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THE ENERGY OF THE INTERACTION BETWEEN TWO ATOMS
CALCULATED BY USING THE VARIATIONAL METHOD

By K. Pecur
Quantum Chemistry Group, Institute for Basic Chemical Research, University of Warsaw*
(Received June 25, 1970)

The reasons for the poor numerical accuracy in the variational calculations of the inter-
action energy between two atoms are investigated. The author presents some possibilities of the
improvement of that situation. Some numerical results for the 1% ;" and 32+ states of the hy-
drogen molecule are given.

Introduction

Very few results of variational calculations for diatomic systems at large internuclear
distances have been published till now. Hirschfelder and Linnet [1] have carried out such
calculations for H, with a very simple trial wave function built up of antisymmetrized products
of Slater-type orbitals. A much more accurate energy of the hydrogen molecule at the inter-
nuclear distances up to 10 a.u. has been obtained by Kolos and Wolniewicz [2]. In their
wave function they used a series of integer powers of the elliptic coordinates and those of
the interelectronic distance. The results in the vicinity of the equilibrium distance are ex-
cellent, but at large distances the relative accuracy of the interaction energy is much lower
because of the rounding errors.

For two helium atoms, variational calculations were carried out by Kim [3] and Moore [4]
but, as shown by Kestner and Sinanoglu [5], their results are inaccurate. To the best know-
ledge of the author, no other variational calculations for large internuclear distances have
been published.

A common opinion is that the interaction energy of two atoms at large internuclear
distances cannot be determined accurately by the variation method (see e.g. the review by
Hirschfelder and Meath [6]). For large internuclear distances the interaction energy presented
in the papers mentioned above is less accurately calculated than for smaller ones. The objec-
tive of the present contribution is to discuss the reasons of such a situation. The possibilities
of improving the accuracy of the variational calculations, and some numerical results for Hy,
will also be presented.

* Address: Zespét Chemii Kwantowej, Instytut Podstawowych Probleméw Chemii, Uniwersytet War-
szawski, Warszawa 22, Pasteura 1, Polska.
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Conditions of the accurate calculation of the interaction energy

The variational energy is defined by the formula

E = [ y*Hydt| [y*pdv @

where H and  is the Hamiltonian and the trial wave function, respectively.
Let

7/)=Za’m'fm ) 2

where f,, are the linearly independent normalized basis functions and @,, — the variational
parameters in the linear combination®.
Then
E =3} ana;,;[M 3)
m,j
where

M = 3} 0,35,
m,j
Hy = fulH| 153 Spi = <Ll F>-
If we retain in the sum (2) only one basis function, say f;, the energy (3) would be equal
to Ey = Hy;[Sy;. It can be easily seen that
E—E, = Z' @ 0 (H i~ S, | M 4)
m,] .
where the symbol indicates that the identically vanishing term a3(Hy;—E,S;;) has to be
omitted in the summation.

If Hy, is the lowest one among all H,,, and the a; coefficients are in their absolute
value by a few orders of magnitude smaller than a,, then the term afHy/M in Eq. (3) is in
its absolute value much greater than every other term, and much greater than E—E;.
There is no such a term in the formula (4). Therefore, the value E—E; can be calculated
much more accurately by Eq. (4) than the total energy calculated by Eq. (3), especially when
functions f,, are orthogonal or almost orthogonal.

" Now, let us consider two interacting atoms A4 and B. The energy of the interaction
between these atoms is F, = F(4B)—E(A4)—E(B), where E(AB) is the energy of the
diatomic system 4B at the distance R between the nuclei, and E(4), E(B) — the energies
of the separate atoms. For the hydrogen-like atoms the accurate energies are known,
but for the other ones and all molecules the energies E(A4), E(B), have to be calculated by
using some approximate wave functions. The accuracy of the interaction energy, i,
depends considerably on the choice of the approximations. It is well known, that at inter-
nuclear distances so large that the interatomic overlap can be neglected, E;,, can be deter-
mined by the perturbational method in the polarization approximation (see e.g. the paper
by Kotos [7]). If in a variational method such a basis of approximate wave functions is
adopted which guaranties that the resulting Ej,, for very large internuclear distances would

1Tt is assumed for the sake of simplicity of the notation, that the functions f}, are real. All conclusions
remain valid also in the case of complex functions f,.
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approach the results of the perturbational method mentioned above, the discussion of the
results will be much easier. Let us consider an example of such a basis.

Let the Hilbert spaces {¢’;} and {g}} correspond to the atoms A and B, respectively.
The Cartesian product of these Hilbert spaces {¢/,}x {g4}, is also a Hilbert space. In practice
the number of the basis functions used in the atomic and molecular calculations is limited.
Let this number be m for atom A4 and ¢ for atom B. Let us denote the basis functions of
the Hilbert space {¢';} by u, ... u;...u, and for space {pf} by w ... Wj ... w,. Let atom A have n 4
electrons, atom B—ny electrons. The u functions are the antisymmetric functions of the
electrons 1,2, ...n, and the w functions — of the electrons ng+1l, ng+2, ... ny4ng.
The basis functions of the {g/;}x {¢§} space are uy(l...nw;(ny+1...n +ng). Let A be
such an operator that all the functions Au(1...n aAw(ng+1...ny+ng) are antisymmetric
with respect to the permutation of any two electrons. Let us accept the set Auw; as the
basis set in order to calculate the approximate wave function of 4B molecule. We assume
that m and ¢ are sufficiently small so that no linear or quasilinear dependencies appear.

For the lowest state of a given symmetry and large internuclear distances a good
approximation to the wave function can be obtained by using the function Au%® where u®, wo
are the approximate wave functions for the corresponding states of the atoms 4 and B,
respectively. If u% and w° belong to the space {g,} and {pL} respectively, then the function
Au’uw® belongs to the space {¢;}x {g4}. If u;and w; satisty the condition (Awuuw;|Au®w0) 0
we can replace one of our basis functions Auw; by Au®u®. Now let us label the functions
of our new basis by f;, 5, ... Jmg in such a way that f; = Au®uw® The variational wave
function of a molecule is given is this basis'as P = Z a;f.

J

For the ground state (or the lowest state of a given symmetry) and large internuclear
distances the function f; is a leading one among all Jj» s0 that |a;|> |a;] for j # 1. Therefore
in order to improve the accuracy of the calculation of E—FE,, the formula (4) can be used.

It is evident that if the internuclear distance, R, tends to infinity, then E; = Hy[S;,
tends to E,+Ep where E,+ Ejp is the sum of the atomic energies calculated by using u?
and w® wave functions, respectively. Therefore the energy of the molecule at large R is
calculated with similar accuracy as the energies of the separate atoms. If we neglect in our
basis functions Auw; the “‘interatomic” antisymmetrization due to the operator A4, we
obtain the basis used in the perturbational calculations in the polarization approximation [7].
Since at large R the “‘interatomic” overlap and antisymmetrization can be neglected, the
variational interaction energy E. ., calculated by using the basis Auw; should be very
close to the result of the “polarization” perturbational calculation, W;

‘int *
The value of B, = E(AB)— E(A)—(EB) can be calculated as follows

Eine = (E(4B)— Ey) + (E,— E(4)— E(B)). ©)

In the cases discussed above the term E(4B)—E, can be calculated by the formula (4)
without loss of accuracy. The term FE;— E(d) —E(B) can be calculated accurately if f;
is of the type Au®® and if the two-centre integrals are calculated in a way presented below.
The two-centre two-electron integrals are clasiffied as the Coulomb, hybrid and exchange
integrals. The hybrid and exchange integrals behave at large internuclear distances like
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R" exp (—bR) where b is the sum of the appropriate orbital exponents. The Coulomb:
integrals

C= f P;(rL)y;(rL) Ir lel'Pk(rzB)‘/f‘z(rzB)d’ﬁd"“z
behave like R™” similarly as the G integrals

G= f (1) |’51,'Pj(’“,4)d’“-
For large R the sum of the respective C and G integrals is by a few orders of magnitude
smaller than their absolute values and loss of significant digits occurs during the summa-
tion. However, if basis functions of the type Auw; and u,, w; are built up of Slater-type
orbitals, we can avoid this trouble. In such a case we can find for C and G integrals the
expansion J, = ) ¢4, R~ +g4(R) where Jj stands for C or G integral and g,(R) behaves

at large R like R”exp (—bR). The coefficients c,, are functions of the orbital exponents
and of the quantum numbers characterizing the Slater-type orbitals. The sum of such two
integrals is given as

htle=2 (c1mtComBR ™™+ (82(R) +g2(R))-

The coefficients c,,, can be tabulated. If some c;,, are equal to —c,, they cancel each other
in the algorithm and do mnot decrease the numerical accuracy.

Now let us discuss some conditions of accurate calculation of the expression E—FE;
from Eq. (4). The result is accurate if f; is the most important among all the basis wave
functions f,, and if the basis is well defined i.e. if there are no linear or quasilinear dependencies
among f,, at large R. The last condition is equivalent to the condition that the overlap inte-
gral matrix S exists and is non-singular. In particular the matrix S, = lim S should be

R—00
non-singular. Tt can be shown that the basis in the elliptic coordinates used e.g. by Kolos
and Wolniewicz [2] does not fulfil this condition.

Let us consider two such basis functions f; and f; where e.g.
cosh ) s
sinh B0~ nz)]} P X

£o— Nyexp [t +£)] {

75} €S cos — 6
X 5; 172 {sin (mijl)}{sin (mz(p2)} ( )
&1 M1 P1> Eg» 7> @ are the elliptic coordinates of the electrons 1 and 2, respectively, a, § —

the orbital exponents, 7;, S;, M;, I, S; M; — positive integers oOr Zzero, N, — the normaliza-

tion coefficient. The normalization coefficient N; and the overlap integral {fi|fi) can be
easily calculated. The results are

N, = (@R3[16)2(1 + 6(m;, 0)) (1 + 8(m;, 0))} 2
X {(B(2s;, 28)A(2r; +2, 20) —B(2s,+2, 26) A(2r;, 200))X
5 (B(25,, 2) A(2F,+2, 20)—B(25;+2, 20) A(2r;, 2a0))
+(B(2s;, 0)A(2r; 42, 20) — B(2s;4-2, 0)A(2r;, 200))X
X (B(25,, 0)A(2r;+2, 20)—B(25;+2, 0)A(2r;, 2))} ™
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and
Cflf = NN{(wR3[16)26(m;, my) O(my, m;) 6(sin, cos)x
X (14 8(my, 0)) (1 + (i, O){(—1)* 9+ (=1 +¥)x
X (B(s;+; 2B) A(r;+1,42, 20) — B(s; +5,+2, 28) A(r;+;, 20))X
X (B(5;+5; 2B)A(r;+7,+2, 20)—B(s;+5,4 2, 28) A(7;+ 1, 200))
+2(B(s;+5;, 0)A(r, 41,42, 20)—Bls; +5,+ 2, 0 A(r; +7,, 26))x
X (B(5;+5j OV A(r;+7;+2, 200)—B(s;+5,+2, 0) A, +7;, 20))} ®

where 4 and B are the standard integrals

A(m, z) = f 1" exp (—zt)dt
1

1
B(m, z) = f t™ exp (—zz)dt
21

and §(m;, m;) or §(sin, cos) stand for the Kronecker delta symbols. The 4 symbol in Eqs (7)
and (8) means that if sinh and sin functions are used in Eq. (6) instead of cosh and cos
functions, the minus sign will be used instead of the plus sign.

Now let us assume that m; = m;, m; = m;, s; =s;, 5; = s;, but r; # r; and ;% r;
In such a case all the B integrals in the expression for {f;|f;> (Eq. (8)) are equal to the
respective B integrals in the expressions for V;, N; (Eq. (7)). The respective 4 integrals
are -different. - However, they fulfil the relation

Afm, z) = A0, 2)(1+m[z+... +m![z"). ©)

It can be seen from Eq. (9) that if the argument z, which in our case is proportional to the
internuclear distance R, is very large, the relative differences (4 (m, 2)—A(p, 2))|A(m, z) where
m and p are arbitrary natural numbers, are very small, especially if m and p are small.
They tend to zero as R tends to infinity. As a result, the overlap integrals (f| /> tend
to 1 and the basis becomes linearly dependent.

If the basis is composed of the Awu,w, functions i.e. the antisymmetrized products
of the atomic wave functions, the matrix S, is well defined. Such a basis is used in the
present calculations.

Method of calculation

The numerical calculations have been carried out for the hydrogen molecule. In- this
case the molecular wave function can be factorized into its space and spin parts. Since our
Hamiltonian does not contain spins, we can consider as our basis f functions only the space
parts of Aujw, functions. This typical f function is given as

/i = N;A(y,(al)y;(62) £:(b1)y5(a2)) (10)
where A denotes symmetrlzatlon or antisymmetrization with respect to permutatlon of

the electrons for singlet and triplet states, respectively. The -+ or — sign in (10) determines
the g or u symmetry, respectively, for X states, and u or g symmetry for 7 states. The y,(cn)
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denote the atomic orbitals of the electron n centered on atom c. The positive direction of
the z-axis for each atom is taken toward the other atom. NV; is the normalization coefficient.

The exact eigenfunction of the complete clamped nuclei Hamiltonian can be represented
[7] by an expansion in terms of the functions (10). The matrix element S; = hm ( NEND
is given by the formula

Seoiy = {1+ Kwslwrd P+ [Kyylw; D222
X (Cslwd<wrlwr>+<wilwpd<wrlw;y)- (11)

The w orbitals used were the normalized real Slater-type orbitals with common orbital
exponent 0

Tnlm(r , 9, 9) = {22n+1n— 1/ (2n) '}l/zr :_lx
) ¥
X exp (—ar) {(l—l— —1—) (I—|m]) (1 +|m)) !} (21un)1x

Ji+Im|
Toos ST (cos? O —1)'(1+ Om0)~ %2 X

cos (mp) if m<O0
X {sin (me) if m>0.

X (sin &)/

(12)

In contrast to the hydrogenic orbitals the set of such orbitals is complete in the discrete
spectrum. For the orbital exponent the asymptotic value & = 1 was assumed.

The Coulomb integrals were calculated by the method of Fourier transforms and recur-
sive formulas [8, 9]. A similar method has ben independently developed by Harris [10, 11].
The exchange integrals were calculated by the method of Harris and Michels [8] and the
one-electron integrals by the method of the expansion in elhptlc coordinates using the
program of Szondy [12].

Numerical calculatlons were carried out for the lowest 12 *+and 32" states. The variational
coefficients a,, in expansion (2) were obtained by using the dlagonahzatlon procedure of
Ostrowski [13-15] modified in the following way. After the calculation of all the a,, coefficients
in one iteration the energy for the next iteration was calculated as E = E; 4 (E—E,;) where
E—E, was given by Eq. (4). This modification improved the accuracy of the Ostrowski
procedure.

The Ostrowski method is not the most accurate for the calculation of a;. More accurate
is the method of Roothaan and Bagus [16]. It is worth while to mention that similar
accuracy can also be achieved by using a simpler method proposed by the present author.
This method is given in the Appendix.

The interaction energy, E;_,, was calculated from the formulas (5) and (4), and the term

E,—E(A)—E(B) as
 B—2B(H) = (1) {&(L—s exp (—R)BR[3—1+RY)—
— exp (—2R)(R*/6+3R/4—5/8—R™)} (13)
where L and s are the exchaﬁge and 6verlap integrals, respeétively,
L= f P1(ad) s (b1) (rip)pa(a2)yy (b2)drydry
s = [ pi(al)yy(bL)dry



15

the symbol y; denotes the 1s orbital and the + or — sign has to be used for singlet and
triplet state, respectively. The formula (13) can be derived from the formulas for the respective
integrals published by Hirschfelder and Linnett [1].

Numerical calculations were performed on the GIER computer at the Computer
Centre of the University of Warsaw. They were carried outf or1X, and 3%, states at two inter-
ruclear distances R = 8 and R = 10 a.u. The configurations 1sls, 2p2p, 2p3p,2p3d,2pdf,,
5dy3d, were used in the expansion.

The variational energy was calculated for both values of R by Kotos and Wolniewicz 2],
and for R = 8 the values of E, determined by various perturbational methods were also
published by Certain et al. [17]. Therefore the comparison of all these results with the
present values of E, for R = 8a.u. could be a good test of the accuracy of the present
method.

The basis of Kolos and Wolniewicz was not satisfactory at very large R as shown in
the preceding section. On the other hand, the present basis should be more advantageous
for large than for small internuclear distances. Therefore it was interesting to see if the
accuracy of the present basis could be comparable with that of Kolos and Wolniewicz at
any value of R for which their calculations had been carried out. The present calculations
were carried out just at R = 10 a.u. because it was the largest among such values.

For internuclear distances such as 8 or 10 a.u. the discussed above cancellations of ¢
and G integrals in the Hamiltonian matrix elements other than H,, = ¢ f[H| £y, did not
decrease the numerical accuracy of the resulting E, ;. The formula (13), which determines
E,—E(A4)—E(B) =‘H11/Su—2E(H) or the so called Heitler-London correction, is free
from cancellations. As a result, no such effects decreased the numerical accuracy of the E,_,.

Results and discussion

Numerical results are collected in the Tables I and II. In Table I we show the negative
values of the interaction energy, E;,, exchange energy, .., Coulomb energy, C and the
Coulomb energy calculated by Kolos [7] using the perturbation method in the polarization
approximation, denoted by CP. All values are in cm~L The label singl. refers to 1X} state
and tripl. — to 32} state. The number Nf means the number of terms in the trial wave
function (2). For IsIs, 2p2p, 2p3p, 2p3d, Zpdfys 3d,y3d, configurations we have Nf = 12, for
1sls, 2p2p, 2p3p, 2p3d, 2pdfy, — Nf = 11, for 1sls, 2p2p, 2p3p, 2p3d — Nf = 10, for Isls,
2p2p,2p3p — Nf =1, for 1s1s5,2p2p — Nf = 4 and for Isls configuration or the Heitler-
London wave function — Nf = 1. The wave functions representing the configurations
2p12py or Zpy2py and 2p_y2p_; or 2p,p, etc. are treated as independent f,, funcﬁons_ for
the convenience in programming. The exchange and Coulomb energies are defined as

1 ‘
Bex = 5 (Bin(*2F) — Eine(CZ7)))

C = % (Bi(Z) + Bing(*Z5)).
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TABLE I
Interaction energies in cm™!
e ~Eu | —C | —cP st
" ‘| singl. tripl. singl. tripl.
1 3.818 —3.032 3424 0.393 0 3.82 —3.50
4 8.817 1.873 3.472 5.345 5.024 8.84 1.52
R = 8a.u. 7 9.179 2.181 3.499 5.680 5.410 9.23 1.91
10 10.603 3.527 -3.538 7.066 6.923 10.75 3.42
11 10.787 3.708 3.540 7.248
12 10.859 3.774 3.543 7.317
ap - 3.66 7.740 11.56 4.24
KW | 11.6 4.3 3.65 7.95
1 0.113 .| —0.092 0.103 0.011 0 0.11 —0.12
4 1.430 1.221 0.105 1.326 1.317 1.43 1.20
g 1.530 1.316 0.107 1.423 1.418 1.53 1.30
R = 10a.u. 10 1.786 1.567 0.109 1.676 1.672 1.79 1.55
11 1.812 1.594 0.109 1.703
12 .| 1822 1.602 0.110 1.712°
ap 0.117 1.771 1.88 1.65
KW 2.0 1.5 0.25 1.75
TABLE II
Expansion coefficients a; + 10%
a;, R=8au. a;, R=10a.u.
j conf.
singl. tripl. singl. tripl.
’
1 1sls —10000 —9994.9 —10000 —9999.9
2 2pe2po 15.5777 11.3207 6.2596 6.0424
3 2p42p; 7.5629 8.4152 3.0521 3.1003
4 2p_42p_3 7.5629 8.4152 3.0521 3.1003
5 2D43P0 26.6091 31.8920 15.9764 16.1973
6 2p.3p1 13.9844 12.8179 8.1013 8.0376
7 2p_43p_3 13.9844 12.8179 8.1013 8.0376
8 2po3d, 17.4118 17.9123 7.6980 7.6820
9 2p,3dy 10.9957 10.4056 44738 4.4430
10 2p_43d_4 10.9957 10.4056 4.4738 4.4430
11 2poify 8.0362 8.2230 3.0230 2.9768
12 3dy3d, 4.9984 4.7858 1.8976 1.8383

The values of Kotos and Wolniewicz [2] are written in the row denoted by KW. In
the row denoted by ap the values of the asymptotic exchange energy calculated by Herring
and Flicker [18] as well as the three-term (up to R-19) CP energies [7] are given. The meaning

of the columns E., will be given below.

The results show that —E, o, increases slightly with the number of basis functions,

NY, being in all cases a little smaller than the Herring-Flicker energy, Eey,s-

The differences

between these two energies are small for both internuclear distances. The results of Kolos
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and Wolniewicz agree very well with those of Herring and Flicker at R = 8 a.u., but at
R = 10 a.u. the results disagree in spite of the fact that E, . should be more accurate
at R = 10 a.u. than at smaller internuclear distances. This disagreement is probably due
to the discussed above inaccuracy of the Kolos-Wolniewicz basis at large R. Since the
present E,, for Nf = 12 agrees at both R very well with E. s and the triplet energy is
at R = 10 a.u. lower than the KW value, the accuracy of the present results is at R = 10 a.u.
probably greater than that of Kolos and Wolniewicz. For such internuclear distances as
R = 8 a.u. the KW results are considerably lower and much more accurate than the present
energies.

It is interesting to note that the energies of the singlet state at 10 a.u. are almost equal
to the sum of the perturbation dispersion energies CP calculated with the same number
of terms plus the Heitler-London energy FEj. This fact can be explained as follows. For
singlet state of .H, molecule the basis of unsymmetrized products u;w; atomic configurations
is complete if all the configurations are taken into account. The S matrix of the overlap
integrals as well as the H matrix of the Hamiltonian defined in the antisymmetrized Auvw;
basis, except Hyy, are for large R very close to the respective matrices defined in the unsymme-
trized basis u;w;, e.g., the present calculations have shown that the differences between
respective matrices are very small at R = 10 a.u. The considerable difference in the Hy,
matrix element is equal to the Heitler-London correction. As a result, if a new configuration
is taken into account in the Aww; basis, the improvement of the energy is almost the
same as that made by the same configuration in the unsymmetrized w;w; basis. Therefore
the difference between these two bases for the respective number of configurations is almost
equal to the Heitler-London correction.

As a result, we can obtain an estimate of the singlet E;, for given Nf as the sum of
the Heitler-London correction plus the respective CP energy. This sum is given as E,, for
the singlet state. For the triplet state we can make use of the fact that the exchange energy E,
is very close to the Herring-Flicker Eos and obtain the E_, by subtracting 2F, . from
E for the singlet state. Such estimates are given as E,, for the triplet state. For the
asymptotic values of E_, (the row ap) the value of CP presented in the row ap is used.
These values of E,, are at R = 8 a.u. very close to the KW results. The values of E, as
well as the results of the present variational calculations suggest that the exact values of
the interaction energy at R = 10 a.u. are not lower than —2.0 cm-! and —1.75 cm™! for
the singlet and triplet state, respectively.

The variational coefficients a; of the expansion (2) are given for Nf = 12 in Table II.
All the basis functions f,, as well as the trial wave function Y are normalized to 1. The a,
coefficients are rounded off up to 5 significant digits. The a, coefficients used in order to
calculate E, , are —1.00001550, —0.999948762 for the singlet and triplet states at R = 8 a.u.
and —0.999996992, —0.999994615 for the singlet and triplet states at R = 10 a.u., respec-
tively. .

It can be seen that the absolute values of all the coefficients other than a, are by at
least three orders of magnitude smaller than Jay| ~ 1. It should also be noted that |Hy |
is much greater than the absolute values of other Hamiltonian matrix elements. As a result,
there is no loss of accuracy in the algorithm (4). .
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The present values of the E;. at R = 8a.u. are in a good agreement with recent
Piela’s pe_rturbation'al resulis [19, 20]. Piela also used the basis Auiwf and the Slater-type
orbitals with the common orbital exponent equal to 1. Some matrix elements were neglected
in his calculations. His basis contained the same configurations as the present one except
the 2py4f,> and besides many others. The lowering of the Ej,, due to these other configura-
tions, was at R = 8 a.u. a little greater in the singlet state and almost the same in the triplet
state than the lowering due to the 2p¢df, configuration in the present calculations. This
proves that the 2p4f configuration is very important at such internuclear distances as R = 8.

Certain et al. [17] used the same basis as Kolos and Wolniewicz [2]. Among their
results only those of the HS and HAV method (for the meaning of the abbreviations see
paper [17]) were closer to the KW results than the present values of Ep,.

Concluding: The present contribution proves that the interaction energy can be
calculated with a good numerical accuracy by using the variational method, and proposes
the basis set along with the algorithms fitting that purpose.

The author is very indebted to Professor Wiodzimierz Kotos for his helpful discussions
and for the critical reading of the manuscript. Thanks are due to Dr Tamas Szondy for his
one-electron integrals program and to Dr Lucjan Piela who has wriiten the G integrals
program as well as-a great part of the exchange integrals program.

APPENDIX

A simple modification of the Ritz variational method

Let us consider a system of n basis functions f;, and let /1 be the most important among
these functions in the problem under consideration i.e. in Eq. (2) the variational coefficients
|| <€ ay| for m # 1. The variational cocfficients A4, and A, in the wave function @y,
= A, f,+4sf, can be calculated by the Ritz method. After this calculation the function ¢y,
can be combined with f;, resulting in the function @5. The functions @y, ... @1, Where e.g.

k
¢ = 2, @;f; can be obtained in a similar manner. Then the process can be repeated. The

=
functions fy, fa, --- f, can again be introduced in the linear combination and the approximate

wave functions @ag, Pas, --- Pa, can be obtained. In such a way the 3-rd, 4-th iteration etc.
can be made until sufficient accuracy of the energy and of the coefficients a; is

reached.-
Details of the linear combination of two functions, say gy and g, will now be presented.

The secular equation
det {Hy—ES} =0 where k,j=1,...n

is for n = 2 the simple algebraic equation of the kind az2+bz-+c = 0. In our case b*—4ac
=:(h22_‘h11)2(1+ W) Where O

W= 4("12—‘3‘}‘11)(7112* Shzz)(hzz—hn)"z

s = {g1lg2> -and by, = <glelgk>'
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If || < 1 then (1+ W)"2 can be expanded in the power series and after some manipu-
lations the following expression for the lowest energy E can be obtained

E—hyy = —{1/(1—32)1x {(hy—5h11)?)[(hag—P11)}¥
X {1 (s (=) P (487 3 (— W)= Y@nl. (AT

Now let g, be our basis wave function f;, £ > 2, and g = @,, ;1 obtained when f;_,
is taken into account in the m-th iteration.
The relation between h;,—shy; and some expression of the Ritz method can be easily
found.
Namely
hyg—shyy, = Z a; ij—huSkj). (A2)
J
It is well known that the coefficients a; are calculated in the Ritz method from the
equations

Tp = Z“j(ij"ESkj) =0, k=1,..n (A3)
J

Since hy; is an approximation to the variational energy E, the energy lowering Epv—E, pa
is approximately proportional to r; and vanishes only if the corresponding equation (A3)
holds. The vector of the coefficients a,, can be calculated at each stage of the iteration process
by using numbers 4; and A,.

Some illustrative numerical calculations using this method suggest that it is more
accurate than the Ostrowski method. It is quickly convergent when the absolute values of
the off-diagonal matrix elements are small. If they are not small, the convergence is much
slower, but in such a situation a linear extrapolation can be used in order to obtain a; and
the variational energy can be calculated by Eq. (4).
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