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The “marginally singular kernels theory is applied to the ‘“old strip” approximation of

Chew and Frautschi. A set of coupled integral equations is obtained similar to those derived
by Contogouris and Atkinson in the context of “‘new strip” approximation. This permits a dis-
cussion of the analytic properties and uniqueness of the solution.

L TItis well known that if one considers a left-hand cut dfscontinuity with an asymptotic
behaviour consistent with unitarity, i.e. an asymptotically constant left-cut discontinuity,
then the kernel of the N/D equations is “marginally” singular [1-4].

In order to handle these non-Fredholm equations one splits the kernel into two parts:
a singular symmetric kernel and a Fredholm-type kernel. This splitting of kernels (and
equations) is closely connected with the decomposition of the left-hand cut discontinuity
into a “long-range” part and a “short-range” part.

But an analogous cut-off is employed in the strip approximation which assumes that
the distant part of the left-hand cut discontinuity does not appreciably affect the scattering
amplitude for not too high energies. This “nearby singularities hypothesis” is supported
by the idea that the short-range forces bear little weight in the low energy region.

It follows therefore, that it would be interesting to consider the connections between
the marginally singular N/D equations and the strip approximation. We must note that
a similar problem has already been treated by Contogouris and Atkinson [2] in the context
of the “new strip” approximation of Chew and co-workers (i.e. a D function with a finite
part of the right hand cut and a Regge asymptotic behaviour) [57].

What we intend to study in this note is the possible connection between the marginally
singular N/D equations and the “old strip” approximation of Chew and Frautschi [8], [9].
This will permit us to explicitly consider the crossing-symmetry properties of the scattering
amplitude.

We will obtain a set of coupled integral equations analogous to those derived in the
marginally singular kernels theory. This lets us discuss the analytic properties and uniqueness

of the solution. !

* Address: Department of Physics, Polytechnic Institute, Cluj, Roumania.
(495)



496

II. We remember the basic idea of the strip approximation proposed by Chew and
Frautschi [8]. The double spectral functions are negligible everywhere except within the
shaded regions of Fig. 1 (s, ¢, uy are the values which separate the low energy and high
energy regions). In other words, for high s, for instance, only the low contribution is
important.

Fig. 1. The strip approximation. The shaded regions are assumed to be dominant

By using the Mandelstam representation and the strip approximation we obtain (we
restrict ourselves to elastic scattering of two spinless particles of equal mass)

Al(s, §) = — fd,A(s ) 1) fd, A:(t s) fd,A w('s 8) O
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where AY(A4L, AL) is the absorbtive part of the scattering amplitude in the s(¢, ») channel.
If we make partial wave expansion and project out the I-th partial wave, we can write

1

Aoy =" [ Indi0) + Fo) @
o
where
Fl(») = V{(») + “contribution of waves > I” 3
and
5
rioy=EC0 [l iy (1 + ;—) . @
o

Let us return now to the “marginal hypothesis”

Im A1) = g +0(—e), &0 ©)
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We shall show that the term contribution of waves > lis connected with (5). To make
this assertion evident we write the N/D equations in the strip approximation

Dl =1 - fd’ ai) Ni) ©)
v —y
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Let us introduce the notation
-1 co
g 1 , Im A1(s")
Bi(r) = 3 + " iy —v) ®)
From the above equations one can easily derive
Fi(») = B;(») ©)
and
1 [ Blp)—B! ) )
Ni(») = Bi(r) +— f - ’(”v),__vi(ﬂ o (") Ni(v). (10)
0

Bl(») is analytic in the interval O <» <, except for a logarlthmlc branch point
at » = 9,. From (5) one has

Bi(y) = —)+Vi(v) 1)

1 ( 1)
Substituting (11) into the kernel of Eq. (10) one obtains

vy

N}(’V) BI(V) fd ' ].Og [('Vlv 'V)’{('V]_ ’V)] NI( ,)+
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One can easily see that I-III‘(v, ') is a Fredholm-type kernel.
If we introduce the new variable
"
»—

(13)

=

and the definitions

N[(’V) == ./V](%)

Bl () = B (%)
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the equation (12) becomes

o)

K6 = N i) + BL f a2 ey (14
1
./V?I(x)z%l(z)—{— g f Ao H ¥ (32, ') N H(0). (15)

Equation (14) can be diagonalised by a shlf‘ted Mehler trnasform [2]. We will, however,
employ another method to diagonalise Eq. (14). For this, let us observe that Eq. (14)
possesses a kernel depending on a' difference. Therefore the well known Wiener-Hopf
method [10] can be applied.
Using the techniques described in [10] one obtaines for the resolvent of Eq. (14) the
following expression
R '3 8) = f dr BV b2 )P i) +

cosh? my—g
c

+P gy 25—V H, ). 16)

po = (1m) arcos /gy,  arc < /2
Obviously, the solution is a multivalued function in the cut coupling plane. By suitably
choosing the contour in Eq. (16) (see Fig. 2) one can obtain a solution which is regular
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. Fig. 2. The integration contours for the resolvent functions

and approaches the kernel in the weak coupling limit. The resolvent can be made to have
one branch point only at gy =1 on the first sheet of the gy — Riemann surface.
Therefore the general solutions is

N (o) = N T o)) F-gp [ d R(oe, '3 g1) NP ) +-AlgD Py (22—1) (17)

where A(gy) is an arbitrary function of g.
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