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SIMPLE MODEL OF LATTICE DYNAMICS FOR MAGNESIUM,
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A simple model of lattice dynamics for hexagonal, close-packed structure crystals is proposed.
Parameters of the model can be derived from the elastic constants data. The model was successfully
tested by evaluatmg phonon frequencies for magnesinm, and comparing them with experimental
ones. Using the model, phonon dispersion curves and frequency spectra for magnesium, cobalt
and ytrium are calculated.

Introduction

Phonon dispersion curves for hexagonal, close-packed (hcp) structure metals Be, Mg
and Zn have been measured at room temperatures some years ago [1-5] and many theoretical
treatments of these results, both phenomenological and *“from first principles” have been
published [6-10]. However, the lattice dynamics of many other hcp metals is still unknown,
but only in the acoustic g 0, w —> 0 limit (the elastic constants). It ‘seems interesting to
try obtaining more information about the phonon spectrum for these metals by a proper
extrapolation of the acoustic limit information to other (g, w) regions.

A simple model of the Born-v. Karman type for the lattice dynamics of hexagonal,
close-packed structure is presented below. The main advantage of the model is that its
parameters can be fixed by using all the elastic constants and the elastic constants only.
The model works relatively well for magnesium, and one can expect it to work well also
for cobalt and yirium. The model was partly suggested by the results of Champier and
Touissant [11].
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Description of the model

All five elastic constants of the hep structure can be in general expressed as non-linear
.combinations of force constants of the Born—v. Karman theory [12].. There exists also an
interrelation between force constants, the so-called Huang condition for the absence of
nonisotropic internal stresses. Using these six equations one can determine no more than
six force constants. They are just six, if the equations are linear and consistent.
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Fig. 1. Projection of the hep structure on the basal plane and the scheme of interactions for the model discussed

A following model yields a set of equations which underlie these conditions (Fig. 1,
‘Table I):
i. Interactions of a general type with nearest neighbours in the basal plane z =0.
ii. ““Quasi-central” force mairix for interactions with nearest neighbours in the adjacent,

: 4 . : ) i
2=+ i) planes. This resembles a central forces matrix because the xx-diagonal force con-

stant is assumed equal to 0, but the remaining force constants B, G, D are symmeiry-
~restricted only.

- TABLE I
Position of the representative Indices in the scheme Force matrix in the model
atom of a coordination sphere of paper {12] presented
a k=0 o [ 0-
[0] I=1 —l—-feb0
0 m= O \_0 O g_
0
- |
~a /3 K=0 0 0 01
3 L=0 — |0 B D
c M=0 |0 D G
7 |

The antisymmetric force constant f cannot be fixed from the elastic constants alone,
for it does not appear in the corresponding equations. We have left it in the formulas for
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elements of dynamical matrix, because it represents interesting many-bodyforces (f becomes
equal to zero when only two-particle ion-ion interaction potentials occur).
The elastic constants and the Huang condition can be written as follows (see [12])

3 2
011=—‘;—g‘(3'a+b-l- ?'B)

Cos = 57 (a+3-0)
2
C13+C44—71"D
3 c\?
(s

As a solution one obtains

2
o ]/—3—0.6 1 a ¢

) 11 213 ) _c—..,.c‘“_ m'c%

2a2
B = c
3c “
a2
G = ¢
3o

a
D= b3 * (c13+caa)-

The elements of the dynamical matrix are given in the Appendix and phonon dispersion
formulae can be found in [21]. In this simple model the following equation holds (group.

theory classification of phonon modes is according to Iyengar et al. [2] and Pynn and
Squires [3]):

o(l'f) _ o [em
oT) "V e B
If purely central interactions (g = 0) and ideal hcp structure (_C_ =‘l/§> are assum-
a

ed, the Huang condition predicts:

L3 g,
Caa
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Phonon dispersion curves - !

The model was tested by calculatmg force constants and phonon frequen01es for Be,
Mg and Zn, and comparing them with experimental data A satisfactory fit was obtained
only for magnesium (Figs 2, 3). Optical frequencies at ¢ = 0 fit experimental values very

well: o(I5) = 4.59,413 rad/sec, w(IF) = 2. 371013 rad/sec.
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Fig. 2. Phonon dispersion curves in the directions 4 and X' for Mg. Points — experimental data of Iyengar
et al. [2]. Lines — model discussed
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Fig. 3. Phonon dispersion curves in the direction T for Mg. Points — experimental data of Squires and Pynn [3],
at I' and M — data of Iyengar et al. [2]. Lines — model discussed
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In fact, for Mg the present model fits:the experimerit nearly as well as the Iyengar’s
axial symmetry model and the four; nearest nelghbours general force model, where some
force constants were found by leastv-square fitting to cxperlmental phonon frequencies [2],
and the three-nearest- nelghbours «general force model of Sqmres [3]. For the direction T
the agreement of our model: Wit expcrlment is somewhat Worse, although the discrepancies
do not exceed ~59,. For branches T, and T, acoustic the agreement is still good.

There is also another, more sophlstlcated model of lattice dynamics of Mg, based on
the elastic constants only {7]. The i interactions ‘with 4 nearest neighbours and the contribution
of electronic bulk modulus to 1att1ce dynamlcs are taken into account. In spite of greater
complexity, the agreement of. calculated dispersion curves with experiment is not better
than in our case and for some phonorn frequencies (ex. w(I';)— slightly worse.

The ratios of elastic constants, cy/ces and cagfcy; Tor Mg are nearly equal to one, which
is characteristic for isotropic med1a Also the ratio ¢/a for rhagnesium (1.62) is close to the
c/a ratio for ideal hep structure (1.633). As may be seen (Table II), the same is true also

TABLE II
Lattice constants (&) and elastic constants (101 dyn/cm?)
Mg 1 Co Y
a o 3.2028 T 251 3.65
c . 5.196 4.07 - 5.73
en , 5.964 30.07 7.79
Cg3 6.164 : 35.81 7.69
Cog -1.702 ) 7.1 : 247
Caa 1.642 155 . 243
13 . 2.104 . T 1027 5.51
(Elastic constants for Mg and Co from [14], for ¥ from [15]).
TABLE IIT
Force constants (dynfem) for Mg, Co and Y
a b : g | B l G ] D
2 < 15 S SR
| .
Mg 1.12;44 —3.31302 1.21,2 3.74,03 7.03193 6.00143
Co 4.55,44 —4.03143. —1.80,,3 1.35,4% 3.20,4 224404
Y 1574 2.30,42 | 5.79:42 6.52:,3 1.03;44 827443

for cobalt and ytrium. Assuming that these macroscoplc similarities reflect some analogies
in their microscopic interactions, one can expect similarities in other properties too. Based
on this assumption, the: force constants-and ‘phonon dlspersmn curves for Co and Y were

calculated (Table III, Figs 4, 5). The optlcal frequencies at 7=0, o(I'}), o(I'}) are as
follows (the unit- rad/sec):

Co: 6.23,)13, 2.86,013; Y: 2.61,013, 1.47,,13.

At present there are no experimental data to be ‘compared with these values.
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Fig. 4. Model calculated phonon dispersion curves in the directions A and X for Co
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Fig. 5. Model calculated phonon dispersion curves in the directions 4 and X' for Y



561

Determination of the phonon frequency spectra

Having developed the model, one is in a position to calculate phonon frequencies and
polarization vectors throughout all the Brillouin zone. Thisinformationisneeded for evaluating
many quantities of physical interest. For example, even with a dynamical matrix based
on a rather rough model, one obtains polarization vectors and phonon frequencies sufficiently
accurately to estimate the dynamical form-factor, necessary for planning the neutron-phonon
scattering experiments [2]. Other quantities of this kind are the probability of the Mass-
bauer effect, particularly in the case of anisotropy [17], or the electron diffuse scattering’
intensity [16]. The knowledge of the frequency spectrum permits for the calculation of
thermodynamic properties of a crystal to be performed [18].

To calculate the frequency spectrurh we used the sampling method improved by Gilat
and Dolling [19]. In our case the irreducible part of I BZ was divided into a mesh of points,
the number of which was about 80. At these points the exact eigenfrequencies and eigen-
vectors of the dynamical matrix (see Appendix) were computed. Following this, the perturba-

i

\ y
glw)

Fig. 6. The averaged phonon frequency distributions for Mg, Co and Y. Ao = 55,11 radfsec

tion calculations of the frequencies at 125 points, uniformly distributed within a cube
about every mesh point, were carried out. Frequencies obtained in this way, usually about
30000 in number were sorted into frequency intervals Aw = 5411 rad/sec or dw = 1,412
rad/sec. Every frequency was given a weight (1 or less) following from symmeiry considera-
tions. After summing up all the weights in every frequency interval the phonon frequency
distribution function (FD) was established.
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To avoid, partly ‘at least, theirrelevent peaks in FD' due-to accidental degeneracies
or weight inaccuracies, we repeated all the computations with the mesh of points shifted
along the dlagonal of a cube by a half of a diagonal, and to add the newly obtained FD- 11
to the former one, FD- L The so- -obtained. “averaged” FD Was always smoother than any
of the orlglnal ones — many small peaks were usually removed The GIER computer at,
INR Swierk was used to perform all the computations.

' The averaged frequency distribution for Mg,. computed on. the assumptlon f=0is
shown in F1g 6. The quality of this result is lower than that obtained by Raubenheimer
and Gilat [20], as the mesh in their work was much denser than ours, resultlng in better
accuracy and resolution. :

_ Besqdes the quality, both slopes dlﬂ'er also in thelr physmal content In our case ‘the
peak at o = 2.5;,13 rad/sec is the hlghest whereas they obtained in this region only a maxi-
mum7 much Iower and broader, with some structure. Thls is, of course, due o the dlﬁerences

Mg

.:g(w)

T 2 3 4 52107
Fig. 7. The phonon frequency distribution FD—I, for Mg, assuming f == 0 and fi= 104 dyn/em; Acy =10%?rad/sec

in the models used. Raubenheimer and Gilat rely on the four neighbours, tensor-force
model of Iyengar es al. [2], which at first sight seems better in every respect than ours,
because it was fitted to a larger number of experimental data. However, it predicts a near
degeneracy of two frequencies at point M. (see [20]), which disagrees. with experimental
phonon data. There is no such effect in our model. Also at point K the present model clearly
fits the experimental data better. For these reasons - we found: it interesting to determine
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the frequency distribution for Mg also within the present model. However, to obtain a fully
reliable FD, one should repeat the computations with still better models, starting perhaps
with the one given by Squires [19].

Fig. 6 shows the averaged FD’s'also for Co and-Y. It is intetesting to note that the distri-
butions cannot be obtained one from another by any w-scalling. In the case of Co the
total numbeér of frequencres to be sorted was relatively lower, for the (0 Wpay) TANgE is
in this case the 1ongest That is why in the case of Co even the “averaging” procedure did
not remove many of the obvrously accidental peaks.

The tables of polarlzatlon vectors and phonon frequencies corresponding to the mesh
points are given in [22].

Antisymmetric, many-body force constant cannot be determrned from the phonon data
for symmetry- directions. It seems that this.quantity has never been studied systematically.
As it does not appear in the expressions for elastic constants, it cannot influence the low-
frequency part of FD, and therefore the low- temperature thermodynamlc propertles of
crystals. ‘

The unaveraged, FDI slopes for Mg are shown in Flg 7 Frequency d1str1but1ons
for =43 dynfem and f'==0 are practically’ 1nd1st1ngu1shable The f= 144 dynjem FD
is already modified a much; excépting at the low frequency range. The main peaks became
broader and shifted to the tight. The @, increased conmderably, as compared with the
J =0 case. This means that hlghest frequenmes occur in thls case at the pomts of the I BZ,
which do not lie along the main symmetry directions. -

. Discussion '

_ The relative success of the model presented is obv10usly due to the domination of the
short range ion-ion interactions in the lattice dynamics of Mg We notice (Table TII) that
Z @,.(1,1) ~ Z ®,,(1,2), i.e. this interaction is highly isotropic.

" In terms of isotropic, two- body intéeraction potential V{7), the’ smallness of the force

constants b and g ( ( B %V
r ar

very close to the minimuni. of V(). This is consistent with the short-range interaction
concept. Tt follows from our estimations, that a simple potential

) ) suggests, that corresponding ions eccupy posltlons-
r=a

Vi) = =8+ g (r—rg)? at the two nearest atoms positions,
S 0 besides,
(where 6, @, and ry are adjustable parameters), enables one to repréduce the experimental
phonon curves for Mg with the accuracy ~89%,. By allowmg a small anisotropy in the poten-
tial, one could probably obtain an even better agreement. The parameter d can be determined-
from cohesion energy. ‘

It follows from the present work that for Mg, and perhaps for Co and Y, most_of the
information concerning the form of the microscopic, interactions can be deduced from.
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TABLE IV
Averaged phonon frequency spectrum for Mg
Aw = 51911 rad/sec, Zig(w;) =1

0.000 1.149,0—3, 8.748,,—3, 1.776,0—2, 1.052;,—2,
0.000 5 1.47444—3, 8.935,5—3, 1.801,4—2, 1.25949—2,
5.380;—6, 1774493, 9.905,9—3, 1.747;9—2, 1.355;0—2,
6.311;0—6, 1.873,0—3, 1137102, 1774402, 1.605;0—2,
9.560;—6, 2.0893,—3, 1.295,,—2, 1.823,0—2, 2.198,0—2,
5.75310—5, 2.519;0—3, 1.421,0—2, 1.78040—2, 2.7241,—2,
5.808;0—5, 2.348,,—3, 1.70610—2, 1.6651,—2, 2236402,
9.467;9—5, 2.708,0—3, 1.909;9—2, 1.5905,—2, 9.224,0—2,
1.3749—4, 2.73619—3, 2.118;,—2, 1.540,0—2, 2.2905,—2,
1.770,0—4, 328133, 2.80730—2, 1472402, 2.322,0—2,
2.57610—4, 3.299,,—3, 2.843,,—2, 1.453,,—2, 1.932,0—2,
2.693,,—4, 3.693,0—3, 2.461,,—2, 1.38710—2, 1.426,4—2,
3.849,,—4, 4.733,,—3, 2.303,0—2, 1.438;,—2, 1.120,0—2,
3.875,0—4, 4.560,—3, 2.230,0—2, 1.428,,—2, 8.375,0—3,
7.61619—4, 5.099;0—3, 2.111;,—2, 1.5004—2, 6.38210—3,
6.96440—4, 5.07815—3, 2.05615—2, 1.270;0—2, 2.1244,—3,
6.86T30—4, 5.883,0—3, 1.91649—2, 1.2049—2,

9.918,,—4, 5.912,0—3, 1.8613,—2, 1.145,—2,

1.180;0—3, 7416103, 1.825,0—2, 1.080,0—2,

1.08039—3, 7.847,—3,  1.133;—2, 9.856,,—3,

TABLE V

Averaged phonon frequency spectrum for Co
Aw = 5411 radfsec, Zig(w;) =1
0000 ,  7T4295—4,  3.6340—3,  1.669—2,  11744—2, 84dl;,—3,  1.198,-3,
0000 -,  T66Tio—4,  41320—3, L6Al,—2,  1145;—2,  1.00730—2,  1460,0—3,
1.342,,—6, 9.245,4—4, 4.678,,—3, 1.908,,—2, 1.163,4—2, 9.86610f3, 9.189,,—4,
1825,—5,  9109,—4,  50l4—3,  1879—2,  107L—2, 1084,—2,  6.6681,—4,
1552,0—5,  1.0560—3,  4997,—3,  2.0450—2,  1.09450—2,  L179,—2,  4.195,,—4,

3.500;0—5, 1.278,,—3, 5.058;0—3,  19649—2,  1.08739—2,  1256;—2,  2.0223,—5,
4.841;,—5, 1.2964,—3, 5.70210—3,  L1734;—2,  1.059—2,  1.336;—2,
2.28640—5, 1.425,,—3, 6.28710—3,  1.76130—2,  1.078,,—2,  1.4065,—2,
6.749;,—5, 1.333,,—3, 6.531;0—3,  1.828,0—2,  9.857,0—3,  1.568;—2,
3.918,0—5, 2.046,9—3, 7.1850—3,  L649,—2,  1.008,p—2,  1914;—2,

8.341,,—5, 1.66130—3, 8218,,—3,  1.532;p—2,  1.028;0—2,  2.414y—2,
1.94440—4, 1.849,,—3, 9.305,,—3,  1.57130—2,  9.509;,—3,  2.350,,—2,
2.293;,—4, 2.222,0—3, 9.742;,—3,  1.502;0—2,  1.046,,—2,  1.905;,—2,
2.078;0—4, 2.468,,—3, 1.02559—2,  1.53130—2,  1.022;,—2,  1.4664,—2,
3.496,—4, 2.420,0—3, 1.038,4—2, 1451,0—2,  9.951;,—3, 1.254,,—2,

3.575,,—4,  2.939;9—3, 1.169;9—2,  1438,,—2,  9.745,—3,  1.009;p—2,
4.599,—4, 27283, 1.269;0—2,  1.505,0—2,  9.714;—3,  8.775;—3,
4.154,0—4, 2.83810—3, 1427;0—2,  1392;0—2,  8.860;0—3,  7.465;0—3,
5.860,—4, 3.133,,—3, 14540—2,  12443—2,  8971,,—3,  5436,—3,
6.3361—4, 3.395,0—3, 1.526,0—2,  L145,—2,  9.492,—3,  2.531;0—3,



Averaged phonon frequency spectrum for Y

Aw = 51911 rad/sec, Z;g(w;) =1

0.000 8.080,0—3,
1.493,,—5, 9.249,,—3,
4.849,,—5, 1.098,,—2,
7.93510—5, 1.3044—2,
1.314,,—4, 14313,—2,
3.560;0—4, 1.75730—2,
4.504,9—4, 2.109;0—2,
7.935,,—4, 2.55130—2,
8.08719—4, 3.1185,—2,
1.3124—3, 3.863,0—2,
1.6455,—3, 4.765,0—2,
2.07730—3, 4.364,0—2,
2.311;0—3, 3.869,0—2,
2.914,—3, 3.503,,—2,
3.388,,—3, 3.209,,—2,
4.342,,—3, 3.155,4—2,
4.66419—3, 3.112,0—2,
5.332,0—3, 3.240,0—2,
6.173,0—3, 3.240,0—2,
7.92130—3, 3.487;—2,

3.033;0—2,
2.643,0—2,
2.642,0—2,
2.7749—2,
2.37710—2,

2.038,0—2,
2.125,,—2,
2.803;—2,
3.91440—2,
4473152,

4.214;0—2,
3.770,—2,
2.22910—2,
1.276,,—2,
1.800,—3,

565

TABLE VI

the elastic constants. It seems possible, that the ““first principles” theories of lattice dynamics
for the hep metals [9, 10] could be successfully adapted to the case of Co and Y, by varying
their adjustable parameters to fit the theory and experiment at the acoustic limit only.

Note added in proof: The presented phonon dispersion curves for ytrium show a qualitative
agreement with the recently published expenmental phonon ‘data of S. K. Sinha et al. (Phys. Rev.

B1, 2430 (1970)).

APPENDIX

Elements of dynamical

mdy;(q) = 3+ B+3+ (a+b)—2 - a - cos (2k,) —(a+3b) - cos (k) * cos (k,)
mdyy(q) = 3 + B+3(a+b)—2b+ cos (2k,) —(3a+b) - cos (k,) * cos (k)

matrix

mdgy(q) =6+ G —2 - g+ (3— cos (2k,) —2 - cos (k,) cos (£,))

mdyo(q) = ]/3_ - (@—b) - sin (k,) * sin (k) +i - 2f  (sin (2k,) 2 - sin (k,) - cos (k,))

mdya(q) = mdys(q) =0

mDy1(q) = —3 + B cos (k,) * cos (k) - e/®e=k0)

mDyy(q) = —B - cos (k,) + (2 + e®*+cos (k,) - =)
mDyy(q) = —2+ G+ cos (k) + (€*+2 - cos (k) - '®=—F))
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mDiz’@) =1 1/3— * B -cos (k,) - sin (k,) - et (kz—ky)
mDyy(q) = —2 - V§ -D- sin‘b(k’zv) - sin (k,) - ¢/keko) -
mDyg(q) =i -2+ D -sin (k, ) : (eikz_' éos‘(k‘x) . ¢ilha—Fy))
k= ”C“]xl k, = V—naqy k= cq,

D Y = G = D) = i)
D,5(9112) = D;,(q/12) = Dy5(4|21) = D,4(9).
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