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THE APPROXIMATE GROUND STATE OF TWO-SUBLATTICE
UNIAXIAL FERRI- AND ANTIFERRIMAGNETS WITH TRANSVERSAL
MAGNETIC FIELD
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The approximate. ground state (spin wave reference state) of the two-sublattice uniaxial
ferri- and antiferrimagnet with an external magnetic field perpendicular to the easy axis is de-
termined. In the nearest-neighbours approximation, strict solutions for the field-dependence of
the direction of spin-alignment in the sublattice reference states are obtained and discussed,
and the critical fields for the transition to the paramagnetic state are determined. The ferri-para
phase transition is shown to be of second order.

1. Introduction

When employing. the spin wave formalism to the Heisenberg model of ferri- or anti-
ferrimagnetism there is usually the problem if choosing a suitable reference state (spin wave
vacuum) if the spin wave interactions are to be sufficiently small to justify the standard
long-wavelength low-temperature approximations [1-4]. A typical example is the case when
the (homogeneous) external magnetic field is not parallel to a direction of easiest magnetiza-
tion, in which case the reference state depends on the field strength and direction. In [1-4],
two different methods of determining the reference state for magnetic crystals have been
studied quite generally: the method A, which is preferably used in the theory of ferromagne-
tism [5], aims at determining the approximate ground state of the spin Hamiltonian, by
minimizing its expectation value in a class of trial states generated by spatial rotations from
the state of complete spin alignment (saturation state); and the method B which resides
in eliminating the terms linear with respect to the spin wave creation and annihilation
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operators appearing in the transformed Hamiltonian (see, e.g., [6]). In [1-4], the methods A
and B were shown to be equivalent in a limited sense.

Our purpose is to determine the reference state of the two-sublattice uniaxial ferri- or
antiferrimagnet with an external magnetic field which is perpendicular to the easy axis, by
applying the method 4 with the following restrictions:

a) the class of reference states is confined to “homogeneous” states correspondmg
to complete spin alignment in the, sublattice :(sublattice saturation state);

b) the ferri--or antlferrlmagnet is assumedto. be. of Néel type, and. the (exchange)
interaction is restricted to nearest, nelghbours only; . -

c) uniaxial nearest-neighbours exchange anisotropy is assumed;

d) intra-atomic interaction (crystal field anisotropy). is excluded.

Within these limitations, strict solutions for the field-dependence of the direction of
spin-alignment in the sublattice reference states are obtained and discussed, and the critical
fields for the transition to the paramagnetic state are determined.

- 2. Approximate ground state emergy .

We consider a spin Hamiltonian of the form:

= —e|f| 2 (XS”‘S"—I—S“’S”—!—ZSzSz) MlH Z Sf ,qu Z S" @
where X = 1+|K.[J], ,Z = 1+,]KZ/J|,~ (V4 > X)., The subscr_ipts f, g denote respectively
the sites of the first and second sublattice (each .of them having N sites); (f, g) denotes the
summation over nearest neighbours; K, K, are the exchange-anisotropy: constants in the
x and z directions, and J is the nearest-neighbours exchange iiitegral between atoms belonging
to different sublattices; u; and u, are the effective magnetic moments per lattice atom in
the first and second sublattice, respectively; H denotes the homogeneous external magnetic
field which is parallel to the coordinate axis x (perpendlcular to the anisotropy axis z);
e=—1 corresponds to the antlferrlmagnetlc, and & = 1to the ferrlmagnetlc case.
Slmllarly as m [1] we perform the following rotatlons of the splns in the plane 20z

S}‘- = Sf cos 0,4 Sf sin 6’ S" = 5% cos ,4-&S5% sin 0,
=5 9—9‘ ‘:
SF = —SF sin 0,47 cos 0, Sz = —&S% sin 0,45 cos 02 @)

and define the sublattlce saturatlon states [0 >f and [0) (homogeneous spin-deviation reference
states; ¢p. [4]) as follows:

SEI0) = S:]0), Sf+ [0)="0
SE[0) = S,/0),  S;|0) =10
where )

Sty = Ste+iSe 100 =103+ 0D, f<0|0>f—g<0|0> =1 ®)
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(see Figs 1 and 2). Subsequently, the approximate ground state is determined by minimizing
the mean value of the transformed Hamiltonian! in the state |0) with respect to the para-
meters 0; and 0,,

min (0|10 = min Ey(0,, 0,) (4)

Ferrimagnet x
(€=17)
Fig. 1

S7

Antiferrimagnet
(€=-1)
Fig. 2

! This is equlvalent to mxmmlzmg the mean value of the Hamlltonlan (1) in the class of reference states
106, 2)) U+[0> where the unitary transformation U corresponds to ‘the transformation (2) (¢p. [1]).



420

By taking into account Eqs (1)-(4) we obtain for E, the expression

Ey(0,, 0,) = —ed[X sin 0, sin 0, +-&Z cos 0, cos Oy-+eh sin 0; +exh sin O,] (5)
where :

h= ﬂlH/Voszmv %= ppSoltyS;, d= NSlszyolfl’

yo — the number of nearest neighbours.

3. Minimization of E, and critical fields

The approximate ground state energy corresponding to the minimum of (5) we obtain
by studying the necessary and sufficient conditions for the existence of a minimum of
a function of two variables 6;, 6, which depends on the parameters X, Z, h, %, &

9E, 9E, . . 9%E, 52K, ( 92E, \* 9°E,
26, =% 20, =% 4= 7@ o \wwee,) >> @ >"
(©)
The necessary conditions can be written in the form:
cos 0; = n|R| cos 0, 7)
and
cos Oyw sin 6, —h(nZ|R|+exX)] =0 ®
or
. Nl
cos 0, | w sin O,—h _IRT +eX||=0 ©)
where R2 = (»2h2+w)[(h®+w), w = Z2—X?, n= +1.
From (7) and (8) or (9) we obtain the following solutions:
sin 0; = hw 1 (nZ|R|+exX) (10)
sin 0, = hw(nxZ|R[14-¢eX) B 11
or
cos 0; = cos 6, = 0. (12)
For the solution (10), (11) we have:
92E,
508 — ndZ|R| (13)
A = d2R%(h2+w)(1—sin? 0,). (14)

It can easily be seen that in this case the necessary conditions (6) for the minimum of E,
are satisfied for all values of the angles 6, and 0, (except for |sin 0| = [sin f,|= 1) if =+ 1.
In this case, Eq. (7) and the initial condition 6, = 0, = 0 for A = 0 permit without loss
of generality to restrict the angles 0, and 6, to the interval (0, 7/2) for the ferrimagnet
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(6= 1), and to the interval {(—m/2, #/2) in the antiferrimagneric case (¢ = —1). On
the other hand, the reality condition for the solution (10), (11) leads to the following limitation
for the magnetic field: '

0<h<h = 21%- [—eX(+1)+ )/ X2 (ot 1)2-docao]. (15)

It can easily be verified that in the interval (15) the solution (12) does not satisfy the sufficient
minimum conditions (6). For values of the magnetic field above 4, the situation is reversed,
as only the solution (12) is real and satisfies the sufficient conditions (6). In this case, for
the ferrimagnet (¢ = 1) only the values 0; = 0, = /2 for the angles are admitted, while
for the antiferrimagnet (¢ = —1) there are two solutions: 0, = 6, = /2 and 0, = /2, 0,
= —n/2 (or v.v.); in the latter case, it can be easily shown that the solution 6, = 0, = /2
represents the absolute minimum. So in both cases (¢ = +1) we have for & > £, the solution
0; = 0, = #/2, for which ‘

A = [k eX(et- Dh—w] > 0, (16)
2
% — d(eXxh) > 0. (17)
2

Hence, the solution (10), (11) describes the *’scissors phase” (S) in which the spins in
the two sublattices form with the easy direction (z-axis) the angles 6; and 6,, and the
solutions (12) correspond to the so-called paramagnetic phase (P) in which the spins are
aligned along the direction of the magnetic field (0, = 6, = 7/2). The transition between
the first and second phase takes place for & = h,.

‘ 4. Discussion of results

In order to determine what kind of phase transition takes place at the critical point h,,
we examine the energy E, the magnetization M and the susceptibility y of the system in
the approximate ground state (3).

Upon inserting (10), (11) or (12) into (5) we obtain for the phase S and P, respectively,

ES = —d[Z|R|+h*w Y Z|R|+exX)], (18)
E§ = —d[eX+(+1)A]. 19)
With the components of the sublattice magnetizations in the state (3) defined as follows:
Mi=m %, 0510y, M= z (0[5710) (20)
M= 3 O30), M=y, X (0)30). (21)
7 P

the total magnetization M has the form

M= |M|=VM;+M; = V(M;+Mp)>+ (M;+Mz)* =
= VM2 M. = 1S,V V(cos 03+ cos 0,) 1+ (sin 0, sin 6,)°, ©22)




422

where M| and M denote the components of the magnetization in the direction perpendicular
and parallel to the external magnetic field (transversal and longitudinal magnetization),
respectively. For the corresponding components of the sublattice magnetizations we have

Mi = uSyNcos, M jf = pySyVe cos 0, (23)
M= | = S Nsin 03, M, |I]I = uyS, N sin 0,. (24)
For the transition point between the phase S and P we obtain
: d
Eflhmto = Eflnne = — o~ [—eX (4 1)+ (X2(e+1)2+-4oerw) % e+ 1)] (25)
M|y pe = M3lop, = N(poSi+1250) = M e = MFly_poe (26)

From (25) and (26) we see that for b = h, the (ground state) energy of the system and its
first derivative with respect to the magnetic field (i.e., M) are continuous. However, one
easily proves that the susceptibility has a jump (phase transition of second order), as

: 1 X2 -1\
%s{h=hc = Xﬁlh=hc == %Z {1 - (1 =y -Z—z—) (:—H) }7 (27)
XP Ih=hc . th=hc =0. (28)

To illustrate the influence of the external magnetic field on the approximate ground state
energy and on the magnetization, schematic numerical curves for the case x = 1/2,
X=1(K,=0), Z=1.1(K, = 0.1) are given in Figs 3-8. The dependence of the angles 6, 0,
on the (reduced) external field % is shown in Figs 3 and 4, respectively for the ferri- and
antiferrimagnetic case. The curves in Fig. 5. demonstrate the field-dependence of the ground
state energy, the critical fields for the S« P transition being denoted by hf and h"f for the
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ferri- and antiferrimagnetic case, respectively. The (reduced) absolute value of the sublattice
magnetizations m', m'" as well as their longitudinal (mf;, mfl) and transversal (m}, ml)
components are for the antiferrimagnetic case plotted in Fig. 6, while the respective quanti-
ties corresponding to the total magnetization are given in Fig. 7. The absolute value and the
longitudinal and transversal components of the total magnetizations for the ferrimagnetic

sin@, | sin@,
) e e, g TR 5in6,=sinp,=1
| X
|
|
| Sin @, :
I | |
l | (s) | (P
sin87{| | :
|
1',70 | |
! "
A hy he hlgyS,171/m,]

Aniiferrimagnet
| (e=-17)

Fig. 4

case are presented in Fig. 8. In the latter case, the field-dependence of the respective quanti-
ties corresponding to the sublattice magnetizations is qualitatively the same as in Fig. 8,
except that the absolute values in the S-phase are field-independent and equal to 1, much
like in the antiferrimagnetic case (cp. Fig. 6). ‘

As is seen from Fig. 3, our exact solutions clearly show that the customary approxima-
tion 0 ~ 0, (see e.g. [7]) in the *’scissors phase” S of the ferrimagnet is justified for small
(0 <h <h,)as well as large (0 <€ h < h,) fields, as in these cases the spins in the two sub-
lattices are nearly parallel to each other, the deviation from parallelity being largest for
intermediate field strengths and depending on the magnitude of the anisotropy and the
effective spin ratio » = pyS,[u; Sy Since 0; > 0, for 0 < h < h, it is the larger spin S,
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which is more inclined.toward the external magnetic field. The same is true for the anti-
ferrimagnetic case (Fig. 4), though in this case the smaller spins S, rotate at first toward the
negative field direction, and only upon exceeding a certain field strength A, swing gradually
back to the positive field direction. As for the larger spins. Sy; there is.also clearly visible
a swing-back motion for intermediate field strengths ko < & < hg. One easily verifies that
no phase transitions take place at kg, Ag, hg. This somewhat strange motion of the spins
leads to the peculiar field-dependence of the longitudinal and transversal sublattice

£, (d]

hLaoS191 k]

Fig. 5

magnetizations shown in Fig. 6. It is evidently seen from Fig. 7 that the customary assumption
rﬁ]]ﬁ in the molecular-field approach (cp. [8]; see also the case of the S-phase considered
in [9, 10] is not justified unless & > A /2.
" It is interesting to determine the field A, for which the smaller spins S, pass again
through the anisotropy direction (i.e., for A # 0; cp. Figs 4 and 6): '
B3 = 22 X2—n2Z2). . (29)
One easily concludes from this formula that there is no swing-back motion of the spins if
Z]X < »; in which case the S-phase in antiferrimagnets resembles the spin-flop phase

of antiferromagnets. Finally, we may point out that for % = 1 our results correspond respecti-
vely to those for ferro- and antiferromagnets (cp. [5, 11]), with the critical fields

hc'_=£ Z—fX_ vfor e=1
h,=2Z+X for e=-—1 . , , (30)



425

(3 G
':.“/)'\- V’)N I
~ N
g|S | |
S !
7 mi=m"=1 | mi=mj=m"=m?
I
m, l
- l
my l
w \ (P)
m/fl |
n e 1 LyyS, 11wy
l
I
l
i l
-7 My |
Antiferrimagnet
=-7
Fig. 6 ' (e ¢
I
™
v;: |
SN ]
+ I
w: [
LS | m=m, =1
= {
Z, |
IS |
1
|
|
|
|
(5) | (P)
V3 " [
|
1
my my :
; ,
e hLSpl/uy]
Fig. 7 Anriferrimqgnet

(e=-17)



426

The exact solution (10), (11) of the minimizing equations (6) permits to apply the spin
wave theory to the S-phase in two-sublattice uniaxial ferri- and antiferrimagnets, with
the same rigor as in [11] for antiferromagnets. In this way, the critical fields obtained here

< m[N(,u,S, +/£1252)]
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can be checked with those following from the spin wave energy spectra. Such investigations
are under way and will be published in a separate paper [12].

The authors wish to thank Dr W. J. Zietek for helpful discussions concerning this work
and for reading the manuscript.

APPENDIX

In order to get Eqs (7-9) from (6) we write down the necessary conditions for the existence
of a minimum of a function E; in the following form:

eZ sin 0; cos O,— X cos 0y sin 0, = eh cos 0, A)
&Z cos 0, sin 0,— X sin 0, cos 0, = exh cos 0, (B)

Multiplying Eqs (A) and (B) by ¢Z and X respectively, and v.v., and subtracting (A)
from (B) we obtain

(Z2—X?) sin 0, cos 0y = hZ cos 0;+eXnh cos 0, (®)
(Z2—X?) cos 0y sin 0y = hxZ cos O,+¢ehX cos 0; D)
Upon squaring and subtracting again the above equations one gets
(22— X2+4h?) cos? 0; = (22— X2+ h2x?) cos? O, )
With the notation x2h2-+Z2— X2[h2+Z%—X?% = R? we easily arrive at Eq. (7).
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Note added in proof: Only recently came to our attention the short note by M. J. Besnus et al.
(J. Appl. Phys., 39, 903 (1968)), in which similar qualitative results for the field-induced phase transition in
a two-sublattice uniaxial antiferrimagnet have been obtained, in a phenomenological way, and in the weak and
strong anisotropy approximations.



