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APPROXIMATE GROUND STATE OF A UNIAXIAL NEEL
ANTIFERRIMAGNET IN A LONGITUDINAL MAGNETIC FIELD
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Institute of Theoretical Physics, University of Wroclaw™
(Received July 16, 1970; Revised paper received November 11, 1970)

The field-induced transitions between the antiferrimagnetic, canted-spin and paramagnetic
phases of a two-sublattice Néel antiferrimagnet at zero temperature are studied. The approximate
ground state is obtained for all three phases, and the magnetization and susceptibility in these
phases as a function of the magnetic field is determined and discussed.

1. Introduction

In this paper we examine the zero-temperature magnetic properties of a uniaxial two-
-sublattice Néel antiferrimagnet in an external magnetic field parallel to the easy axis. In
particular, we determine the critical field strengths for the phase transitions and study such
thermodynamic quantities as the magnetization and susceptibility. We confine ourselves
to the case T'=0 and defer the case 7' 0 to a subsequent paper.

We consider only such crystal structures which can be split into two sublattices, such
that all nearest neighbours of an atom belong to the other sublattice. The atoms of the two
sublattices, denoted by 1 and 2 respectively, have different maximum spin eigenvalues .S,
and S, and are coupled by nearest-neighbour exchange interaction of the Heisenberg type.
The exchange interaction is assumed to be anisotropic, favouring spin alignment along
a single crystallographic direction which we choose as the z-axis of our co-ordinate system.

As the true ground state of an antiferrimagnet is unknown, there is usually the problem
of choosing a suitable reference state (spin wave vacuum) when applying spin wave theory
[1-3]. We determine the approximate ground state of the spin Hamiltonian by minimizing
its expectation value in a class of trial states corresponding to complete sublattice spin align-
ment with arbitrary direction (sublattice saturation state). Strict solutions for the field-
-dependence of the direction of the sublattice magnetization are obtained.

It is shown that for small magnetic fields the spins of the two sublattices are antiparallel
to each other and lie in the field direction (antiferrimagnetic phase). As the field increases,
a phase transition occurs to the canted-spin phase in which the spins deviate from the field
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direction. Upon further increasing the field, all the spins become aligned in the direction
of the external field (paramagnetic phase; see e. g. [4-7]). In some ways the situation is
reminiscent of that in the spin-flop phase of an antiferromagnet [8-11], except that in the
present case the antiferrimagnetic phase exists for fields below a certain critical field, even
in the absence of magnetic anisotropy. Furthermore, in an antiferrimagnet, both transitions
are of second order.

When specified to the isotropic case, our results are shown t6 agree with those obtained
in [4-7, 12]. It is also shown that the results obtained in [13] correspond to the weak-aniso-
tropy limit.

2. Trial ground state

The Hamiltonian of the system is assumed to be of the form:
H = Z AabS;Sg_IuI 2 Has}z_tu2 Z Hasg7 (1)
{f8> f g

where {f, g) denotes summation over nearest-neighbours only, and f and g are lattice
sites in the first and second sublattice, respectively (each of them having N sites); p; and u,
are the effective magnetic moments per lattice atom in the first and second sublattice; Sf
and §g are spin operators asigned to the lattice sites f and g; H = (0, 0, H) is the uniform
external magnetic field which is parallel to the co-ordinate axis z. The interaction tensor A
represents isotropic and anisotropic exchange interactions between neighbouring atoms
(belonging to different sublattices); it may be written as

X, 0, 0
Ap=1J7[0,1,0], @r
0, 0,7

where X = 14+K_J71, Z = 1+K_,J71. We assume that Z > X. Here, J > 0 is the nearest-
-neighbours exchange integral; the constants K, > 0, K, > Orepresent anisotropic exchange
interaction in the x and z direction, respectively. In Eq. (1), Einstein’s summation conven-
tion is applied to the tensor indices a, b(= x, ¥, 2)..

Similarly as in [2, 3, 11], we perform the following rotations of the spins around the
axis y (see Fig. 1), with the help of the transformation

S;‘ = 57 cos @, 455 sin O, S§ = S; cos @, —S% sin O,

Y= 5 F=5
S:f = —5F sin @, +57 cos O, S': = §j sin 0,4 5% cos 6,. 3)

This transformation introduces two different co-ordinate systems (+', v, 2') and (x’, y, 2’’) in
the sublattices 1 and 2, respectively. For simplicity, we omit the prime and double-prime
superfixes over vector indices «, y, z of the transformed spin components in (3).

We define the sublattice saturation states [0); and |0}, (homogeneous spin- devia-
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tion reference states; cp. [2]), in which the spins in the two sublattices are aligned along the

new z' and z'’ axes, as follows:
S50y = $,10%, 10y =0, (@
S210) = —S,|0), 5,10y =0,

where [0 = 031 |03y, <0[0), = 00>, = 1, SF = S;+iSY (h =1, g).

The approximate ground state is determined by minimizing the mean value of the Ha-
miltonian (1) in the state [0 with respect to the parameters 0, and 6,, i. e.,

min <0 [5#| 05 = min Ey(0,, 0,) = E,. . (5)

2
2 2!

/ L@é o8 X

Fig. 1. Co-ordinate systems as introduced by Eq. (3)

By taking into account Eqs (1)—(5) we obtain for E; (0, @,) the following expression:
Ey(0y, 0,) = d(X sin 0, sin @,—Z cos 0, cos Oy —
—h cos @, +xh cos O,), - (6)

where h = u,H|JS,p,, d = NS, SoJyos # = psSs/pyS;, and Yo is the number of nearest-
-neighbours. Without loss of generality, we assume # < 1.

3. Stabl'e;‘magnetic phases and critical fields

The approximate ground-state energy is obtained by solving the necessary and examin-
ing the sufficient conditions for the existence of a minimum of Ey(@;, ©,), in dependence
of the parameters (X, Z, h, #): B

QE,\ [92E, 9E; \? LI :
(a@% ) -(a@%) N (,96;902' =% gez >0 ®

4

I



664

The equilibrium conditions (7) can be written in the form

sin @; = 7R sin O, ‘ 9)
and
sin @, (w cos Oy + nxhXR1+hZ) =0, (10a)
or .
sin O, (w cos @, —nhXR—xhZ) = 0, (10b)
where l :
R? = (2h2—w)/(h2—w), w=2Z2—X2, 7q=+l (11)
From (9) and (10a) or (10b) we obtain the followin;g solutions:

sin @; =sin @, =0 ' (12)

or
cos O = hw Y (xZ+nXR), cos Oy = —hw H(Z+ nxXR1). (13)

Without loss of generality, we assume h > 0. By substituting Eqs (12) and (13) into
(8) one easily verifies that there are real and stable solutions in the whole interval 0 < /& < o0
for the external magnetic field. Namely, for

0 <h < h, = (2r)y HZ(x—1) +[ 220 —2)*+4doew] ! (14a)

there are only two stable solutions that follow from (12), 0,=60,=0and O, =0, =m,
which we denote by (0,0) and (7, @), respectively. In the interval

h, < h < b= (20)HZ(1 —2) +[Z2(1 —2)? +4oaw] "} (14b)
the only stable solution is (0,0). For “
b > hy, = (20 HZ(14+») +[23(1 + %)t —4ow] %} > by - (4c)

there is also one stable solution which follows from (12), namely, @, = 0 and O, =m, i.e.,
(0, m).

As regards the interval h; < h < h,, the stable solution which we shall denote by
(@, @,) is given by Eq. (13) for which we have, upon inserting in (8), -

92E,[905 = —ndXR, (15)
A = d?(x2h2—w)(1—cos? f,). (16)
Tt can easily be seen that in this case there is a minimum only if = —1. At the same time,

the obvious conditions |cos @] <1 and |cos 0, < 1 along with the minimum condition
A > 0, restrict the external field precisely to the interval b, < h < h,, as required. One
easily proves that in this interval the reality condition R? > 0 following from (11) is automati-
cally satisfied.

The ground-state energies E, corresponding to the stable solutions (0,0), (7, #), (6y, 6,)
and (0, 7) are easily obtained from (6): = o

B = —d[Z+h(1—x)] = Efy:
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By = —d[Z+h(x—1)] = B,
EQ® — —d[XR+h cos 0] = ES,
B — —d[—Z+h(l+x)] = EP. 17)

From Fig. 1 it is seen that the solutions (0, 0) and (7, @) describe the so-called anti-
ferrimagnetic phase (4) at zero temperature corresponding to an antiparallel configuration
along the external field (that is, along the direction of easiest magnetization) of the sublattice
saturation magnetizations. The solution @;, 6, represents the so-called canted-spin phase (C)
in which the sublattice magnetizations form the angles @; and @), with the field direction,
while the solution (0, %) describes the so-called paramagnetic phase (P) corresponding to
complete spin-alignment along the external field. .

As regards the antiferrimagnetic phase, in consistency with our assumptions
%= pgSs/pySy < 1, h >0 and the definitions (4) the solution (0,0) describes the case when
the external magnetic field is directed along the larger magnetic-moments (sublattice 1),
while the state (7, 7) corresponds to the opposite case. From (17) it is seen that EJ™ > EJ0
except for 4 =0 when those energies coincide (two-fold degeneracy of the ground-state
energy). Thus, in the interval 4 < ki, in which both the solutions exist, one has to distinguish
between the antiferrimagnetic configuration 4; with lower energy corresponding to the
solution (0, 0), and the opposite and energetically less favourable antiferrimagnetic configura-
tion A, described by the solution (7, 7).

Our analysis shows that, depending on the direction in which the longitudinal external
magnetic field is switched on, the magnetization process can take place either according
to the scheme 4, — C — P or Ay — A; — C — P, the critical fields for the phase transitions
Ay — 4y, Ay > C and C « P being respectively A, s, and &, In the isotropic case K,
= K, =0 (i.e., X = Z = 1) only the first magnetization mechanism is possible, as -4, = 0
according to (14a), i.e., the phase A4, does not exist.

4. Magnetization and susceptibility

In order to determine what kind of phase transitions occur at the critical points A, A,
and h,, we examine the energy E,, the magnetization M and the susceptibility y of the
system in the approximate ground state (4) as functions of the external field 4 and study

their behaviour at those points.
The components of the sublattice magnetization vectors M (i =1, 2) in the state (4)

are defined as follows:

Mi=pm 35 Q10 M= py 3 QOI5;105, (6= 1,5, (18)
g

and those of the total magnetization M accordingly,
M= M+M;=M|+M}, M, = Mi+M;= ML+ML
M = (M} +M?)*, (19)
where M > M and M, M denote the comporents of the magnetization vectors in the
direction perpendicular and parallel to the-external magnetic field (transversal and longitudi-
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nal magnetizations), respectively. For the respective phases one easily obtains, e.g., the
following expressions for the components of the total magnetization:

M4 = M= p,S,N(1—=»), MG =0, (20)
M#4: = Mfj» = u,S;N(x—1), My =0, (1)
MPC = p,S;N[1+x2—2x cos (6,+6,)]*%, (22)

M = u,S1:N(cos @y —x cos Oy)
= u,S;Nhw[2xZ—XR(1+#2R~2)], (23)
MS = 1, SyN(sin @3+ sin 0y) = p,S;N(x—R) sin Oy, (24)
MP = ME = mS;N(1+=), Mj =0. (25)

We define the differential sublattice susceptibility as

oM . __
Xia=-‘97{“ (l—"lazaa’_ “7 -L)’ (26)
and the total susceptibility accordingly:

PR 1T

2=t ep AL = XaLthels X = Fr AT Fp AL (27)
After simple calculations we obtain for the respective phases
‘ ===t = === =21 =0, (28)
| 1S, = SN(SoTyo) AL cos O, —h*XR(1—2?) (A2 —w) ], (29)
25| = —uiSIN#(SJye) M cos Oy +
+REX R —1) (x2h2 —0) 2], (30)
251 = —1) 6 O 151 = 1518 O 6D

and xﬁ, 25, %€ follow from (27) upon substituting the values (29)-(31) and (22)-(24).
From (14b), (17), (20), (22) and (27)~(30) we obtain for the A; <> C transition point A,

Efi(h) = ES(hy) = —d(20) " {Z(1+%%) +
+(L—)[Z2(1 —2)2 +4oew] %}, (32)
MA(h) = MC(h) = u,S;N(1—2), (33)
x(hy) = 0, 2fi(hy) = piSIN(—#)(SpSyehy)™ X

IR (E T P



667

From (32)~(34), it results that fer 4 = h, the ground-state energy of the system and the
zero-temperature total magnetization are continuous, however, in the longitudinal suscepti-
bility a jump occurs. Therefore, the phase transition is of second order. The system behaves
analogously at the C<» P transition point 4,, namely,

E§(h,) = E§(h,) = —d(2r)HZ(1+2?) +
+ (140 [22(1 + )2 —doeww] %, (35)
MC(h,) = MP(h,) = mS:N(1+2), (36)
2(h,) = p3SiN(L+2) (ST yeh, )1 X

2 2
8 {1+ [(XZ—) _1] (g:—}) };é 0, zh(h,) =0, 37)

which follows from (14c), (17), (22), (25) and (27)-(30). For the Ay <> Ay transition point A,
we obtain from (14a) and (17) that in the ground-state energy of the system a jump occurs:

AE = Ef(h)—E$x(h,) = 2dh,(1—x), (38)
and from (20), (21) it follows that in the magnetization a jump also occurs:
AM = MA(h) —MA4(h) = 2u,S,N(1—%). - (39)

This means that the transition is of first order.
Schematic curves of the system’s ground-state emergy, transversal and longitudinal
total and sublattice magnetizations and susceptibilities as functions of the external field

Eo
[aj

Fig. 2. Ground-state energy E, as function of the external magnetic field H, according to Eq.(17)

are given in Figs 2-6, respectively. Numerical curves for the absolute value M of the total
magnetization and the corresponding susceptibility y are plotted in Figs 7, 8 for x = 0.5,
K,=0 and K, =0, K, = 0.01] (weak anisotropy) and K,=0.1J (strong anisotropy).
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5. Discussion of results

As is seen from Fig. 2, the magnetization process 4y — A; — C — P is irreversible,
as the demagnetization process always follows the scheme P — C — A; -0, omitting the
phase Aj,. This implies that a supercooling effect should take place at the phase transition

M//"Ml‘
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b
r
7-x [
|
|
L w0
0 5 -
hy h
x-1

Fig. 3. Longitudinal M| and transversal M | components of the total magnetization as functions of the external
magnetic field, according to Eqs (20)-(25)
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Fig. 5. Longitudinal bl iand transversal % components of the total magnetic susceptibility as functions of the
] external magnetic field, according to Eqs (27)-(31)
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A, — A, as the system’s ground-state energy drops by AE according to (38). In other
words, when starting the magnetization process with the field parallel to the smaller spins
(i-e., antiparallel to the larger ones), upon exceeding the first critical field /,, the spins of the
two sublattices change their signs and the system assumes the energetically favourable
antiferrimagnetic configuration A4;. The supercooling can therefore be based on the cycle
Ay — Ay — 0 — Ay — ete.

M
[y,

T+ -

T+

()

Fig. 7. Numerical curves of the total magnetization M as function of the external magnetic field, for the values
. K,=0, K,= 0.01 J and K, = 0.1 J of the anisotropy constant
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Fig. 8. Numerical curves of the total susceptibility y as function of the external magnetic field, for the values
K,=0, K,= 0.01 J and K, = 0.1 J of the anijsotropy constant
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As regards the longitudinal and transversal components of the total (Fig.3) and sublattice
(Fig. 4) magnetizations, it is seen from Figs 3 and 4 that they are continuous functions of
the external field A except for A, if the phase transition A, — A; occurs. Furthermore,
numerical calculations based on the formula (24) show that for weak anisotropy (K, = 0.01])
the transversal component M of the total magnetization is, in the C phase, negligible, as
it does not exceed 19, of the absolute value M of the total magnetization. This means that
the total magnetization is in this phase practically parallel to the external field, the deviation
being less than 40’. When the anisotropy is strong (K, = 0.1]) then Mi increases up to
9.29, of the total magnetization which deviates from the field direction up to 5°20". Therefore,
the customary assumption M || H for the C phase in the molecular field approach (cp. [7])
is justified only in the weak-anisotropy approximation. -

+ The curves of the total (Fig. 5) and sublattice (Fig. 6) longitudinal and transversal
susceptibilities show clearly the existence of second-order phase transitions at the critical
fields ; and A, for the 4;> C and C«> P transitions, respectively.

The influence of the anisotropy on the magnetization process of a uniaxial two-sublattice
antiferrimagnet in a longitudinal external field is for K, = 0 illustrated by the total magne-
tization and susceptibility curves in Figs 7 and 8, respectively, for the isotropic (K, = 0;

€0s6;

_7__

Fig. 9. The stable solutions ; as functions of the external magnetic field, according to Eqs (12), (13)

solid curves), weak anisotropy (K, = 0.01/; dashed curves) and strong anisotropy (K,
=0.1J; dotted curves) cases. The corresponding critical fields 4, h;, h, are respectively
marked with the superscripts i, w, s. It is seen that with increasing anisotropy the critical,
fields also increase. However, at the same time the interval A,—h, in which the C phase
exists decreases, and approaches zero for infinite anisotropy. The ‘‘hysteresis loop” indicated
in Fig. 7 exists only in the anisotropy case (as A’ = 0) and grows wider with increasing
anisotropy. Note also that the magnetization in the C phase is an approximately linear
function of the external field for weak anisotropy only, the deviation from linearity becoming
stronger with increasing anisotropy. This result, again, restricts the considerations in [13]
to the weak-anisotropy approximation.
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As regards the motion of the sublattice spins in the C phase, our strict solutions (13) plot-
ted schematically in Fig. 9 show evidently that smaller spin S, (described by the function 6,)
rotates with increasing field monotonously from the antiparallel to the parallel position with
respect to the external field, while the larger spin S, (described by the function 0,) rotates
at first out off the (positive) field direction and only upon exceeding a certain field strength 4,
falls gradually back onto the direction of the field. This characteristic swingback motion
of the larger spins confirms the conclusions drawn in [14] from a numerical analysis of the
same process described by phenomenological methods. One easily verifies that no phase
transition take place at h,.

For comparison with previous results we specify briefly the isotropic case for which
X=Z7=1 and w=0. According to (11) Eq. (9) simplifies

sin @) = —x sin O,. (40)
Of course, Eqs (13) are no longer valid and must be replaced by
cos O = (2hx)"1(1 —22 +%2h?),
c0s Oy = (2h3?) (1 —2%—x2h?). (41)

These solutions are the same as those obtained in [7, 12]. Furthermore, from (14 a, b, c)
one easily obtains
hy=0, hy=(1—n)|n, h,=1+n)x (42)
From (40) and (24) it is immediately seen that Mﬁ = 0, which means that in the canted-
-spin phase the total magnetization lies along the external field. This is the standard assump-
tion in the molecular field approach [7] (see also [4-6, 12]).
From (23), (19) and (41) we obtain that

MC = MS = ,S,Nuh, (43)

i.e., the total magnetization in the C phase is a linear function of A. The same result was
obtained in [4-7, 12, 13].

The linear relationship between M and H in the canted-spin phase was found experi-
mentally in several magnetic materials as, e.g., in rare earth orthoferrites [15], in single-
crystalline Ba Fe;, Oy4 [16], in Mny Geg [17], and in pyrhottite Fe, Sg [14] and YbIG [7].
The existence of two critical fields and a similar shape of the magnetization curve as obtained
by us were experimentally observed in Mn Cr, S, [18].

Finally, we may point out that for x = 1 and S, = S, our results correspond to those
for two-sublattice uniaxial antiferromagnets (see e.g. [11])..

The author is profoundly indebted to Dr G. Kozlowski for his deep interest in this
work; for enlightening discussions and suggestions and constant encouragement. The
author is also very grateful to Dr hab. W. J. Zietek for reading and correcting the manuscript
and for many valuable remarks.
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