I_=EC'—EC < 0.

It is clear from the diagram that in case the electron should preceed so as to hit the
wall on the right-hand side in the absence of the magnetic field, its free path will be greatest
for B = 0 and will become shorter as B increases (and thus R decreases). In a similar manner
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Fig. 1. Graph showing that the mean free path restricted only by the boundary is greater for B % 0 than for
B=0

it is seen that if an electron should hit the wall at the left-hand side for B = 0, its free path
will become greater as B increases.” For example, in the diagram: Al, = FD'—FD > 0.
To avoid complications we shall cp;{sider the case where D' can be found on the left
wall, which will be assured when B is sufficiently small so that the radius R is sufficiently
large compared with the side EF and when the length of the crystal is also sufficiently large.

The balance of the gains and the losses respectively at the left and right walls of the
free paths will be now compared. In the absence of magnetic field, to every process in which
an electron hits the right wall with an angle 6, there exists a corresponding process in which
an electron hits the left wall with the same angle 6 after covering the same distance. In general,
corresponding pairs can be found by looking at the reflexion symmetry with respect to the
axis GG’ which bisects the layer vertically. The two processes indicated in Fig. 1 are just
those with this correspondence. From the diagram it is clear that

D'D > CC' or |AL|—|Al| = Al,+Al_ > 0, (2.4)

This means that the absolute value of the net gain is greater than that of the net loss.

If the direction of the applied magnetic field is reversed or if the sign of charge of the
carrier is reversed, the gains and losses of the free paths occur at the right and left walls
respectively. However, it is easily verified that:the net change AL, 4 A1 is again positive.
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The argument for the negative transverse magnetoresistance is applicable not only
1o a small crystallite of graphite but also to a thin film of an‘isotropic metal. A similar qualita-
tive argument for a negative magnetoresistance in a thin metallic whisker could be developed
but will not:be described here. -

What is the field dependence of the negative magnetoresistance? What is the order
of magnitude of such a negative magnetoresistance? These questions will be studied in the
following sections.

3. Quantitative analysis for a cylinder and thin film

3.1. General plan

Let us choose a system of coordinates such that the positive x-axis coincides with the
directiont of an applied constant magnetic field of strength B. An electron will in
general describe a helical orbit with the helical axis along the x-axis. The cyclotron frequency
w is given by

le] B

m*c’

3.1)

ll

)
where ¢ is the speed of light. Let us imagine that an electron starts to move from the point
(% ¥o» %) With a given initial velocity ¥ whose magnitude is denoted by v and whose direction

¢ specified by the polar and azimuthal angles (6, ¢). This situation is depicted in Fig. 2.
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Fig. 2. Diagram showing the initial velocity vector ®

v

The helical orbit for such an electron can be described by the equations

#(t) = vt +xg = vt sin 0 cos p+xy " (3.2a)
y(t) = R cos (wt+a) —R cos &+, (3.2b)
z(t) = R sin (wt+a)—R sin @, (3.2¢)
where
o = tan~Y(—v,/v,) (3.3)

R =, |0 = (v/w)(cos® O +sin? 0 sin2p)* (3.4
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The helical path given by (3.2) is the true orbit followed by the electron if it is. disrupted
neither by the geometrical boundary nor by scatterers, which are not under consideration
at present. Let the equation for the boundary be

S, y,2) =0. (3.5)

Substitution of (3.2) may yield in general a number of solutions for ¢, The smallest of thesé
times is the time, #;, elapsed for the first collision at the boundary. Substituting tlyin the
last equation of (3.2), one can find the distance z(t;) along the z-direction. When we consider
a current flow along the z-direction which is perpendicular to the direction of B, this value
5(#;) may be considered as the measure of the free path of an electron.

If we now assume an isotropic velocity distribution at all points, we may define the
mean free path to be

[ d0 [ dp [ =0, ¢, %, Yo, ©) sin 0 dxdy, (3.6)
fd@fd(pfsin ] Zquodyo
where the integration with respect to dxdy, is over the x,y plane inside the boundary

given by f(x,y,2) = 0. The limits on the § and ¢ integrations will be determined by
considering the region of applicability of boundary scattering; this will become clear in the

{#(w) >av =

following explicit calculations. The upper limit on the 0 integration is 7/2; this is equiva-
lent to the choice

v (t =0) = 0. 3.7)

When the magnetic field is not present, the electrons travel along straight lines. The
equations of these lines are given by

#(w == 0) = vt; sin O cos p+x,
¥(@w = 0) = vz, sin 0 sin p+y, - 3.8
z(w = 0) = vt cos 0,

which is the zero field limit of (3.2). The time ¢, for the first boundary scattering is again
found through the equation of the boundary, and the average is taken as in (3.6):

(5 = 0) Yoy = f_dﬂ fdggf»z(e, @, %05 Vo) sinﬁdxodyol (3.62)
¥ Jd0 [ dg [ sin 0 dx,dy,

The change in mean free path as a function of w is, then

Al = {z(w) —z(w = 0)),,. (3.9)
Therefore, from (2.3),

Al Ao (aw)—zo =0))w

T " 2% Glo=0m 210
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3.2 Cylindrical wire

With the cylinder of radius ry placed with its axis along the z-axis, the boundary equation
reads

f% y, 2) = 2P +yt—rg = 0. - (3.11)

Given the starting position (xq, ¥o) and velocity vector v of the electron, we may solve (3.2)
and (3.11) to find z(s,). Considering, for example, only those electrons which start at the
origin (%, =y, = 0), we have

%2 sin2 0 cos® p+ R2 [cos (wt +a) —cos @]2—r5 = 0. (3.12)

For small magnetic fields the angle wt will be small (the path differing little from a straight
line), and we may solve (3.12) by expansion. Using the expression for R, we obtain

(cos? O-+sin? 6 sin? @) - [wt sin o+ (1/2)w?? cos ]+
+1w%? sin? 0 cos? p—(75w?v?) = 0. (3.13)
For the zero field case we have, from (3.8) and (3.11)
to = rofv sin f. (3.14)

We now assume that #;, the time for the first boundary scattering, differs by only a small
amount 0t from fg, the zero field time interval. Substituting ¢ = t,-+ 8¢ = ry/(v sin 0) + 8¢
into (3.13) we find

8t — (wr2Jo?)(sin @ cot B)/[2 sin® B—3(wryfs) cos  sin ] (3.15)
which becomes upon expansion in powers of (wrof)
1 = Hwrofe)(rofe)(sin @ cos O)f(sind 0) +
 Hrofe)rafo) (sin? p cos? B)f(sin 6) +
Y wrofo)3(rfo)(sins  cos? 0)(sis” ). (3.16)

The above equatlon holds only if 6 does not approach zero; see below. By expanding the
terms’on the right-hand side of (3.2¢) in powers of wt, we obtain

2(t) = (ofo) oot —h(e01)?] c0s B +1(efe0)(w0)? sin 0 sin . (3.17)
Using ¢ = to-+ 0t and z(w = 0) = vt, cos 0, we obtain
[z—z(w = 0)] = (v cos 6)(5t) —2vw? cos 8 (t§) —4vo? cos 0 (t308) +
+Zvw sin 6 sin @(¢5) +vw sin 0 sin @(t,0t). . (3.18y

Using (3.14) and (3.16), we integrate the above expression with respect to 0 and @ according
to (3.6).
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In this integration we restrict the area of interest to those electrons which travel a distance
less than the bulk mean free path lg. Thus, for the zero field case, vty < lz. Since ¢,
=ro/(vsin 0), we have sin 6 > ry/l;=1/k which defines the minimum angle 0. to be

0 i = sinY(1/R). (3.19)

It is noted that the above mentioned restriction of 8 is satisfied when we limit the 6-integra-
tion in the above fashion. This same 0, will apply very well to the curved paths also, since
they differ little from straight lines. The (4z),, integral is now given by

27 n/2

(A2)p = [dp [ ro(wrofs)¥[E(cos? § sin p/sin® 6) —3(cos O/sin® 6) +
[

+ %(cos 0 sin? p/sin3 )] sin 0 d0.
Integrating we find

% — —(1/24) (aro)? (SMA—Th2+4B)) (b —1).

The speed v is given by the Fermi velocity vg; setting o = eBlm¥*c and F,,; = (1/24)(3k4—
—Tk2+4k)[(k—1), we have .

% = —(ero/cop)? (B/m*)Fesi(R) (3.20)

where k& = Ig/ry. Knowing the bulk mean free path I, we may compute F (k) ; it is verified
that Fy, is positive for all £ > 1. The geometric factor F ey1(k) will be different if the electrons
start at a point other than the origin, but the quadratic B dependence will remain

3.3 Thin film

- The analysis of a thin film closely follows that of the wire. Place the film parallel to
the «, z plane, with surfaces y = +aand y = —a. The field B = (B, 0,0) is in the plane
of the film and will therefore affect the electrons as shown in figure 1. That is, the electrons
will follow slightly,curved paths in low fields and will collide with either surface y = +a
or ¥y = —a. The boundary equation reads :

Jom =y—a=0. (3.21)
We again consider only electrons starting at the origin (y, = 0). Using (3.2b), (3.21) becomes

R cos (wt+a)—R cosa = a

or
(wt+a) = coscos &+ (a/R)]. (3:22)
The distance traveled along the z-axis is
z = R sin [cos(cos &+ (a/R))] —R sin
= R{1—[(a/R)®+(2a cos &/R) +cos®a]}—R sin a.
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Assuming low fields we expand the above, and retaining only:terms to second order in B
we find | ' .

z = a cos 0(sin 6 A ) +(a2w/2v)[(sin2.6 sin? @ +cos? )/
(sin3 0 sin3 ¢ )] +(aw?/20%)[(cos B sin? O sin? @+cos® 0)/(sin® 0 sin® @)].  (3.23)
This expansion holds only if ‘both 6 and @ do not approach zero. For zero field
y(w = 0) == vly sinfsing =a
or
vty = af(sin O sin ). (3.24)
This gives
2(w = 0) = vty cos § = a cos f(sin 6 sin ). (3.25)
We again consider only those electrons which travel a shorter distance than the bulk mean
free path lg. That is, vty <lg, or
vty = af(sin f sin @) < lp
For sing =1, afsin § < Iy therefore
sin 0, = aflg = 1/k. (3.26)
For given 0, the restriction on ¢ reads , \
(510 @) i == F/(k sin ). ' 3.27)
Expresslons (3.26) and (3.27) provide the integration limits and serve to comply ‘with the

limitation that neither 8 nor g approach zero. The integral for (Az),, is now

7/2 n—sin~'[1/k sin 6]
(Az)y, = f f a(wa/v)¥(cos O sin® 0 sin'2 @ +cos? 0)(sin® 0 sin® @) ~"sin 6 didg.
Omin  sin™*[1/k sin 6]
All of the first order ‘terms in B are zero because of the symmetry of the integrals. This is
expected because the change of resistance should be unchanged when the dlI‘eCthIl of B
is reversed (even in B). Upon integration we find ‘

Ao % op [3k3(k2— —D)%—k(k?—1)"—3 In (£ + (k> —1)%)]
v~ O wal) [In (F+ (2 — D)%) — (1) (2 —1) %]
-ZQE— = —(ae/cvr)* (B/m*)zFﬁlﬁltk) (3.28)
Q0

where
[3E3(A2—1)%—k(x2—1)"—3 Tn (k+(k2—1)%)]
Ia b+ (B2 —1) %) —(L/k) (—1) %]
and k = Ig/a. The factor Fg, (k) is positive for & > 1. For the general case y7 0 we again
obtain a negative magnetoresistance, but Fym(k) will change.

Fam(k) = (1/6)
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3.4 Numerical estimate

To obtain an estimate of the magnitude of negative magnetoresistance, we may use
the expressions (3.20) and (3.28). As an example we computed Ag/g, for a film at liquid
helium temperature, of thickness @ = 103 cm, vy = 108 cm/sec, and k = Iy/a = 2; bulk
mean free paths, /5, are often of order 10-3 cm in metallic films at liquid helium temperature.
For fields of 10, 20, 50, 80, and 100 gauss, we obtain —Ap/g, of 0.003,0.012, 0.075, 0.192,
and 0.39,. Negative magnetoresistance of this order of magnitude should be observable

by present-day experimental techniques.
1]

4. Conclusion

For both cylindrical wires and metallic films, we have obtained, at low field intensities,
a negative magnetoresistance which varies quadratically with magnetic field. The data
of Forsvoll and Holwech appears to be in agreement with our calculation, but their experi-
ments were more concerned with the high field behaviour of magnetorestistance. Further
investigation is necessary in order to firmly establish the low field phenomenon.

From expressions (3.20) and (3.28), we mnotice that Apfo, oc (1/m*)2; therefore, if
the resistance change were measured, it could provide an independent determination of
the effective mass of electrons in the specimen.
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