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A METHOD OF GREEN FUNCTION DECOUPLING

"By K. PARLiNsKI
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(Received September 12, 1970)

A method of approximation of spectral density function by a set of J-functions is given.
The one d-function approximation corresponds to the introduction of the noninteracting quasi-
particles system. This method, based on the classical problem of moments is equivalent to a cer-
tain retarded Green function decoupling procedure.

f

The retarded Green’s function method has been widely used in the study of equilibrium
properties of an interacting many-body system [1].- One of the approximation procedures
used for simplifying Green function calculation is that of equation of motion decoupling.
This procedure always gives reasonable results. The retarded Green function method permits
the fluctuation in the system to be found, but does not give the energy of the ground state.

In this paper we propose a new technique, equivalent to some known decoupling
procedures, which is based on the classical problem of moments [2]. The retarded Green
function is approximated here by the frequency moments of the spectral density function.
The spectral density function is obtained as a set of d-functions, the number of which in-
creases when the order of the approximation increases. The single d-function approach is
equivalent to the introduction of a non-interacting quasiparticles system. Unfortunately,
the life-time of quasi-particles cannot be found at present.

1. Let the system be given by the Hamiltonian H. We introduce the commutator
correlation function

<A@, B(#)],» (1)
where A(?), B(t') are operators in Heisenberg representation, and the parameter # = +1
(commutator) or 7 == —1 (anticommutator) is chosen for convenience. The latter is indepen-

dent of the commutator relation of 4 and B operators.

The spectral density function K(w) is a Fourier transform of the commutator correlation
function,

Kw) = [ dicLA(), BO)l e ®
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OB = g [ oK) e, o

The spectral theorem connects the K(w) and the correlation funtion,

BEOVAO> = > By+ o [ FETT @)
% e® —7

Using the well-know expansion of the Heisenberg operator

0
z

it gemine— Y (nt)‘ [, 5, .. [, 4]..]] 5)

n=0 n—times

and comparing the time derivative at the moment ¢ =" =0 in (3) and (5), we obtain the
moments S, of the spectral density function,

S g | d00nK(@) = (—1r QLU 1F 411} Bl ©

The moments are a time-independent correlation function of a combination of the operators.
It is possible to calculate it because the commutator relation of the Hamiltonian and the
given operator is known.

The retarded Green function is described as follows:

KA@BE)> = —i®EK[A4(@), BE),p- (7)

Tts Fourier transform, G(E), obtained from a relation like (2), is related to the spectral
density function,

1 K(w) +

G(E) = 5 fE——w—l—ie dw  where g — 0%, 8
—0c0

If E is treated as a complex variable, then the G(E) function will be analytical in the upper

half-plane. Then,

[e o]

G(E) = ~ f g(_“?) do  for Im E > 0. )

2n

The dispersion relation of the Green function permits us to find the spectral density,
namely,
K(w) = —2Im G(w+ie)- (10)

9. Now the method of calculation will be presented. We will omit the proof, referring
the reader to Akhiezer’s monograph [2].
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. If the moments S, of the given spectral: density form a positive sequence, then the
Green function ‘of the relevant operators is a ‘limit. of the sequence

G(E) = lim G,(E, 7). ‘ (1)

n—-o0

G(E, 7) is described by the fraction

Q” 1(E) TQn(E) e TR, §
Gl I) So Pnil(E) 7P, (E) (12)

The polynomials P,  (E) are glven by the determinant

Py(E) =1
So St oeeenenenns S
i S S,
. 1. ~2 n+1
PF)= V§° : 4 : forn >1 (13)
VD"“lD" Sp—i Sy Son—1
1 A
where D_; =Dy =S, and N
So E Sl ..... Sn

S, Sn+1"'.'52n for n > L.

P (E) is of order n with respect to E. The polynomlal Q, (), which is of ‘order n—1 with

respect to E, can be found from the relation

0B = g [ PB= Pi0) Ky (149

— 00

but in practice this will not be needed. The polynomials of the lowest order have the form

EF—
PyE)=1; PyE)= 0“"
1
Qo(E) = 0; Q1fE) RN (15)
where
Y- e
Qg = SO bO = S ——S; ‘

The parameter 7 admits all real. values (—oo <7< o0). For a ﬁxed ElIm E > ())
when 7 runs from —oo to oo, the values of G,(E, 7) form a circle in the upper half-plane
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of G, (Im G,(E, ©)> 0). The circle formed by function G,(E, 7) lies entirely within the
circle produced by G,_,(E, ) for the same E. The two circles have one point of oscilation.
This follows from the property

G,(E, ) = G,_4(E, 0). (16)

If the problem is definite, then the circle formed by G,(F, 7) (when 7 admits the real axis)
tends to a point in the limit 7 —> co. Thus the limit G(E) does not depend on the parameter 7.
The approximation procedure for the Green function consists in replacing G(E) by G,(E, 7)
with a low value of n. In principle, a suitable choice of 7 gives a better approximation of the
Green function.

The fraction (12) can be expanded into the vulgar fractions (2)

e OB —10ME) O )
Gn(E’ 7:) - SO P,::(E') —TPn(E) - SO ~ E_'—m (17)

The numbers E(7) (i =1, 2, ... n+1) are roots of the following equation
y P, (E)—7P,(E) =0. (18)

It can be proved that all roots of (18) are real and simple. The coefficients 4,(z) can be obtained
from a comparison of the two fractions in (17) or from the formula

1

pi(T) = .
|Pi(Ei(2))]?

(19)

D=

j=0

We notice that the coefficients u,(7) are determined only by the first # polynomials P,(E(7)).
The roots Ey(t) and coefficients y;(7) are related with the moments S,:

n+1
Sy =Sy 23 (1) E(7). for m=0,1, ... 2n
=1

when 70
or for m=0,1,...2n+1 (20)
when 7 =0.
In particular, for m =0
n+l

;1‘“; =L (21)

The approximate calculation of the Green function can be carried out in the following
way: Let the moments S,, (m=0,1,...2r+2) (6) be known. The polynomials P, (E)
(m =0, 1, ... n+1) may be formed from S,,. Then we find the roots E,(7) of equation (18)
and the coefficients p1;(7) (19). Using the relation (17) the approximate Green function can
be obtained.
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Example

Let the moments Sy, S;, S, be given (n = 0). Using (17), we find the roots of (18),

S
Efr= X 4b,7. (22)
So
The value #; = 1 results from (19). In this approximation the Green function is

i IS
Go(r) = E———E‘H 23)

and the corresponding spectral density function
K(w).= 27 Sy6(w— Ey). 24y
Thus, undamped excitations are obtained.

If 2n+2 moments are given, then the equation (18) possesses n4-1 different roots E(z).
Each root is a real number. Thus, the spectral density function is made up of (n-+1) §-funct-
tions of different amplitudes,

n+1

K(w) = 275, 21 u;8(w—E). (25)

However, the appearence of (n-+1) d-functions does not mean that the true spectral density
has n+1 maxima. Moreover, the single d-function, which approximates the density spéctrum,
does not have to be located at the maximum of K(w). The arbitrary choice of parameter =
permits a shifting of the d-function within some w-interval. This interval decreases together
with an increase of approximation order n. The number of d-funtions increases together
with 7 and finally, at the limit n = oo, forms the true density spectrum.

Usually, the spectral density is approximated by a Lorentzian function. Its maximum
determines the energy of elementary excitations and its width represents the life-time of
the excitations. In the present scheme we cannot obtain the lifetime of the excitations
immediately because all roots of equation (18) are real.

3. The described procedure is still incomplete. We have yet to determine the parameter 7.
One method assumes that v = 0. Another assumes such(a value of 7 for which the free
energy, calculated in the given approximation, achieves minimum value. We shall discuss
each of these ways.

The 7 =0 method

For 7 =0 the approximate Green function may be expressed by the continuous
fraction

Gu(E,0) = S, g::((g)) — | So -
e 0

b (26)

E—ay— ... B

"E—a,
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where a, and b, are determined from (15), and the remaining coefficients can be found
from the form of Q, (E) and P, (E). In particular, the continuous fraction of the
zeroth and first order are

QuE) 1
P(E) ~ E—a, @7)
OB 1
Py(E) b - 28
E—a— g (28)

When we know the moments (6), which are a combination of operators, it is easy to
find the Green function. Moreover, some of the moments can be determined by the Green
function to be found by the spectral theorem (2). However, very often the higher order
moments cannot be obtained in this way. Then, a Green function of more comlicated operator
combination and an approach in the appropriate lower order must be applied.

In the paper [3] the decoupling of the density-density Green function for the many-body
system was proposed. This decoupling process is equivalent to the zeroth.order éppro-
ximation by continuous fraction'. Using the spectral theorem, the first moment .5; from
Go(E, 0) was calculated. In result, a self-consistent system of equations was obtained.

~The ““‘pseudoharmonic approximation” for a crystal lattice (4) is an example of similar
type as above, but the moment S; cannot be determined from Gy(E, 0) without additional
approximations.

Tahir-Kehli and Jarrett [5] found the:Green function Gy(E, 0) of the Ising model
for spin 1/2, in first order approximation. The spectral density from Gy(E, 0) fulfilled four
sum rules (Sy, S1, Sy, Ss) in agreement with relations (20). However, this problem cannot
be solved by the present scheme. Gy(E, 0) is determined by two moments, S, and Sy, but
the'spectral theorem gives only Sy. Thus, the S; moments cannot be described self-consistently.
The moment S, and S; have similar properties.

Kalashnikov and Fradkin [6] used this method for the superconductivity model (BCS)

in’ zeroth order approximation.

The 75 0 method

Tt is well known that the free energy F' of any system can be described by the two-
-particle Green function or corresponding correlation function. The 7-dependence of the
-approximate”Green function involves: the 7-dependence of the approximate free energy.
Hence, we must find the approximate free energy F(z) and minimize it with respect to 7.

1 The even moments of position-position or density-density commutator correlation function vanish.
Hence, the moments will be defined as

o]

1
= f dw? 0™ K(w?)
JT



513

Assume that the Hamiltonian H can be divided into two parts, H = H,+H;,. H,
is a part for which we are able to calculate the free energy. H, is a perturbation. Introduce
the Hamiltonian H(A) = Hy-+AH;, where 1 is called the coupling constant (H = H(1),
Hy = H(0)). Define the free energy as a function of the coupling constant

H().

FA) = —0OlnSp(e” ©) (29

and differentiate it with respect to A:

AF) 1 ()
o 7P {e 7 (30)
where
_HY
Z(A) =Spfe © }.
Intergrating over 4 from 0 to 1 we get
1
1 READIPIZ(0)
- F R (0]
v F F(O)—]—fdlz(;L) Sp{e | (31
5 \

The average value <é]§_§@_> is easy to calculate. We must average dZE{D with the mo-
2

dified Hamiltonian H{(4) instead of the true omne, H. Of course, the average <_d_li@l>
i

da
may be calculated only approximately and, therefore it depends on 7. The value of 7 can
be found from the condition _‘M =0.
T

In conclusion the author expresses his gratitude to Professor J. A. Janik for many
discussions and helpful suggestions.
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