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SPIN WAVE THEORY OF UNIAXIAL FINITE FERROMAGNETS.
PART I. DETERMINATION OF THE GROUND STATE*

By A. WaAcHNIEWSKI**
(Received August 17, 1970)

For a uniaxial finite ferromagnet with nearest-neighboure isotropic exchange interactions,
crystal-field anisotropy, and magnetostatic self-energy, the approximate ground state of the sys-
tem is determined by: examining several magneticelly ordered spin-deviation reference states
(spin-wave vacua) and- their corresponding spin wave energy spectra. In Part T it is shown that
a ferromagnetic spin configuration (saturation state) is inadmissible as reference state in the
field-free case, and that the same holds for a magnetic field parallel to the anisotropy axis unless
it exceeds a certain critical value and the spins are aligned along the field. It is also shown that,
in the field-free case and in the first-order approximation of Wallace’s Hamiltonian perturbation
method, a simple 180° domain-structure configuration is a suitable reference state, as it ensures
areal and non-negative spin wave energy spectrum. Moreove., the minimization of the correspond-
ing ground state energy leads to the familiar Landau-Lifshitz half-power law for the thickness
dependence of the domain width. In Part.II of this paper this reference state is improved by
considering a refined and more realistic 180° domain-structure configuration which ensures
real and non-negative spin wave energies up to the second-order of perturbation proce-
dure.

1. Introduction

In the standard spin-wave approach to anisotropic Heisenberg ferromagnets, one usu-
ally assumes — quite like in isotropic ferromagnets — the spin-deviation reference state
(or, equivalently, the spin wave vacuum) to be a state of parallel spin alignment [1, 2, 3]
(saturation state). For uniaxial ferromagnets, this is certainly correct as long as surface
effects (i. e., the magnetostatic self-energy) or, correspondingly, long-range spin interactions
are neglected, because in this case the only difference between the isotropic and the aniso-
tropic ferromagnet lies in that that in the latter there exists (even in the absence of an ex-
ternal magnetic field) a magnetically preferred direction. Therefore, the saturation state re-
mains the exact ground state (or a good approximation thereof — if the external field is not
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parallel to the anisotropy axis) of the system and its choice as homogeneous spin-deviation
reference state is apparently justified.

However, the situation is quite different for multiaxial ferromagnets, or even for
uniaxial ones if long-range interactions are to be taken into account. It has been
emphasized in [4] that the spin-deviation reference state for anisotropic ferromagnets should
actually correspond to the domain structure which apparently represents the equilibrium
low- emperature, state of {rue: ferromagnets./ This, requrres the  usg O of, mhomogeneous spin-
-déviatio : reference states a§ outllned in- [4,5]. The, purpose ¢ of Qur J;gper is tg apply the spin-
-wave theory as formulatecl in [4] to a finite uniaxial ferromagnet with the magnetostatic
self-energy included. In Part I we. examlne seyeral magnetically ordered spin-deviation re-
ference states and show that in the absence of an external magnetic field saturation states
are inadmissible as they lead to negative or unagmary spin wave energies. It is also shown
that a reference state corresponding to a simplified 180° domain-structure configuration
ensures up to the ﬁrst order of Wallace’s Hamlltonlan perturbatlon method [6] real and
non-negatlve spm Wave energles. ,As expected (see, e. g oy Appendlx V,I in, [7]), the minimi-
zation.of the correspondlng approximate ground state energy leads to a finite domain witdh
whose. dependence. on-the: crystal thickness is-in fair- order-of-magnltude agreement with
experlment In Part II, the results obtained here are utilized in appl‘ymg the spin wave
theory to the samie ﬁmte un1ax1al ferromagnet Wlth a more reahstlc 180° domain structure.

\

2 Hamzltoman

We consider a. ﬁmte unlaxlal ferromagnetlc crystal of plate-like shape, cut perpendic-
ularly to the anisotropy dlI‘eCtIOIl We' assume 1ts thickness along the amsotropy axis to be
very small as compared to its remaining dlmensmns, so that we ‘can ‘neglect the magneto-
static’ self- -energy stemming from its lateral surfaces. For 51mp1101ty, we assume a simple
cubic crystal lattice! with the lattice constant a.

We choose the Hamiltonian of the crystal in the form

H= ZJSfo+g + Z [K(Sz)2 ,uhsz] @

Where J denotes the (negative) nearest-nelghbour exchange 1ntegral K the (negatrve) crystal
-field anisotropy constant,, and u Bohr’s magneton.. The lawer indices f.and. g represent
respectively the ordinary and nearest-neighbour lattice vectors..(Note that in our simplified
notation f + g is a vector sum.) The coordinate system’s axes coincide with the (100} crystallo-
graphic directions. The effective field h; consists of the internal, %} (i.-e., demagnetizing)
as well as the external magnetic field A%, which are assumed to be always parallel to the aniso-
tropy direction. From the phenomenological point.of view. the internal magnetic field re-

1 The assumption of a uniaxial anisotropy to be consistent with the crystal symmetry necessitates actually
a crystal lattice with uniaxial, symmetry, e..g.,a tetragonal or. hexagonal crystal, structyre,, However, the
assumption of a cubic crystal symmetry considerably simplifies the calculations, the result being qualitatively
the same as for the tetragona lattice. This suits the purpose of our paper Whlch resides i in _demonstrating
the method rather than in obtaining precise quanntatlve results.
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presents the long-range magnetostatic dipol-dipol interactions and can be calculated if the
distribution of the magnetic poles on the crystal surface is known (see [8] for a detailed
discussion of the problem). /

According to [4] the approximate ground state of the Hamiltonian (1) is to be obtained
by minimizing its expectation value in the class of trial states U*|0 ) where the state
[0 is defined by SF|0) = —S|0 ), S;7|0> =0, S being the maximum spin eigenvalue,
and the unitary transformation U generates spatial rotations of the lattice spins. This, of
course, is equivalent to transforming the Hamiltonian (1) and minimizing its expectation
value in the state |0 >. As shown in [9, 10, 11] for quite general spin Hamiltonian, the
necessary conditions of this minimizing procedure coincide with those obtained when elimina-
ting from the Hamiltonian terms linear with respect to the Bose creation and annihilation
operators, upon mapping the spin Hamiltonian according to the Holstein-Primakoff [12]
or Dyson-Maleev [13] mapping rules (see also [14, 15]).

To simplify our problem we shall confine ourselves to a unitary transformation of the
type

U= I;[ exp (19pS7), 2

which corresponds to (generally inhomogeneous) rotations of the lattice spinsby the angles ®f
around the x-axis. In replacing the spin operators in the Hamiltonian by Bose creation and
annihilation operators we use the Holstein-Primakoff mapping in the lowest approximation,

i. e.,
Sf > V28af,  S; ~)25a,
St > —S+tafa,. @

By applying the transformation (2) and the mapping (3) to the Hamiltonian (1) one
obtaines, upon writting the Bose operator products in normal order and neglecting higher
h an second-order terms (non-interacting spin-waves approximation),

where

E = Z JS? cos (9~ )+ Z {3KS[1+(25—1) cos? @/]+uhsS cos @5}, (4a)
= $i)/2S { Z IS sin (9~ Pr1o) (o —ay—afy oty )+
+ fz [K(2S—l) sin @y cos (pf—[-yhf sin @7 (af —a)}, (4b)
Hy = fZ JS{E[1—cos (pr—@p )] (af oty +opey )+
2

—I—l[1+cos ((pf—¢f+g)](af—'!-af+g+“;;g“f)— cos (¢f—¢f+g)(“;.“f+“;l-g“f)}+
+ Z {[K(3S—1) sin? <pf—K(ZS—-1)——‘uhf cos @7] afa,—3KS sin? g (afaf + )},  (4c)
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“We shall determine the spin-deviation reference state (approximate ground, state)
by equating the coefficients of the linear terms in H; to zero, i. e., :

- 2JS D) sin (@—@p4 ) +K(2S—1) sin gy cos g+ phy sin @y = 0. . : (5)
g

As already pointed out, this is equivalent to determining the minimizing parameters from
the necessary conditions §E[dp,= 0 of the minimization procedure, since (O|UHU*|0) = E.
Out of the numerous solutions of Eq. (5) we should select the stable ones by examining the
sufficient conditions for a minimum of E to exist, which in our case is practically impossible
because of the large number of variables g;. We shall therefore select the proper solution by
examining the spin-wave energy spectra corresponding to- certain magnetically ordered
reference states following from (5).

First of all let us further simplify the problem by assuming that for lattice sites lying
in the same (100) crystal plane the angles ¢y are identical, i. e., that ¢, depends only on the
x-component f,, of the lattice vector f; consistently, one must ensure that the demagnetizing
field in A,, which in this case is independent of y, does not depend on z, too. Secondly,
we confine ourselves to studying only four solutions of Eq. (5) corresponding to those magne-
tically ordered reference states which are of foremost interest to our problem.

3. Ferromagnetic configurations

One easily verifies that the conditions (5) obtained for an external field parallel to the
anisotropy axis admit in general two ferromagnetic spin configurations @, = const = ¢
(saturation states), namely,

sin @ =0, (6)
and
he
P = F TKES— Dk @

where hy = 2nuSa~3 is the demagnetizing field for the case of complete saturation along
the anisotropy axis (i. e., perpendicular to the crystal surface). Indeed, if the sample is
saturated in the direction @+ we have?®:

hy= hi—h* = hy cos p—h¢ @®)

which upen inserting in (5) leads to the solutions (6) and (7). Note that the solution W)
is restricted to fields

|pe| < ho+K@2S—1)[u=h,. ©)

2 Note that, according to our definition, the z-components on the spins are negative in the saturation
state |0 > which corresponds to @ =0. Consequently, we assume the external magnetic field to be directed

along the negative z-axis.
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To find out whether the saturation: states [0% and [T exp (—igS7)[0) corresponding
to the solutions:(6):and (7) are admissible as reference states let us examine the spin-wave

energy spectra they lead to.

a. Parallel ferromagnetic configuration ,
For the solution (6) of Eq. (5) the Hamiltonian (4) takes the form
H = 6NJS2+NKS*+Np(ho—h)S+ -
+; IS(of oy gt-oufy o= “f_“ﬁg‘?‘fﬂ) =
= :

=S RS- +ulhe— e, (10)

where N is the number of lattice sites. In diagonalizing the above Hamiltonian we apply

the Fourier transformation

af = N2 3 exp (—ikf) B ()

to the Hamiltonian (10). (We use a simplified notation, according to which % denotes a re-
ciprocal-lattice vector, and kf is a scalar product.) Here and in the following we impose the
Born-Karman periodicity conditions, which is justified for not too thin crystals (see, e. g.,
[16]). Inserting (11) into (10) we have

H= E,+ ; oy B 12)
where
Ey = NJS2y,-+NKS2 4+ Nu(hy—h°) S, (13)
Lo = 2JS(y,—y0) —K(25—1)— u(he— 1)
= 2JS(y,—y o) —K(@2S—1)—2nu2Sa—3 -+ uhe, (14)
V= ; exp (ikg). ' (15)

As — yo <y, <7yo and J <O, it is seen that the spin wave energies w, are mnon-
-negative for all wave vectors k if

h® > 2ruSa—3+K@2S—1)ut = h,: (16)
For example, assuming for the constants the values
J=—10"18, K= —10-17, S=1,
a=3-10"%, u=10-%, 17

(in .CGSM units) one gets from (16) that the external magnetic field must be stronger than
7+ 103 [Oe] if the ferromagnetic configuration parallel to the anisotropy axis is to be ad-
missible as reference -state. S
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b. Canted ferromagnetic configuration

Upon substituting the solution (7) of the condition (5) into the Hamiltonian (4) we
have

H = 6NJS2+1NKS—LINKS(@2S—1) (h°[h )2+
+ % IS(af oy o toft o—of oy—afl op, )+
+ 27 KS[1—(Ah,)?] (ot a—afat —foa), - (18)
or, by applying the Four;er transformation (11)
H = 6NJS2+ANKS—4NKS(2S —1)(h*fh )2+
-l-kz {27S(yr—r0) +KS[1— (AR )33 Br—

_*g SKS[1—(h?[h,) ) (BY BEatBrB—p)- 19)
The Hamiltonian (19) can be diagonalized by the transformation
ﬁl: = vuk§k+7)_k§ik (20)
which leads to
H=Eqt 3 o & 1)
%

where
E, = NJS?y+3NKS—INKS@2S—1) (hf[h )2 —
— K252 [1—(A%[R,)?]? ; {2S(yy— o) +KS[1—(A°[h )?]+wp} ™ (22)

= V{2IS(s— o)+ KS[L—(h[h) Ty —K?S? [1—(h]h)*1* (23)
As Jand K are negative it is seen that in the field interval (9) where the solution (7) is valid,
there is always a subset of wave vectors k for which the spin-wave energies w,, are imaginary.
Hence, the canted ferromagnetic configurations described by the solution (7) are inadmis-
sible as spin-deviation reference states, except at the boundary of the interval () where the
solutions (7) and (6) coincide.

Tt should be emphasized that the particular choice of the rotation axis in the transfor-
mation (2) and of the simple cubic crystal lattice is immaterial for the conclusion of this
section (except for the value of h,).

. The main conclusion to be drawn from the above considerations is that, if the magneto-
static self-energy is taken into account, the ferromagnetic configuration is inadmissible as
spin-deviation reference state for A° < k. This includes the field-free case to which for
simplicity our further considerations shall be confined.

4. Domain structure configuration

It may seem that in the field-free case the next best choice as reference state is an anti-
ferromagnetic configuration along the anisotropy axis, as in that case the magnetostatic
self-energy is negligible. One can prove, however, that this configuration, too, leads to spin-
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-wave energies which are imaginary for certain wave vectors k. The same holds for the anti-
ferromagnetic configuration perpendicular to the anisotropy axis whose anisotropy energy
is even higher. No other antiferromagnetic configurations are admitted by the condition (5)
in the case ;= 0.

Thus, the above results lead quite naturally to the supposition that a configuration of
domain-structure type might be a suitable reference state for our problem. We shall there-
fore examine a simple 180° domain structure configuration in which the crystal is divided
into plate-like regions (domains) perpendicular to the rotation axis. The spins are ordered
ferromagnetically along the anisotropy axis, being antiparallel in neighbouring domains.
In this model the thickness of the interdomain walls is equal to the lattice constant a, and
the width 4 of the domains is a parameter to be determined by minimizing the corresponding
approximate ground state energy F,.

The simple domain structure described above can be defined as follows:

@r,=0 for 0 <f, < 4,
o=z for 4 <f, <24,
and
Prroa= Pr» (24)

where the symbol /424 denotes a lattice vector whose x-component is equal to fot+24.
One easily proves that the spin configuration defined by (24) satisfies the conditions (5)
and is therefore.admissible as reference state provided it leads to real and positive spin-
-wave energy spectrum.

By averaging the respective z-dependent demagnetizing field following from pheno-
menological considerations (see e. g., [17]), the internal magnetic field h} in the case of the
‘simple domain structure can be expressed, approximately, by the formula

f =~ 5T COS Pr= hy (25)

where L denotes the thickness of the crystal along the anisotropy direction.
The Hamiltonian (4) for the crystal with the simple domain structure becomes

H= Ey+ ; JS(“)j_“f-kg+“);:g“f—“;“f_“}:—g“f+x)—'
g
— ; [K@2S—1)+uh] afa+ fz 2JS(afaf Ao —afa, —ot o+

+20F ay+2at ;) fn nd), (26)
where
n=0,41, £2, ...,
Ey = 6NJS2+NKS*+NuhS—4NJS2a/A, @7
_ 2uS4

adL’

h (28)
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and
O, y) = 0, s

. e, the usual Kronecker delta.
The equilibrium domain width A as function, of .the crystal thickness L can be deter

mined by minimizing Ey, i. e;

E 2 4
%7"=NSZ< TS Z{f)=0, : (29)
a2 |
A= —2JL. (30)
u

This is the well-known Landau-Lifshitz half-power law for thickness dependence of the
domain width. For example, with the constants as in (17) and L=1cm we have
A=4-10"2cm, in fair order-of-magnitude agreement with experiment [18].

In diagonalizing the Hamiltonian (26), let us first note that the only coefficient which
depends on fis ) (f,, nd). Asit is a periodic function with the period 4, it can be expanded

in a Fourier series as
. a .
Y o(fuand) = 5 Y exp (imgf) (31)

where the reciprocal-lattice vector g is defined by

a=(500)
and
el [ 4 4
m=0, +1, .,.?:I:(—jtl——l), - (32)

By utilizing (31) and applying the F ourier transformation’ (11) the Hamiltonian (26) takes
the form ' '

H= Ey+ 2 {“kﬁ;: Brt Z [dmﬁ+/3k mq+ck.3 +mq+ckﬁk16 k-—-mq]} (33)

where
ay = 27307~y —K@S—1) —pih,
¢, = 2JSalA exp (iak),

dy = 2JSa[A[2+2 exp (iamq) Texp (—m[k—mq])—exp (tak)]. (34)

The diagonalization of the Hamiltonian (33) by the use of the general Bogolubov trans-
formation is a rather hopeless mathematical task of solvmg 24 |a homogeneous linear equa-
tions. Therefore, in calculating the spin wave energy spectrum we shall use Wallace’s Hamil-
tonian perturbation method [6] (equation-of-motion perturbation method). This method



461

resides in renormalizing the single-particle creation and annihilation operators and energies,
so0 as to remove the interactions to successwely higher orders of perturbation, for a system
composed of many weakly 1nteract1ng particles.

We choose the zeroth-order Hamiltonian as follows:

Hy=E, +Z{{ak+ :ﬂk‘l‘zdkﬂkﬁk[ ( qu)-l-

ol ges 0
where ‘ -
k= k—2k, = —kx—l—ky—l—kz. (36)

(Note that (36) are vector sums.)

In Wallace’s method the zeroth-order Hamiltonian should describe a system of non-
interacting particles. Therefore, before starting the perturbation calculations we must
diagonalize H,. This can be done by means of the canonical transformation defined as
follows:

Br = Vif (&x+£7),

1 d

pr= T [ a7 — (52— &R) ' 37
if
sy jelie ST A i TN (38)
2 2 2a
and
Br =& » (39)
otherwise. Then H, takes the form '
Hy = Eo+ kZ 00487 & (40)

with the zeroth-order spin wawe energy spectrum
Wo = ap+dy+|dy|
Doz = ak'l‘dg" IdZ’l (41)
if (38) applies, and
wo’k = ak"i—dg (42)
otherwise.
As is seen from (34) and (28), the zeroth-order energy spectrum (41), (42) is real and
positive for all wave vectors & provided
IK |(2S—1)a3

L ey L (43)
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or, due to (30),
72u252|J|

L> twes—ipa

~ 103 cm, (44)
with the estimation based on the values (17). The above reastrictions are reasonable in view
of the phenomenologically derivable critical size for single-domain particles (see e.g., [19]).
Thus, in the zeroth-order approximation the domain-structure configuration (24) turns out
to be admissible as spin-deviation reference state, with the restriction (44) for the crystal
thickness along the anisotropy direction. However, as this is a perturbation procedure the
question arises whether the first- or higher-order corrections to the spin wave energies (41), (42)
do not alter this result. Let us therefore consider the first-order energy corrections.
The perturbation part of the Hamiltonian,

Hl H—'HO Z {Ckﬁl:-ﬂik+mq+cl:ﬂklg—k—mq+dl'e”ﬁl-:ﬂk—mq[1—6(kx ) O)] X

km

et sfo e

is used to calculate the first-order energy corrections from the equation (see [6])
Coo g1, oo ng o O)|[Hys E41] - 7 o 1y e (0)) = (1) Y200y, (46)

The first suffix of Bose operators and energies denotes the approximation order of those
quantities. For example: @y 3 means the first-order energy corrections, and & the zeroth-
-order creation operator. Note that & as used in Eq. (40) is tantamount to &7, in the present
notation: The symbol (0) in the state vector indicates its zeroth-order, i.e., it is an eigen-
vector of H.

The commutator [Hj, &,] is equal to

[Hp Cg;k]= % Z {(Ck+ck mq).B k—mg + — ldml (ck+ck mq)/g—k mq +

. lcjlkl i s maBtsma(1—Om) [1 6(k ey )][1—6<kx,%q+f2%q>] o

m 4
om0 [1- (b — 2 a) |[1-0 (ko 2ot 2] ]}, @
if (38) applies, and

[‘Hl’ é:l;tk] = 2 {(c:+c:+mq)ﬂ—k—mq+ Zl+mqﬁl;|-+mq(1_6m,6)}’ (4‘8)

otherwise.
By applying the transformation (37), (39) to Eqs (47) and (48) it is easily seen that
the left-hand side of Eq. (46) is always zero and, consequently,

01, =0 49)
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for all %. Hence, the first-order approximation does not change the conclusions drawn from

the zeroth-order result.
To calculate the second-order energy corrections one has first to calculate the ﬁrst-order

P e e e Pl et (A )
. [Ho, &R+ [Hy, Eii] = wopély (50)
Then, thé second-order energy corrections can be calculated from the formula
Gt Ly oy O Eys &l g1y ) = (b Doy (5)

The calculations are simple but rather lengthy, and the formulae for @y, quite complicated
for wave vectors conforming to conditions (38) and those having ky=0 or k,= Aq/2a.
For the remaining wave vectors the formula is rather simple and reads

wa, p = Z Idf:”+m4|2(1—6m,0) - Z lcz+c§+mql2 (52)
| — 00— W0 k+mq W0, W0,k+mq

From (34) we see that for small wave vectors k the first sum in Eq. (52) is negative and

constitutes the leading term of the second-order energy correction. A rough estimation

based on the values (17) shows that in this case

[009,4]/ wo > 1, (43)

" which means that there is a subset of wave vectors % for which the second-order spin-wave
energies g ,+w,; are negative. Hence, in the second-order approximation the simple
domain-structure configuration (24) appears to be inadmissible as spin-deviation reference
state. This, however, does not mean that higher-order approximation would not reverse

the conclusion, apart from the fact that inequality (53) makes the reliability of our perturba-

tion procedure questionable. For one thing, it is impossible to prove its convergence, I.e.,
o show whether or not

IZ wn,kl < co. (54‘)
On the other hand, despite the inequality (53) it is possible that
2 @0y >0 (55)

in which case the configuration (24) would be strictly admitted as reference state. Finally
it is conceivable that a different choice of H, and/or a different perturbation method could
uphold the zeroth-order conclusion in the second perturbation step. In any case with H,,
chosen as in Eq. (35) the simple domain-structure configuration (24) is admitted as reference
state in the first approximation.

In Part IT of this paper we shall demonstrate a refined approach to this problem, by
considering a more realistic 180° domain-structure configuration described by inhomogeneous
rotations of the spins. We shall show that this configuration leads, up to the second-order
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of perturbation method, to real and positive spin wave energies for all wave vectors k.
The author would like to thank Dr W. J. Zietek for reading the manuscript and many
valuable critical remarks. '
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