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THE MOMENTS OF PHONON FREQUENCY DISTRIBUTION
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A method of calculating the moments of the partial phonon frequency distribution pv(w)
and phonon frequency distribution g(w) directly from force constants is given. In the proposed
method the calculation and diagonalization of the dynamical matrix is omitted. Each moment
consists of a sum of force constant matrix products. These products may be represented by
diagrams and many of them give the same contributions. The calculations can be restricted to
a description of nonequivalent diagrams and their multiples. The method of renormalization of
diagrams for a cubic lattice is given. In this case the number of non-equivalent diagrams decre-

ases.

The frequency distribution function of phonons describes the dynamic and thermo-
dynamic properties of a crystal lattice. The distribution g(w)dw is defined as the number
of normal modes whose frequency lies between o and w--dw. The properties of a lattice
of more complex structure are very often described in terms of the partial frequency distri-
bution function of phonons pl(w) * p,(w) characterizes the modes&of the » type atoms or
a degree of freedom (for example, torsional modes of strongly bound atoms).

The most commonly used method of obtaining g(w) or p,(w) is that of diagonalization
of the dynamical matrix (1) which consists in computing the normal frequencies at a great
number of points distributed equally inside the first Brillouin zone. The spectrum is then
obtained as a histogram. An analytical method of calculating frequency distributions from
their moments was proposed by Montroll -[2]. The distributions expanded into a series
of Legendre polynomials and the coefficients' were obtained from the value of frequency
distribution moments. However, this method requires great numbers of terms to be taken
into account [3].

The continuous fraction method used by Deltour [4] is a modification of the Montroll
method. The new method gives a satisfactory distribution of phonon frequencies and thermo-
dynamical functions even from a small number of moments.

The moments of the frequency distribution function may be obtained from the traces
of appropriate products of dynamical matrix [1]. For this method, the elements of the dyna-
mical mairix must be known. However, it is possible to avoid calculation of the matrix
elements, and the moments may be found directly from force constants. Such a method
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is proposed in this paper. This procedure may have an advantage over the dynamical matrix
method in the case of short range interaction potential.

The moments will be described as a sum of several combinations of nearest-neighbour
force constants. The contributions of equivalent combinations of force constants will prove
to be equal. The summing process will be represented in the form of diagrams. Some of the
diagrams will prove to sum up.

1. Considet 4’ latice for whieh'‘thé force donstants and their syhimetry aié known.
Introduce the reduced force constants
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where n, m label elementary cells

y=(","); 5= (17 n ") and v , 1 number smgle atoms (r) or a group of atoms () in
the elementary cell. .

v, " indicate 2 translatlonal (R or torsmnal (@) degree of freedom. -

M, describes the mass M, if v =R, or the inertia moment I, of the v’ group if v/ = 6.

‘The force constants are transformed by elements of a pomt symmetry group D in the
followmg way s B R
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The equatioh of motion of the atoms in the crystal lattice can be transformed into an
equation for eigen-frequencies of the system,

‘wZ('k;j)w:(k,f):ZCag(f)wz(k;w “ )

The eigenvectors dlagonahze the dynamical matrix, which is a Fourier series of force
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The vector RZ' describes the position of the %" atom’or group of atoms in the n-th elementary
cell. The eigenvectors fulfil the ortonormalization conditions: = -
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With the help of these eigenvectors the:elements, of the dynamical mateix can .be
expressed by the eigen-frequencies of the system. Multiplying equation (3) by an arbitrary
eigenvector, summing the result over j, and using the se¢ond ortonormalization relation (5),
one gets -
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The partial ﬁ"equeﬁcyf“ phono'm;- '_distfibutiqnj'i? ‘deﬁngdf‘ip the followmg way:
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where N is the number of elementaly cglls, and r, and t are the' number ‘of ‘atoms or atom
groups in the elementary cell respectively. The sum runs over thése values of wave vectors
and j whose frequency w(k, 7 lies between o and @ -++dw. The distribution p,(w) describes
the density of energy states for a given kind of atoms or for a given degree of freedom.
Their normalization follows from the condition (5)

or, .
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where w; is the maximum frequenc
L y-

The total frequency dlstrlbutlon is obtained by summmg all partial distributions:

8(0) = 2 p(w); f gldo =1. 9)

2 The moment of order 27 of the parﬁal frequency distribution is defined as

s
_ S o¥p(w)de
A= e (10)

f p,,(a))dw
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and only the even moments are not equal zero because the function p (@) is even.. We see
from (10) that the zero- moment is i) == 1.

It is well known that the sum of all [-th' power eigenvalues of matrix C(k) is equal to the
trace of matrix C'(k). Hence, using the definition of p,(w) and the expression (6) the moments
may be written as follows

ui = 3NZ CH)...CB) (1
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The definition of the dynamical matrix (4) and the relation

1Y exp [—2nik - (Ry—~Ry)] = 8(Ry—Fy)
k

permits writing the moments as a sum of the products of force constant matrices, viz.,
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The §-function restricts the summation to those combinations of force constants for which
the sum of the respective vectors vanishes.

3. The number of combinations is relatively large, though the contributions from some
of them are identical. How do we find these combinations? For this purpose we shall prove
the following theorem: If a combination of vectors, to which the given force constants
correspond, is transformed to another one with the help of the elements of the point symmetry
group of the crystal, then the two combinations will give identical contributions to the
moment. (A similar theorem exists for the elements of the translation symmetry group of
the crystal.)

Let us consider part of expression (12):
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The product of the same symmetry elements D+ D = E (E is the unit matrix) may be
put between each pair of force constants and also the element D can be introduced into
the argument of the d-function. Then, using the cyclic permutation invariance of the

trace, one gets
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It can be shown that there is an identical number of R® and @R pairs. Therefore, the
coefficients (det D)2 = 1 do not change the result. Thus, the two expressions (13) and (14)
are equal, though they represent different combinations of force constants.

The number of considered combinations can be reduced with the help of the above
proved theorem. We must find all nonequivalent combinations, i.e. such combinations which
cannot be transformed to another by any element of crystal symmetry. Each non-equivalent
combination must be multiplied by the appropriate multiple. The sum of all of them gives
the value of the moments.
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4. We will illustrate this method on the example of a two dimensional centred square
lattice with the nearest and next neighbour interactions.

We introduce the following schematic description of force constants:

o - (00,00
—> - (00,01)
I - (00,10)
S - 00.3%)
N\ - .34

The force constants further than second coordinate spheres are assumed to be negligible.

We may find the following non-equivalent combinations (diagrams):

(=1 o
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where [ defines the order of the moments. It may be noticed that the higher order diagrams
can be obtained by multiplying those lower order diagrams for which the sum of I gives
the order of the considered diagram. Therefore, we shall attempt to sum them partially.
5. For this purpose the central moment &§) of the partial phonon distribution may be
defined in the following way:
"o
[ (@ —p)p(w)do

® __ T
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Expanding (w2—‘u(2"))l, the relation between the central and ordinary moments can be
obtained,
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Hence, the ordinary. moment. canbe caloulated: from the «cential. momerits,‘and-ordinary
moments of lower order. A E oty B alg
Now we shall consider the cublc lattice. Its force constant matrices for zero coordinate

sphere and for » = » have"the’ d1agona°1 form - L w ¥ K
Faﬂ( )— i) i)

where u{) is the second moment. vt R
Subtracting u$) 0,50,y form the dy‘namicgl ;patri.?; (6) and using the ortonormalization condi-
tion (5) one geis
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The eigenvectors of the new matrix (C (k) ——,u(”)E) and the C(k) matrix are identical,

80 (w2(k ])—y(”))l are the eigenvalues of matrix (C(k)—p$YE). The use of formuld (15)
and the definition of the ‘partial phonon' distribution (7) yields the relation

=3y Z (CH)—u B lea. 19)
Moreover, the description of the dYHamical matrix (4) gives
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(U —u§ ))6“156 i =,

We introduce the matrices

- o ) . k — BE On ~2:iik'(R0';Rn,) | . :
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n#0
Brzﬂ( ,'7) (/”’(G)—lug)aaﬁao'n (22)
Then,
o_ 1 1 2 (w2 P )
| = Z () +BoNT 0 (23)

The matrices A(k) and B(v) do not commute. An expansion of A(k) and B(y) would have
to consist of a set of commutators. LIowever, we ean calculate the expression (23) directly,
multiplying the matrices as in the following example:

(A+B)* — A3+ BS+ AB*+BA 1 BAB - BA* - A?B+ABA
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We notice that the trace of the product of an arbitrary matrix M and P(v) vanishes,

X BO) M, =0; 2 M- B(v)]” =0; (24

a @

and the central moment (23) is

e = Z [A(R) (A(k)+B))—2AE)] (25)

ke

Carrying out the summations over % and using the definition A(E) (21) for the first few
central moments, one finally gets

= 0
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6. The non-equivalent contributions to &§) for the abovementioned two dimensional
lattice would be represented by the following diagrams.

7. This method may be used for a quick estimation of the frequency phonon distributions

p(®) and g(w) for crystals with a short interatomic interacion potential. The calculation
of the first few moments is not very difficult, even for a more complicated lattice, and the
shape of the phonon distribution and the magnitude of thermodynamical functions can be
easily found by the continuous fraction method.

The author expresses his gratitude to Professor J. A. Janik for many discussions and
helpful suggestions.
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