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The off-mass shell generalization of scattering amplitudes in quantum electrodynamics
(QED) is considered. It is shown that different ways of extrapolating scattering amplitudes
produce different gauges. For the extrapolations corresponding to Feynman and Coulomb gauges
respective unitarity and causality conditions are formulated. The formal solution of these condi-
tions coincide with the conventional S-matrix in both gauges. The equivalence of general classes
of gauges specified by the parameters a,, A and M (see B. Zumino, J. Math. Phys., 1, 1
(1960)) to the Coulomb gauge, is given. In_the proof of equivalence the functional integration
over nontransversal - degrees of freedom is used. The formula connecting any Coulomb Green
function with the transversal parts of an infinite set of Feynman Green functions is derived.

Introduction

The problem of the proper choice of the subsidiary condition in the Fermi formulation
of QED is not clear.''Usually this condition is written as follows 9,4,(x)|p> =0 and is
used for the elimination of the nonphysical states involving any number of time photons.
The necessity of imposing the subsidiary condition in QED follows from the construction
of the theory based on field operators and vector states as the original notions. In this paper
we shall describe QED in terms of the scattering amplitudes as the fundamental notions.
We shall show that one can construct QED in Feynman (Lorentz) gauge without any appear-
ence of the awkward subsidiary condition and indefinite Hilbert space. The method which
we shall use is the functional Rzewuski’s method presented in [1],.[2], [3] for the scalar
and spinor field, and further generalized by the author to the massive vector field [4].

‘We formulate QED in‘the two most common gauges: in the radiation (Coulomb) gauge
and in the Feynman gauge. The equivalence of operator formulation of QED in these two

~ * Address: Wroclaw, Kllmsklego 25/7, Polska.
- 1See the paper of Haller and Landovitz [5] and the critical remarks against their alternative subsidiary
condition given by Polubarinov [6].
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gauges was shown in many ways (see for example [7], [8], [9], [10]). The most exhaustive
proof of equivalence was given by Tatur [11] taking into account the renormalization proce-
dure. Here we give another equivalence proof, which is simple but formal, by the use of
the functional integration technique. The same technique allows us to obtain a compact
dependence between the Green functions in Coulomb and in Feynman gauges. The general
dependence between the Green functions in various gauges was discussed in detail by Zumino
[12] and Bialynicki [13]. Our method and also our point of view are slightly different.

The notion of generating functional in QED, firstly on the mass shell and further off
the mass shell, is introduced in Sec. 1. The unitarity condition is formulated and the cases
of Feynman and Coulomb gauges are distinguished. In Sec. 2 we impose on the off mass
shell generating functional in the Feynman gauge the causality condition. We show that the
formal solution of the causality and unitarity conditions, with the usually chosen inter-
action functional, gives correct expressions for scattering amplitudes. Similar considerations
for Coulomb gauge are carried out in Sec. 3. It is shown there that the generating functional
with nonlocal Coulomb interaction term also solves (at least in the special Lorentz framework)
. the unitarity and causality conditions. In Sec. 4 we use the functional integration method
for showing the equivalence between both formulations. We start from the Feynman
generating functional, integrate it over time and longitudinal degrees of freedom and obtain
a functional which gives the same expression for scattering amplitudes on the mass shell
as the one defined in the Coulomb gauge.. The use of the functional integration method
represents the main point of our paper, which is different from other methods of equivalence
proofs. The equivalence between QED in general gauges defined by functions 4, a, and
M (see [12], [13]), and QED in Coulomb gauge is shown in the Appendix.

1. Fundamental notions and definitions

. We start with the scattering amplitudes for QED. These amplitudes depend on three-
momenta and polarizations of the ingoing and outgoing electrons, positrons and photons.
Here, at the beginning, arises the question about the number of photons occuring in the
process. Because photons are massless, they can have any small energy. Such “‘soft photons”
cannot be detected and their number may be optional. This difficulty is related with the
know infrared catastrophy in QED. We shall not analyze this difficulty here, but merely try
to avoid it by assuming that we take into account only the photons with energies greater
than Ade — the threshold energy of the photon detectors. Our assumption is in agreement
with Heitler’s discussion on the infrared catastrophy in QED (see [14]).
We use thefollowing notation for the scattering amplitudes

St eI 5 Py v P T v ) = S5 B - (L.1)

The empty place before the semicolon corresponds to variables refering to electrons and
positrons. The functional description of electrons and positrons was given in [2] ,[3], therefore,
at present, we omit variables related with these particles. The indices 7, j, describe the polari-
zation of photons and take the values 1, 2.
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The generating functional for scattering amplitudes S[;a;, 8;] is defined as follows

Sr,«,,ﬁ,]_zz T f dpy ... dudky ... dly

Ir vy
Ji.gr

XU, D (P - e BB o) - B ). (1.2)
In the above definition the integration over dp, d% runs from — co to -+ co. We take into
consideration only photons with energy greater than Ae. The extension of integratlon
from — oo to + oo can be achieved by the assumption that the packets ;(p), ﬂj(k) do not
contain momenta smaller than Ae, i.e. a;(F) = 0 and B,(k) = 0 for lk] < Ae.
The probabilistic interpretation of scattering amplitudes imposes the following unitarity
condition on the generating functional (see [1], [3])

St [;a;, 6—(2,7] S[; 0i» il = eliwfo,
Here
St e ] = S*[; B> ] (1.3)
2
of; = =21 f dﬁ“i(P)ﬂz(P)

Now, we introduce a special, physically distinguished, complete, but nonorthogonal
base in the momentum space?. We indicate the base versors by e;, €,, p, n. They obey the
following orthogonality and completeness relations

(e,'» 3j) = 5,7 n?= —1
(¢pm) = (epp) =0 (1.4)
2 .
Y e+ Rt CERalBLlpn] . (15)

i=1

We call this base physically distinguished, because one can choose two versors e;, e, as
the polarization four-vectors for photons with momentum equal to p.

The extrapolation off the mass shell for the scattering amplitudes is restricted by the
requirement that the transversal part of the amplitudes generalized off the mass shell after
multiplication and integration with orthonormal solutions of the d’Alambert equation are
equal to the scattering amplitudes on the mass shell. Namely ‘

'”( D> k) dxy ... dxp, X

oMl

l
X 'Sﬂl;-xl_;-MH.r (; xl"‘xl+r) I.Ef* (pn’ mltn .pn) Hf( 'm> xl+m) j,,,,uH_m( ) (1~6)3

2 A detailed discussion of such a base is given in [8].
'3 The relation (1.6) is like an ‘“‘asymptotic condition” expressed in terms of the scattering amplitudes.
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Here
Fitn(s 2y . %) = P (5 %)

are symmetrlc generalized off-mass shell scattering amplitudes. S,', (; p» ) are obtained
from SZ (; p, B by the separation of the freely. propagatmg particles. The generating
functional for S;¥ (; p, k) is defined by S[e;, 8] '

S’[, “i’ ‘6’] — e(’ Gzﬂz)A S[; ai’ ﬁi]' (1.7)
The generalized amplitudes &%4(;x) are used for the definition of the generating functional

oon s Ll ‘
Ll; 44 = Z Z rlz_n‘j dx, dx,,yﬁ(:x)Am(xl? e AT, (1.8)
By substitution of (1.6) into (:.7) and (1:2) one can verify the following equality
&L 4p) [ B} = b §se,B1] (1.9)
where “A? [x, a;, §;] forms the transversal part of the solution of the d’Alambert equation
Al @ fi] = ,Z J dples, (PP * (s %) +e;, (PYBLPS (D 9} (1.10)

The unitarity condition (1.3) expressed by‘the functional F[; A, takes the form (cf.e.g.
[1], [4D

S AN @ LAY = 1. (1.11)
The definition of the star product ® is the following
2 5 ol et RS
® = exp{ Zfdxdy (StA“() Ain(x—y) A )}_exp{ AL LA 6tA°} (1.12)
where
s S e [94+nu(nd)] [ -i—n,,(nQ)] R el
AL (x—y) = (6 O+ () nuny | AT (x—y) = Opd*.  (1.13)

Tt is easy to see that
37 B t A+ — )
n,'A5 =0 and 9,°4; =0.

We are now able to impose on &[; 4,] the condition of generalized unitarity (see [3]
p. 113) but we wish firstly to clarify the notion of functional derivative with respect to the
transversal functions. At first sight there are two possibilities of definition of such a derivative

i) We can use the usual definition used for nonrestricted functions, putting everywhere
after differentiation in the place od A,, the function °A,.

ii) Another definition takes into con51derat10n the transversal property of these functions
‘and looks similar to the one introduced in ([4) Sec. 5) for functions restricted by Lorentz
condition, namely

074 (%)

SR L 03 3(w—9). (1.14)
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This second possibility seems to us more natural and more adequate for the description of
the physical content of the theory. In this paper we shall apply the definition (1.14). Now
we simplify the star product ®. Since, as it is easy to show

o001, = o, (1.15)

v~ ve

we can change ‘A, (x—y) by 4}(x—y) = 8,,4*(x—y) without any change of product (1.12).
After this change the star product simplifies to

.0 0
R= exp {LBT.AE A;’;,, W,‘?}.

Let us now consider how to generalize the unitarity condition (1.11). At least, two ways
may be seen. The first one is based on the rejection of the condition that A4 . must be a solution
of d’Alambert equation, but preserves its transversality. Therefore, we impose on#[; ‘4]
the following generalized unitarity condition

L A ()74, =1 (1.16)
where
"/ 3210 ik 0 ,
(X) = exp {L 6‘—14,, Al m} (1.17)

This generalization corresponds to the formulation of QED in Coulomb gauge. The second
way relies on rejecting both the fullfilment by 4 . of the d’Alambert equation and its trans-
versality. Namely, we impose on &[; 4,] the following condition

LT A =1 (1.18)
where
Dkl
* = eXp {Z ﬁ; A”p E}. (1.19)

It is easy to understand that the condition (1.18) is more restrictive than (1.16). While (1.16)
restricts only the transversal part of generalized amplitudes &4(; %), the condition (1.18)
restricts the whole &,(; %). Both (1.16) and (1.18) on the mass shell (i.e. for A n='4,= ’Az)
go over into (1.11). This second generalization corresponds to QED in Feynman gauge.

2. QED in Feynman gauge

The Feynman gauge is characterized by the complete independence of the four com-
ponents of the electromagnetic potential. In the operator formulation of QED the trans-
versality of the external photons is restored by imposing on the physically admissible states
the Lorentz subsidiary condition. We want to show that in the functional formulation one
can obtain the same S-matrix elements, as were obtained in operator formulation, without
the apparent use of the subsidiary condition. We give the functional scheme of the theory.
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First of all, remaining on the mass shell, we extend the generating functional &; A%
to longitudinal and time degrees of freedom. Consider the functional &[; ’A%] where

A%, @, B,] = [ dpla(D)F*(p, 2)+B,D) A P> )} 2.1)

Here « M(ﬁ), B ﬂ(ﬁ) are any four vector functions. We can decompose ocﬂ(f_;) and g ﬂ(ﬁ) according
to the formula (1.5)

[(p2) +(np) (n2)] [Put(mp)r0u]

“M(ﬁ) = t“ﬂ(ﬁ) 0 p2+(np)2 (n“)nﬂ
‘o p) = 2 (e:®)ein(P)- 2.2)
So
A3 3 By — 305, B+ [ 4B {45
[(pa) +(@p) ()] [Put(mp)ra] . ] ST }
X[ P2+ (np)? (nayny | +A(P, %) [ — B¢- (2.3)
Here :

@, = (gx), ;= (e;B) -

In our scheme functional #[; 4] plays an analogous role to ‘the role of the functional
#[q,] in the scalar case (see [1]). However, it is necessary to keep in mind that in order to
obtain the generating functional for amplitudes on the mass shell, we must replace 4}, by
‘Aﬂ after calculation have been performed.

In order to formulate the second fundamental condition — the causality condition —
let us introduce the functional matrix

SlsA daspoli= e“uPudf[; A”—}-Ag[ocﬂ, Bl 2.4)
and also the matrix
. 0
T T, e, 6] = S* [; 0,0, -6—”] ST 45,7, 0, B, oo 25)
In abbreviated matrix notation
T[; J,] = S*[; 0] S[; 45, J.]. (2.6)
We impose on T'[; J,] the causality condition which has the following differential form
4 oT*[; Jo
oy e AL ) e i 267,
5. (T[’ 55 ) R s Gt

In this paper we shall not try to solve perturbatively the unitarity and causality equations®.

4 One can find the formulation of the divergence free method leading to the perturbative solution of cau-

sality and unitarity condition for the scalar case in [15].
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Here we are interested only in the general construction of theory. With the aid of the same
formal consideration as in the scalar case (see [3] Chapter 4) one can see that the general
formal solution of the unitarity and causality conditions is given by the following functional®

ok ' o} 0 R0 ! i
[, n; J,] = exp {i[ [—i 617_*’ i E Vs —1 67;]} ein<D 1,73—?@45}%, (2.8)

Where 7[#, 75 J,] is expressed by the generating functional for the off-mass shell ampli-
tudes as follows

s 73 T, = 1=y am, —npeSTs A1) 2.9)

The functional ITy ; A,] must be real and local. It plays the role of interaction functional.

One can check that forI[y,, 9o, 4] = 0 there is no interaction, namely <[y, %y, Aol

We have given here briefly the general framework of thé theory. The equivalence of this

formulation to that given by Feyman — Dyson can be clearly seen if we pass to the so-

called canonical formalism (see [3] page 181). Performing exactly the same calculations as
in the scalar ([1] Sec. 9) or in the spinor cases ([2] Sec. 11) we obtain

Sle, %, B, a*; a,, ﬁﬂ] — @By
XS [pole, Bl yolo™, B*1; Apler,. 8,11
=T exp {ZI[XO’ X()ﬂ AuO]}’ (2.10)

Here Xy, X9, 4, are the free field operators for spinor and photon fields respectively. In the
functional matrix notation they have the following form

XO[“a PR e x| = —eum*+ﬁﬁ*74w0[“7 B, «

Ayl B 5] = —e*Pudd]a,, B,; 4] (2.11)

and they obey the usual commutation relations, namely
[Xo(®): Xo()] ;. = iS(x—) (2.12)
[A,0(x), A,()] = ig,, A(x—y). (2.13)

Other commutator vanish.
The operators y(x), A,4(%) are defined by the functional matrix T(n, 7, J,] in the
following way

6T0 o 1]y Ju —
A otk % i 2.15)

when the subscript zero inside T 7, J,] means switching-off of the interaction.

5 In this place we explicitly introduce variables refermg to electrons and positrons. The notation is taken
from [2] and [3] D-1= —SFy,.
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The expression (2.10) together with (2.12), (2.13) give for internal lines of S-matrix
elements an agreement with coventional QED provided that one chooses the usual form for
the interaction functional

Iy, 9, 4] =jA, (2.16)

where
: e L
Ju = 5 [ vuyl-

In order to obtain complete agreement with conventional theory also for external lines, one is
obliged to change® &, and f, into ‘a, and ’8, (see formula (2.2)) after the evaluation of the
T-product is performed. This procedure means that we allow for external photons only
two degrees of freedom. Conventionally, such an effect is reached by imposing on physically
admissible state vectors the subsidiary condition?. Thus the equivalence of our formulation
to the conventional theory is demonstrated.

3. QED in Coulomb gauge

In the formulation of QED in the Coulomb gauge we deal with transverse photons only.
This description, though close to physics, is rather more complicated then the Feynman
one. First of all the theory looses its manifestly covariant character due to the presence
of the distinguished time-like vector n,. Nevertheless the theory, as it was shown in several
ways (see [8], [9], [12]), is Lorentz covariant and its covariance follows from the freedom
of choice of the vector n, [8]. This freedom is connected with the arbitrariness in the choice
of polarization four-vectors e;,, namely the two set of vectors related through transformations

. €y (p) = i (p) +P,u“i(.;)

describe the same physical photon states. Another complication comes from the nonlocality
of the interaction. Absence of the longitudinal and scalar photons is compensated by the
Coulomb interaction term. This term in general framework looks as follows

Ll )
c 2 [0+ (nd)?

where j, is defined in (2.16). The operator ([]+(rd)*) is nonlocal:

1 . . )
L= 9 f dxdyn, ju(2) [ 2+ (nd)2Hx—y)n,,(y)- (3.1)
In a special framework with n,=(0,0,0,1) the above relation simplifies to
L= dxdy Bl S Jo(®)jo(y) (xg—0)- 3.2)
v 4o |x—y| 100 00

8 Such change corresponds to the change Aj into 24Y,.
7 The role of subsidiary condition is explained in [8], [6].
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From (3.2) it is evident that the Coulomb interaction is, at least in this special framework,
nonlocal only in space variables and local in time. The formal proof of the validity of uni-
tarity and causality conditions can be carried out if the interaction functional is real and
only local in time. Looking at the method of the proof ([3] Chapter [4]) one can see that the
nonlocality in space changes the sequence of space variables in closed cycles of retarded
functions, but the sequence of time variables, which is responsible for vanishing of such
cyclesis preserved. The proof was based on the discussion of these cycles and the property
that they vanish, So, in the framework with n,=(0,0,0,1) the functional

[, 73 4] =L1—SFpem, —ny,SF; AL

: e O (D) .0 D — 1y ], 4,7,
= exp {ZI[—Z W,ZW’}/4;'—Z ﬁ]}e B (3,3)
where
v : L () (n))
o = e =
Iy, p; 4] = ju'Au+ 2 O+ (mop (3.4)

formally solves the unitarity (1.16) and causelity conditions, which in the simplest form look
as follows

5 . A 1
0y t7,(x) (T[% 75 —6tf,,<y) ) = Ubhelony I0ie % (3.5)
5 R ) %1) 4
s (70759 sm0) ) ° il

M= =t Gj=12
Here
Tln, n;'J,] = 80, 0; 01S[— Sy, 7m, —7yaSTs A5}T] 3.7

and the functional matrix

S[y), a; tAM; o, /3*9 ﬁ, x*; %, ﬂt] — % +B*B+aifi X

XLy +yola Bl p+yola*, 415 °A, + Apfe, B (3-8)
We are not able to verify directly the solvability of the unitarity and causality conditions
by (3.3) in any framework, but keeping in mind the Lorentz covariance of the theory we
suppose that such solvability occurs.

Following the same8 rules as in the scalar or spinor cases ([1] Sec. 9, [2] Sec. 11) one
can obtain the canonical form of the theory outlined in the formulae (3.3)—(3.8). We have:

Sle, 5%, B, a*; e, B = et tB*b+aibs o

XL [pole, b1, wla*s 15 “Alas, b1l = T exp il [Xg> Xo» “Apol- (3-10)

8 Here we use the functional derivative over transversal functions given in (1.14). This complicates slightly
the calculations. However, due to the validity of Volterra’s formula (see [4] Sec. 5)

8
FA,+24]] = exp {zA Y 6_%_} F[td,] 39
“

all calculation can be carried through.
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Here the definition of 4 (x) is the following

0T [0 7, 5 T3]

"A,4(x) = —i p=7i=0. (3.11)

T o
The functional matrix ‘4 g[a;, f; ] = "4 (%) can be expressed by the transversal solu-
tion of the d’Alambert equation (1.10)
tAuO[(xi’ ﬁi’ .’)C] . _e%ﬁi tAlol[“ia ‘6;'9 x]' (3.12)
Now one can easily obtain the commutation rules

[0, “A()]- = 10, 4(x—)- (3.13)

4. The comparison of Feynman and Coulomb gauges

We would like to check whether the functionals generating off-mass shell amplitudes
in Feynman (Eq. (2.8)) and Coulomb (Eq. (3.3)) gauges lead to the same scattering amplitudes.
The direct comparison between formulae (2.10) and (3.10) is rather difficult (see [9]) and
not too transparent. Hence, we shall start from the off-mass shell functional in the Feynman
gauge and, after simple transformation, we shall obtain the coincidence of generating
functionals on mass shell in both gauges. We are going to carry on our considerations with
the aid of the functional integration method (see [3] Chapter 7). First of all we rewrite (2.8)
and (3.3) in alternative, integral forms. Namely?

ol 73 T = N5t [ 04,, dydpedrmay »
< eV Dyl Aygivintinty+il,A, (4.1)
and
volm, 7, ) = NGt [ 014, 0p0petdtid,

{th el (m')(nf)__}
eiv* Dygi 7V 0T 2 O ma)? | pivintintyi th,td, (4.2)

Ny and N, are normalization constants
Nz = 7£[0,0;0]; No = 7[0, 0; 0]. . (4.3)

Now we integrate (4.1) over time and longitudinal components. For that purpose we decom-
pose A, according to (1.5)

2

v T [94+1u(nd)] [94 +(nA) (nd)]
el ; eilesd) + Lo Fnu(nd). (4.4)
Therefore
A, =4, +n54+5,4 (4.5a)

9 In this section signs F and C label quantities in Feynman and Coulomb gauges respectively.
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where
2

A, = D e;(e:A)

 (#9) @4+ O ()
s =T (4.5b)
Ly @A)+ () (09)
O+ (nd)?

The above expressions describe a linear transformation relating the components A, with
‘A, 54 and 4. Introduction of such transformation into the integral (4.1) change the meas-
ure of integration. Nevertheless, due to the linearity of our transformation, the change
of measure results in the multiplication of integral by an infinite constant. The same constant
occurs in the denominator by performing the same transformation in Np and, therefore,
the net effect of the transformation will be none. After the use of the transformation (4.5)

we obtain
veln, 3 J,) = Nt [ 6°4,654 8'45pdy x
s ¢t An SA+9 AV DA A mSA+9,JA) giv*Dy (At mySA+0, M) o

s @I (A, SA+9,0A) (4.6)

We integrate (4.6) over 654 and ¢4 in a straightforward way and obtain (see Appendix I)

voln, 13 J,) = Nt [ 84, dpope i 4utidugtDeginvintt il by o (4.7)
S 1 () (W) _ 2(n) (09) (95)+(9)*
Vs {’MfA#+? O+ (9) 2 00+ (9)) } %
i{ 1 (n)) (nJ) _ 2(nJ)(na)(9J)+(aJ)z}
% o B OFEY  2@+m | i
i{ (W) (nJ) _ (nJ)(19)(99) + () (n9)(9 T) +(97)(2 T)
% ¢ \T+@a) O(0+ @)

The off mass shell generating functional in the Feynman gauge contains transversal, time-
like and longitudinal parts. If we wish to compare that functional with the onein the Coulomb
gauge it is sufficient to consider the transversal parts only. In the Coulomb gauge the time
and longitudinal parts do not occur. We obtain the transversal part of 7z[7, 7; J,] if we
put instead of J, only its transversal part *J,. Because (n'J) = (9°J) = 0 we can write

TF[’% ,'“7; t‘],u] i N;l f (5”AM51/)(5'(7)6ilztAMDtAMeiw*Dwei"*w"_ ipknt+itytd, % (4.8)

s 1 _(m)() 2(m)(n9)(97)+(95)*
o {]!‘MW 2 O+moy  20(0+ @) }

Comparing (4.8) and (4.2) we see that the difference consists in the existence of extra inter-
action terms in (4.8). Apart from the Coulomb interaction and interaction with transversal
photons, Eq. (4.8) contains two exeptional terms. However, Eq. (4.8) and Eq. (4.2) give the
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same expressions for the S-functional on the mass shell. This becomes evident if we
look for the canonical form of S-functional on the mass shell corresponding to the
formula (4.8). The only difference between the canonical form derived from (4.8) and the
analogous canonical form in the Coulomb gauge (3.10) is shown by the term

7 2n)(n9) () +(9)*
3 20(0+ (no)?)
present in the interaction functional. The functional matrices Zola, B*, B, a*; 2] and
Zolt, %, B, a*; ] obey the Dirac equations, thus the current J (%) formed from it must
beconserved, i.e. (9j) = 0, and therefore I, = 0.
The formula (4.8) permits to obtain the connection between the transversal part of
the off-mass shell functional in the Feynman gauge and the off-mass shell functional in the
Coulomb gauge. Namely

(4.9)

1 N i{(n)(n9)07)+1 (0/)} -
wln, 1377, = N, ¢ DoFmn weln. m;5 ° 7, (4.10)

where

% e 0 0
=% (s 7 ) i

The expression (4.10) connects, in a compact form, the transversal part of the Green functions
in the Feynman gauge with the Green functions in the Coulomb gauge. The connection is
rather involved, because the transversal part of any Green function in Feynman gauge is
given by an infinite sum of suitable Green functions in the Coulomb gauge.

Final remarks

We gave the formulation of QED based on the scattering amplitudes and treated operators
as a secondary notion. In this way we avoid some difficulties which occur in the conventional
approach to QED. However, the difficulties connected with the calculation of scattering
amplitudes are of course further present in our formulation, exactly as in the conventional one.

APPENDIX I
Integration (4.6) over ‘A gives the result
eln, 3 J,] = Ng* [ 64,8548y x
[(9) 0354+ (94) +(27)1*
D2

% e—i/2 .ei/z(‘A”+nMSA)D(3A”+n”SA) %
X eiw*DweiiM(tA”+n,,SA)eiw*n+in*w+iJ,;(tA,,+n,‘SA)

2 N;lf 6’.{4”5 Sy 6w5$ei/2tA”DtAﬂ—i/2 SA(O+(r9)2)S4 X

_q (@) (@) ©NOI) [ ()9/)84 | (#9)(n])S4
ol e e+ e

X
(7,24 4 (m)SA) Ji(T 2A,,+(nT)SA) iy*Dy iy*q+inty
X evVuttu evu e e 1
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Integrating over 4 we obtain

weln, 73 1] = N [ 64,090 4Dt uivDrcintytiven
("57)(57.7) (na)(af)
_,/zl(;g'.]_)_z. e (91')2 s (9])(91)} { [(m)-F(nJ) ] }
xe ‘o0 (e D+(na)= >
XeijﬂtAMe’JMtAM I —lf &' A 61/)617)ei/2t‘4ﬂDtAﬂei‘”*D'”ei”*'p+iw*""'”ﬂ“ﬂ)(
; { ta + ) () _ (m)@3)(97) _ 1 (25)? }
we LT3 Ovme)  O@+mayp) 2 O(O+(n9)?) %
(1 (a)@)  mh@ma)e) 1 (o) |
12 O+ ) O@+@a)» 2 O(O+ma)" T
1.{ (m)(n]) _ ()) (29)(95) _ () (n9) (97)+(97) (9])}
O+ (®9)* O(O+(=9)?) (0 + (n9)?)

xXe

APPENDIX II

We are interested whether QED in general gauges, as the ones introduced by Zumino [12]
with specified a,, 4 and M functions, is equivalent to the QED in Coulomb gauge. We
write the generating off-mass shell functional in the form given by Biatynicki [13].

(7, 75 T A, M] = N7 [ 84, 80p0pode™ %My
X M@ A+ 4) gil2A, (08— 8,9 ) Ay g0 Dy sy i n-+intp-+il A, (I1. 1)
Now we decompose A, according to (4.5), integrate over ‘A, SA4 and A, and look for the

transversal part of the 7-functional. For simplicity we omit spinor variables by putting
instead of them the semicolon.

5T, A, M] = N [ 6°4,6548'462; &M

< eiMﬂ(,,hSA.'_ 9,0 A)C;Me,-/z(m tn MSA)(D Lt Ma,,)(tA,,+n,,SA) eth”tA ”eljﬂ(tA utny SA+9 'ulA) (II. 2)

Here we take into account that w4, =0and 6,(016,,—9,9,) = 0. We integrate over S4.
We get
tls ', 4, M] = N [ 64,6405

(an)(an) (@), () o
/21 O+ ] etm..lz‘qe’z E|+(n9)“ /°D+("5’)’ it], tA,ue’J,u(tAM'*'g,ulA).

Integrating over 4 we obtain

_(m)(w)

if2 z] th ZM
O+ (né))2 L%

T[; tJ‘m AyM] N—lf (StA 61.14 e

= L{ AO+Ey) (an)*(mj)? 24(an)(nj) }
xe 2 \@f=MO+@)) * (OF@E)ien)~MO+m)P]  @ny—MO+e))

_ i A0+ m9)?) LA AT +(n9)*)+A (an)(nj)

o TErmGtom | G e o]
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Finally we integrate over ‘A
i (m)m) | . 3
; - g Tttt A
T[; t]m 4, M] = N_lf 6tA;1; ¢/t 40t e 2 O+ (09) il MX
i 1

g (an)? (n)* _ (an)® (m))?
2 (an)*—M(O+(n9)*)

O+ (m9)* O+ (9)*

{42+ o)+ 2a(am) )+ ~24(an) )~ 4°(0+ (517}

Xe

; {(ai) (A+(an)(n)))
%e 0O+ (n9)*

o (Oi)‘[(an)’—M(D-l-(na)“)]}

2 O+ (no)?

(IL3)

We see that, with the exception of the Coulomb interaction term, there remain only terms
multiplied by (9j); the other terms cancel each other out. Thus, using the same argument
as in the case of Feynman gauge we conclude that the formulation of QED in all general
gauges are equivalent. The comparison of (I1.3) with (4.8) show that the Feynman gauge
1
Eﬁ .

The autor thanks Professor J. Rzewuski, Docent J. Lukierski and Mr J. Haniékowiak
for their help in the preparation of this paper.

is defined by 4 = 0, a, = %"_ and M —
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